油层物理
油层物理教学课件

达350-450亿立方米;从中东、非洲进口原油(含国外经营)
2000-3000万吨。为此,需要规划建设相应的输油、输气国 际管线,开通从俄罗斯西西伯利亚、远东地区至中国,以及
未来中东—土库曼斯坦至国内的油气供应战略主渠道。
三、油层物理的研究内容
颗粒 实体 岩石 胶结物 油层 孔隙(空隙) 流体:油-水、气-水、油-气-水
海洋石油总公司原油生产正处于上升期,1996年产油 量已达1500万吨,预计本世纪末仍可保持在1500万吨左 右。2001-2010年预计可新增探明储量10亿吨左右,2010 年原油产量可达2000万吨左右。这样,2010年全国原油
产量大致可达17000~19000万吨。
中国陆上油田的主体是60-70年代投入生产的,进入80 年代以后油田普遍进入高含水采油期,依靠加密钻生产井才 维持产量的稳定。1981-1995年期间通过钻加密井所增加的 可采储量占新增可采总储量的46.2%;其新建生产能力占新 建总生产能力的53.8%。
1桶(bbl)=0.158988m3
至1995年底,全国已发现油田454个,其中海域24个, 已投入开发油田342个,其中海域16个。
中国石油天然气总公司已投入开发油田320个,动用石油
地质储量129.57亿吨,其中可采储量43.11亿吨,最终采收
率33.3%;各类井共有103423口,其中,采油井72255口,注
1933年,美国人G.H.法奇等人首先进行了油层物 理方面的研究,研究了流体性质和测试技术; 1934年,R.D.乌索夫和M.马斯盖特等在达西定律 基础上研究了测量岩样渗透率的方法;
1935年,R.J.薛尔绍斯研究了井底取样器和测量 样品物理性质的方法。测量项目包括:压力-体积 -温度之间的关系,饱和度、饱和压力、油中的溶 解气量、原油由于气体的分离而导致的伸缩等。
油层物理

第一章 储层流体的物理特性
第一节 油气藏烃类的相态特征 1.油气藏烃类的化学组成和分类 1.1 石油的化学组成 石油=烷烃+环烷烃+芳香烃+少量烃类的氧、硫、 氮化合物。 其中:CnH2n+2最多。 原油中的胶质、沥青质:是高分子杂环烃的氧、硫、 氮化合物。 对原油的颜色、密度、粘度影响较大。 油井中的蜡=石蜡+原油+胶质沥青质+泥沙 含蜡量越高,结蜡温度越高,凝固点越高。
第一章 储层流体的物理特性
第一节 油气藏烃类的相态特征 3.单、双、多组分体系的相图 ⑶单组分烃P-T相图的特点
①单一上升的曲线(饱和蒸气压线); ②曲线上方为液相区,右下方为气相 区,曲线上任意点为两相区; ③C点为临界点,是两相共的最高压力 和最高温度点。 ④随分子量的增加,曲线向右下方偏 移。
第二章 储层流体的物理特性
2. 相态方程
第二节 油气系统的溶解与分离
用途:可以从数量上确定某一压力、温度下从油中分出的油、气量 的多少及油、气组成;判断油气藏的相态。
2.1 推导:
混合物组成已知,且 在某一压力温度下达到 平衡:
第二章 储层流体的物理特性
2. 相态方程
第二节 油气系统的溶解与分离
第一章 储层流体的物理特性
第一节 油气藏烃类的相态特征 3.单、双、多组分体系的相图 ⑵单组分烃p-v相图的特点
随温度升高,由气→液时, 体积变化减小; 临界点C处:由气→液,体 积没有明显的变化。
临界点处:气、液的一切性 质(如密度、粘度等)都相同 。其压力、体积、温度记为: Pc、Vv、tc。 当t>tc时,气体不再液化。
取1mol油气混合物,使其在 某一温度t、压力p下达到平衡:
油层物理学

1、泡点是指温度(或压力)一定时,开始从液相中分离出第一批气泡时的压力(或温度)。
2、油气分离:当油气压力降低到油藏饱和压力时,油气体系就出现气液两相。
天然气从石油中分离的方式通常有接触分离、多级分力、微分分离。
接触分离(又称闪蒸分离、一次脱气)是指使油藏烃类体系从油藏状态瞬时变到某一特定温度、压力,引起油气分离并迅速达到相平衡的过程。
多级分力(又称多级脱气)是指在脱气过程中分几次降低压力,最后达到指定的压力的脱气方法。
5微分分离(又称微分脱气)在微分分离过程中随着气体的分离,不断地将气体放掉,即脱气是在系统组成不断变化的条件下进行的。
微分分离的级数远大于多级分离的级数。
3、压缩因子:物理意义为在给定温度和压力条件下,实际气体所占有的体积与理想气体所占有的体积之比,反映了相对理想气体,实际气体压缩的难易程度。
4、底层油体积系数:(又称原油地下体积系数)是指原有在地下的体积与其在地面脱气后的体积之比。
5、等温压缩系数:是指在等温条件下单位体积地层油体积随压力的变化率,表示地层油的弹性大小。
6、相对渗透率:是指岩石空隙中饱和多相流体时,岩石对每一相流体的有效渗透率与岩石绝对渗透率的比值。
7、平衡常数:是指在一定压力和温度条件下,气液两相处于平衡时,体系中某组分的气相和液相中的分配比例,也称平衡比。
8、两相体积系数:是指油藏压力低于泡点压力时,在给定压力下地层油和其释放出气体的总体积与它在地面脱气后的体积之比。
9、残余油饱和度:残余油是指被工作剂趋洗过的地层中被滞留或闭锁在岩石空隙中的油。
储层岩石孔隙中残余油的体积与孔隙体积的比值称为残余油饱和度。
10、一次采油,是指依靠天然能量开采原油的方法。
天然能量驱有:弹性驱(主要驱油能量为含油区岩石及液体的弹性能)、天然水驱(主要驱油能量为露头水柱压力)、气驱(主要驱油能量为气顶的膨胀能)、溶解气驱(主要驱油能量为溶解气的膨胀能)和重力驱(原油自身重力)11、二次采油,是指用注水的方法弥补采油的亏空体积,补充地层能量进行采油的方法。
油层物理学

油层物理学1、泡点是指温度(或压力)一定时,开始从液相中分离出第一批气泡时的压力(或温度)。
2、油气分离:当油气压力降低到油藏饱和压力时,油气体系就出现气液两相。
天然气从石油中分离的方式通常有接触分离、多级分力、微分分离。
接触分离(又称闪蒸分离、一次脱气)是指使油藏烃类体系从油藏状态瞬时变到某一特定温度、压力,引起油气分离并迅速达到相平衡的过程。
多级分力(又称多级脱气)是指在脱气过程中分几次降低压力,最后达到指定的压力的脱气方法。
5微分分离(又称微分脱气)在微分分离过程中随着气体的分离,不断地将气体放掉,即脱气是在系统组成不断变化的条件下进行的。
微分分离的级数远大于多级分离的级数。
3、压缩因子:物理意义为在给定温度和压力条件下,实际气体所占有的体积与理想气体所占有的体积之比,反映了相对理想气体,实际气体压缩的难易程度。
4、底层油体积系数:(又称原油地下体积系数)是指原有在地下的体积与其在地面脱气后的体积之比。
5、等温压缩系数:是指在等温条件下单位体积地层油体积随压力的变化率,表示地层油的弹性大小。
6、相对渗透率:是指岩石空隙中饱和多相流体时,岩石对每一相流体的有效渗透率与岩石绝对渗透率的比值。
7、平衡常数:是指在一定压力和温度条件下,气液两相处于平衡时,体系中某组分的气相和液相中的分配比例,也称平衡比。
8、两相体积系数:是指油藏压力低于泡点压力时,在给定压力下地层油和其释放出气体的总体积与它在地面脱气后的体积之比。
9、残余油饱和度:残余油是指被工作剂趋洗过的地层中被滞留或闭锁在岩石空隙中的油。
储层岩石孔隙中残余油的体积与孔隙体积的比值称为残余油饱和度。
10、一次采油,是指依靠天然能量开采原油的方法。
天然能量驱有:弹性驱(主要驱油能量为含油区岩石及液体的弹性能)、天然水驱(主要驱油能量为露头水柱压力)、气驱(主要驱油能量为气顶的膨胀能)、溶解气驱(主要驱油能量为溶解气的膨胀能)和重力驱(原油自身重力)11、二次采油,是指用注水的方法弥补采油的亏空体积,补充地层能量进行采油的方法。
(完整版)油层物理

(完整版)油层物理油层物理第⼀章()⼀、掌握下述基本概念及基本定律1. 粒度组成:构成砂岩的各种⼤⼩不同颗粒的重量占岩⽯总重量的百分数。
2. 不均匀系数:累积分布曲线上累积质量60%所对应的颗粒直径d60 与累积质量10%所对应的颗粒直径d10。
3. 分选系数:⽤累积质量20%、50%、75%三个特征点将累积曲线划分为4 段,分选系数S=(d75/d 25)^(1/2)4. 岩⽯的⽐⾯(S、S p、S s):S:单位外表体积岩⽯内孔隙总内表⾯积。
Ss:单位外表体积岩⽯内颗粒⾻架体积。
Sp:单位外表体积岩⽯内孔隙体积。
5. 岩⽯孔隙度(φa、φe、φf):φa:岩⽯总孔隙体积与岩⽯总体积之⽐。
φe:岩⽯中烃类体积与岩⽯总体积之⽐。
φf:在含油岩中,流体能在其内流动的空隙体积与岩⽯总体积之⽐。
6. 储层岩⽯的压缩系数:油层压⼒每降低单位压⼒,单位体积岩⽯中孔隙体积的缩⼩值。
7. 地层综合弹性压缩系数:地层压⼒每降低单位压降时,单位体积岩⽯中孔隙及液体总的体积变化。
8. 储层岩⽯的饱和度(S0、S w、S g):S0:岩⽯孔隙体积中油所占体积百分数。
S g;孔隙体积中⽓所占体积百分数。
S w:孔隙体积中⽔所占体积百分数9.原始含油、含⽔饱和度(束缚⽔饱和度)S pi、S wi :s p i :在油藏储层岩⽯微观孔隙空间中原始含油、⽓、⽔体积与对应岩⽯孔隙体积的⽐值。
S wi: 油层过渡带上部产纯油或纯⽓部分岩⽯孔隙中的⽔饱和度。
10. 残余油饱和度:经过注⽔后还会在地层孔隙中存在的尚未驱尽的原油在岩⽯孔隙中所占的体积百分数。
11. 岩⽯的绝对渗透率:在压⼒作⽤下,岩⽯允许流体通过的能⼒。
12. ⽓体滑脱效应:⽓体在岩⽯孔道壁处不产⽣吸附薄层,且相邻层的⽓体分⼦存在动量交换,导致⽓体分⼦的流速在孔道中⼼和孔道壁处⽆明显差别13. 克⽒渗透率:经滑脱效应校正后获得的岩样渗透率。
14. 达西定律:描述饱和多孔介质中⽔的渗流速度与⽔⼒坡降之间的线性关系的规律。
油层物理学

•1956年,苏联Φ.И.卡佳霍夫撰著“油层物理基础”
该书是“油层物理”从采油工程中单独分科的起点,随后得到了广 泛而深入的发展。
•60年代末,洪世铎在卡佳霍夫课本的基础上,首次在国
内编著中文版“油层物理基础”。从此油层物理在国内成 为一门独立的学科。 •98年编写了目前使用的课本,目前已经过三次修订,在 全国各油田及部分石油院校使用。
(4)提高原油采收率的机理。
Fundamentals of Enhanced Oil Recovery
特点:概念多、实验性强、较抽象。
最后成绩:考试70%+平时10%+实验20%。 考试形式:闭卷,以基本概念及其应用为主。
参考书: 1、洪世铎 «油层物理基础»; 2、何更生 «油层物理»; 3、杨胜来、魏俊之 «油层物理学»;
等压液化
P2
P2=P泡 P3(液)
等压汽化
露点(Dew point):温度一定,压力增加,开始从气
相中凝结出第一批液滴的压力。
泡点(Bubble point):温度一定,压力降低,开
始从液相中分离出第一批气泡的压力。
单组分烃特点:泡点压力=露点压力。
2)单组分烃p-v相图特点:
临界点C处:气、液的一 切性质(如密度、粘度等) 都相同。
组成(Composition):体系中物质的各个成分及其相对含量。
P-T相图(phase diagram):表示体系压力、温度与 相态的关系图。
3. 单、双、多组分体系的相图 3.1 单组分烃相图
Phase behavior of one component system
1)单组分烃相态特点
【油层物理】油层物理

一.定义1.临界点:单组分物质体系的临界点是该体系两相共存的最高压力和最高温度。
2.泡点:是指温度(或压力)一定时,开始从液相中分离出第一批气泡时的压力(或温度)。
3.露点:是指温度(或压力)一定时,开始从气相中凝结出第一批液滴时的压力(或温度)。
4.接触分离(闪蒸分离):指使油气烃类体系从油藏状态变到某一特定温度、压力,引起油气分离并迅速达到平衡的过程。
特点:分出气较多,得到的油偏少,系统的组成不变。
5.多级分离::在脱气过程中分几次降低压力,最后达到指定压力的脱气方法。
多级分离的系统组成是不断发生变化的。
6.微分分离:在微分脱气过程中,随着气体的分离,不断地将气体放掉(使气体与液体脱离接触)。
特点:脱气是在系统组成不断变化的条件下进行的。
7.地层油的溶解汽油比:把地层油在地面条件进行(一次)脱气,分离出的气体在标准条件(20度0.101MPa)下的体积与地面脱气原油体积的比值。
定义2:1m3的地面脱气油,在油藏条件下所溶解的气体的标准体积。
8.地层油相对密度:地层温度压力条件下的元有的相对密度(=地层条件下油密度/4度的水密度)。
“原油相对密度”--表示地面油相对密度。
9.地层油的体积系数:原油在地下的体积与其在地面脱气后的体积之比。
10.地层油的两相体积系数:油藏压力低于泡点压力时,在给定压力下地层油和其释放出气体的总体积与它在地面脱气后的体积之比11.地层油的等温压缩系数:在温度一定的条件下,单位体积地层油随压力变化的体积变化率(P>Pb)12.地层水的矿化度:表示地层水中无机盐量的多少,mg/L13.地层水的体积系数:在地层温度、压力下地层水的体积与其在地面条件下的体积之比。
14.地层水的压缩系数:在地层温度下,单位体积地层水的体积随压力变化的变化率15.地层水的粘度:反应在流动过程中水内部的摩擦阻力。
16.渗透性:岩石中流体可以在孔隙中流动的性质。
17.绝对渗透率:渗透率仅与岩石自身的性质有关,而与所通过的流体性质无关,此时的渗透率称为岩石的绝对渗透率。
油层物理

油层物理第一章油气在储层空隙中的特点P4典型油气藏划分及其特点P12油气藏的分类P13有关烃类相态的基本概念P15露点和泡点概念P16单组分体系的P-T相图P17-22典型油气藏相态特征:低收缩原油相图P23 高收缩原油相图P24 反常凝析其相图湿气相图干气相图P25天然气在原油中的溶解度天然气在是有种的溶解及其影响因素P27 油气分离的方式P38天然气的高压物性P46SK图版法P56天然气的等温压缩系数P67天然气的体积系数P70天然气粘度的定义P72地层原油的高压物性P85地层油体积系数P87地层油两相体积系数P88地层油的密度和相对密度P90地层油密度与压力关系P91地层水矿化度和硬度的定义P113苏林分类P114天然气在地层水中的溶解度P116第二章沉积岩分为碎屑岩和碳酸盐岩P126砂岩的力度组成的定义以及粒度组成的测定方法P127粒度组成的表示方法及其评价指标P130岩石比面的定义P135岩石比面的影响因素P137储层岩石的孔隙度的定义P145储层岩石的孔隙结构的定义P142岩石孔隙度的实验室方法P152储层岩石的压缩性P157岩石压缩系数P158孔隙压缩系数油藏的综合压缩系数弹性采油量定义P159储层岩石的渗透性P161达西定律P161Klinkenberg效应气体滑动效应的定义P167气体渗透率特点P168储层流体饱和度P187岩石的胶结物及胶结物类型P200-204第三章油藏流体的界面张力P234界面的吸附P241润湿的概念P244润湿的规律P245-246储层岩石润湿性的测定方法P251-253油水在岩石孔道中的分布P254油藏岩石的毛管力P257贾敏效应P264油水相对渗透率曲线P293绝对渗透率不同时相对渗透率曲线的形式P295 过渡带内饱和度分布示意图P317第四章采收率及其影响因素P328一次采油二次采油三次采油P329驱动方式及相应的驱油能量P329-330影响采收率的因素P335提高原油采收率方法简介P342。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
→
Z0 1
pVT0 Z p 0V0T
式中:p0=1atm,T0=20℃,V0 为T0、p0 下的体积。
第二节 天然气的状态方程和对比状态原理
② 图版法 u单组分气体的Z~(p,T)图版: ——用实验测定的不同T、p 下的Z 绘制。 u混合气体的Z ~(pr ,Tr)图版: ——据对应状态原理用实测数据绘制; ——Z~(pr ,Tr)图版是一种通用图版。 原因: corresponding state law l对单组分气体:Z=f(p、T) l对混合气体:Z=f(p、T、组成) →不可能测定、绘制所有混合气体的Z ~(p,T) 图
物理意义: u反映了实际气体与理想气体压缩性的差异。 l分子体积、分子间斥力→实气比理气难压缩; l分子间引力→实气比理气易压缩;
→Z 的大小反映了两方面影响的综合效果。
第二节 天然气的状态方程和对比状态原理
lZ=1,V实=V理→实气接近理气 lZ<1,V实<V理→实气比理气易压缩←引力 lZ>1,V 实>V 理→实气比理气难压缩←斥力 u反映了实际气体与理想气体pVT行为的偏差程度 lZ 相当于理想气体状态方程中引入的校正系数, 校正实际气体由于分子大小和分子间力的作用引 起的非理想性。 l不同气体,在不同T、p 下,偏离理想气体pVT 行 为的程度不同→Z=f(p、T、组成) ★Z是用气体状态方程计算实际气体pVT 行为的关键
u重量组成:用符号Gi表示 重量组成:各组分的重量占总重量的分数
G i wi / wi
i 1 n
G
i 1
n
i
1
第一节 天然气的视分子量和密度
一、天然气的组成
某天然气重量组成换算成摩尔组成
组分
甲烷 乙烷
重量分数
0.71 0.14
分子量Mi
16.0 30.1
重量分数/分子量
0.044 0.005
〔P+( p – π) 〕×〔V-b〕=nRT
天然气状态方程(真实气体): 在低压或地面条件下,天然气可近似视为理想气体; 在油气藏高温、高压条件下,与理想气体有很大的差别,按真实气 体的状态方程计算;
〔P+( p – π) 〕×〔V-b〕=nRT
第二节 天然气的状态方程和对比状态原理
2、真实气体的状态方程 (1)天然气偏差系数状态方程
l对比压力:
(reduced pressure)
l对比温度:
(reduced temperature)
l对比体积:
(reduced volume)
p pr pc
T Tr Tc
V Vr Vc
第二节 天然气的状态方程和对比状态原理
u多组分(multi-component) l视/拟临界压力: l视/拟对比压力:
pV ZnR Tຫໍສະໝຸດ Z—偏差系数(压缩因子)(deviation factor)
特点: l保留了理想气体状态方程的基本形式,仅增加 参数Z。计算简便,广为工程计算中采用。 l不受压力的限制,在很高的压力下可用。
第二节 天然气的状态方程和对比状态原理
(2)偏差系数Z ★
偏差系数:给定温度、压力下,实际气体所占体积 与同温同压下相同数量的理想气体所占 体积之比。
对应状态原理:当两种气体,处于同一对应状 态时,气体的内涵性质如偏差系数Z,粘度等也 近似相同。 intensive property
第二节 天然气的状态方程和对比状态原理
三、对比状态定律
根据实际气体状态方程(VDW):
RT a p 2 V b V
a、b——与物质性质有关的特征参数。不同的气体,有不同图版。 天然气是混合物,如何用统一的图版来确定天然气的压缩因子呢? 不同气体,虽然在不同的温度和压力下的性质(包括压缩因子) 不同,临界参数也不同,但在各自的临界点确有共同的特性,如果以 临界状态作为描述气体状态的基准点,设定一组对比参数,不同的气 体只要对比参数相同,则处于对比状态。不同气体处于相同的对比状 态时,许多内涵性质也近似相同,这就是对比状态原理。对于化学性 质近似而且临界温度相差不大的物质,对比状态的具有很高的精度。 对比参数定义为: p T V
油 层 物 理
第一篇
储层流体的物化性质
The Physical & Chemical Properties of Reservoir Fluids
第二章 天然气的高压物理性质
天然气——以石蜡族低分子饱和烃气体和少量非烃气
体组成的混合物。
按 其 化 学 组 成 , 甲 烷 ( CH4 ) 占 绝 大 部 分 ( 70~98% ) , 乙 烷 ( CH6 )、丙烷( C3H8 )、丁烷( C4H10 )等含量不多。此外,还含有少
y iT c i
T pr T / T pc
第二节 天然气的状态方程和对比状态原理
(2)对比状态(corresponding state)
对比状态:两种气体,当对比压力、对比温度相 同时,若对比体积也近似相同,则称 这两种气体处于同一对应状态。 ★实验证实,各种真实气体都满足此规律。
(3)对应状态原理(corresponding state law)
pseudo-critical pressure pseudo-reduced pressure
p pc
yi pci
p pr p / p pc
l视/拟对比温度:
pseudo-reduced temperature
l视/拟临界温度:
pseudo-critical temperature
T pc
3、天然气和原油之间处于同一相态平衡体系中,油气相态随油藏
温度和压力的变化而改变; 4、天然气(地下)的性质不完全服从理想气体的一般规律。
第一节 天然气的视分子量和密度
一、天然气的组成:(烃类、非烃类)
实验室用气相色谱仪分析 uNatural gas:指从地下采出的,常温常压下相态 为气态的烃类和少量非烃类气体组成的混合物。 lHydrocarbon:C1(70~98%)、C2(<10%) C3~C5(一般仅占百分之几)
摩尔分数
0.85 0.09
丙烷
丁烷
0.09
0.06 ∑=1.00
44.1
58.1
0.002
0.001 ∑=0.052
0.04
0.02 ∑=1.00
第一节 天然气的视分子量和密度
二、天然气分子量、密度和相对密度
(molecular weight、density、specific gravity) u天然气分子量
lNon-hydrocarbon:H2S、CO2、N2、CO、O2、H2
Ar、He
第一节 天然气的视分子量和密度
一、天然气的组成
1、天然气的常规物性
广义的讲,天然气是从地下、在常温常压下呈气态的可燃气体的
统称,是以烃类为主并含少量非烃气体的混合物。
按组成分类:分干气和湿气(或贫气和富气) 干气——C5以上重烃低于13.5cm3/m3
pr =
pc
Tr =
Tc
Vr =
Vc
第二节 天然气的状态方程和对比状态原理
对比状态原理推导:
RT a 2 实际气体状态方程—范德华方程: p V b V 在临界点上 ( ∂p ) RTc 2 a 0 T ∂ V (Vc b ) 2 Vc3
c
∂p 2 RTc 6a ( 2 )T 4 0 3 ∂ V (Vc b ) Vc RTc a pc 2 0 Vc b Vc
i 1
n
y
i 1
n
i
1
(摩尔分数,可用百分数,也可用小数表示)
mole fraction
第一节 天然气的视分子量和密度
u体积组成 :用符号vi表示 体积组成:各组分的体积占总体积的分数。
v i Vi / Vi
i 1 n
v
i 1
n
i
1
★当考虑天然气为遵循阿伏加德罗定律的混合气体 时,其体积组成与摩尔组成相等
第二节 天然气的状态方程和对比状态原理
说明:延长及陕北产量来自股份公司西部规划。
第二节 天然气的状态方程和对比状态原理
三、对比状态原理
1.对比状态原理及天然气的Z值求法
方法:实验测定、图版法、状态方程法 ① 实验测定 据状态方程有:
在p、T 下,
在标态下,
pV ZnRT p 0V 0 Z 0 n RT 0
(associated gas)
(sour gas)
(poor gas)
(rich gas)
第一节 天然气的视分子量和密度
3、天然气组成的表示方法 三种方法:摩尔组成、体积组成、质量组成 u摩尔组成:用yi表示,最常用的一种表示方法
摩尔组成:各组分的摩尔数占总摩尔数的分数。
yi N i / N i
湿气——C5以上重烃超过13.5cm3/m3
贫气——C3以上重烃低于94cm3/m3 富气——C3以上重烃超过94cm3/m3
第一节 天然气的视分子量和密度
一、天然气的组成
2、天然气的分类
按矿藏分类:气藏气(甲烷含量80%以上),
油藏气(伴生气),包括溶解气和气顶气; 凝析气藏气,戊烷和戊烷以上烃类含量较高。
→不满足理想气体状态方程
用什么方程描述实际气体 的pVT 行为?
第二节 天然气的状态方程和对比状态原理
二、真实气体状态方程
真实气体:分子有一定的体积(b)和质量; 分子间有吸力(p)和斥力(π),其特点如下: 高压下:当分子间距离大于分子作用半径时,吸力(p)>斥力(π); 当分子间距离小于分子作用半径时,吸力(p)<斥力(π); 低压下:分子间距离很远,吸力(p)≈斥力(π); 所以,真实气体的状态方程为: