工作报告叠加原理和戴维南定理实验报告
叠加定理和戴维南定理实验报告

叠加定理和戴维南定理实验报告实验报告:叠加定理和戴维南定理
引言:
在本次实验中, 我们将介绍和应用叠加定理和戴维南定理两个电路原理的实验过程、结果和分析。
材料和方法:
我们使用了电流计,电压计和万用表等电学实验工具,以及运用不同的电路仿真软件如Multisim、Simetrix等,并采取多种电路组合,对系统进行测试。
结果和分析:
通过本次实验,我们可以看出叠加定理是一种简单但有效的方法,在测量复杂电路时能够快速轻松地计算出每个单独的电流和电压。
另一方面,戴维南定理可以使我们更有效地使用材料和设备,以及识别更重要的电路部分。
结论:
总的来说,本次实验是成功的。
通过应用叠加定理和戴维南定理,我们得出了精确的电路参数,测试结果符合预期,证明了这两个电路原理在电路设计中的重要性和实用性。
未来展望:
本次实验对我们进一步深入研究电路设计和电路优化提供了很好的基础。
我们还可以在此基础上,尝试更复杂的电路设计和实验,进一步加强我们的实践能力。
实验一 叠加原理和戴维南定理的验证

实验一、实验二叠加原理和戴维南定理的验证一、实验目的1.验证叠加原理和戴维南定理。
2.学习通用电学实验台的使用方法。
3.学习万用表、毫伏表、伏特表的使用方法。
二、实验仪器及元件1. 通用电学实验台ZH—12型1台2. 万用表MF—47型1快3. 直流伏特表85C17(0—15V)1块4. 直流毫伏表85C17(0—50mA)3块5. 开关2个6. 电阻若干三、实验电路图1—1 验证叠加原理电路图1—2 验证戴维南定理电路图1—3 戴维南等效四、实验方法1. 叠加原理的验证1. 首先调整好直流稳压电源, 用万用表直流电压档测出其输出值, 使其两路电压输出分别为U1=10V, U2=12V。
2. 按照实验电路图1—1接线, 经过老师检查无误后, 方可开始实验。
3. 先将开关S1闭合, S2断开, 并用短路线将cd短接, 即只有电源U1单独作用, 分别测量I1.I2.I3.U, 并将数据填入表1—1中, 测完将短路线拆除。
4.再将开关S1断开, S2闭合, 并用短路线将ab短接, 此时只有电源U2单独作用, 分别测量I1、I2、I3、U, 并将数据填入表1—1中, 测完将短路线拆除。
5. 然后将开关S1.S2同时闭合, 测量U1.U2共同作用时的I1.I2、I3、U, 并将数据填入表1—1中。
2. 戴维南定理验证1. 按照实验电路图1—2接线, 经老师检查无误后, 方可开始。
2. 将开关S1.S2断开, 即负载RL开路时, 测此时的开路电压U0, 记录伏特表读数并填入表1—2中。
然后将S1闭合, 测量RL短路时的短路电流IS, 记录毫安表读数并填入表1—2中, 根据公式R0=U0/IS计算戴维南等效电阻R0。
3. 再将S1断开, 并用短路线将AB短接, 用万用表欧姆档测无源二端网络EF 两端的等效电阻R0, 填入表1—2中并和上面的计算结果比较。
4.然后闭合S2, 改变RL的阻值, 并将不同RL下的I、U填入表1—3中。
叠加定理和戴维南定理实验报告

叠加定理和戴维南定理实验报告一、实验目的1、深入理解叠加定理和戴维南定理的基本概念和原理。
2、通过实验操作,掌握运用叠加定理和戴维南定理分析电路的方法。
3、培养实验操作技能和数据处理能力,提高对电路理论的实际应用能力。
二、实验原理1、叠加定理叠加定理指出:在线性电路中,多个电源共同作用时,在任一支路中产生的电流(或电压)等于各个电源单独作用时在该支路产生的电流(或电压)的代数和。
在使用叠加定理时,需要分别考虑每个电源单独作用的情况。
当一个电源单独作用时,其他电源应视为零值,即电压源短路,电流源开路。
然后将各个电源单独作用时在该支路产生的电流(或电压)进行代数相加,得到最终的结果。
2、戴维南定理戴维南定理表明:任何一个线性有源二端网络,对外电路来说,可以用一个电压源和一个电阻的串联组合来等效替代。
其中,电压源的电压等于有源二端网络的开路电压,电阻等于有源二端网络内所有独立电源置零后所得到的无源二端网络的等效电阻。
三、实验设备1、直流稳压电源(多组输出)2、直流电流表3、直流电压表4、电阻箱5、实验电路板6、连接导线若干四、实验内容与步骤1、叠加定理实验(1)按照图 1 所示连接电路,其中 E1 = 10V,E2 = 5V,R1 =10Ω,R2 =20Ω,R3 =30Ω。
(2)测量 E1 单独作用时,各支路的电流和电压。
将 E2 短路,接通 E1,记录电流表和电压表的读数。
(3)测量 E2 单独作用时,各支路的电流和电压。
将 E1 短路,接通 E2,记录电流表和电压表的读数。
(4)测量 E1 和 E2 共同作用时,各支路的电流和电压。
同时接通E1 和 E2,记录电流表和电压表的读数。
(5)将测量结果填入表 1,验证叠加定理。
表 1 叠加定理实验数据|电源作用情况| I1(mA)| I2(mA)| I3(mA)| Uab (V)|||||||| E1 单独作用|____ |____ |____ |____ || E2 单独作用|____ |____ |____ |____ || E1、E2 共同作用|____ |____ |____ |____ ||叠加结果|____ |____ |____ |____ |2、戴维南定理实验(1)按照图 2 所示连接电路,其中有源二端网络由电阻 R1 =50Ω,R2 =100Ω,电压源 E = 20V 组成。
实验报告戴维南定理(3篇)

第1篇一、实验目的1. 深入理解并掌握戴维南定理的基本原理。
2. 通过实验验证戴维南定理的正确性。
3. 学习并掌握测量线性有源一端口网络等效电路参数的方法。
4. 提高使用Multisim软件进行电路仿真和分析的能力。
二、实验原理戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,都可以用一个理想电压源和电阻的串联形式来等效代替。
理想电压源的电压等于原一端口网络的开路电压Uoc,其电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻Req。
三、实验仪器与材料1. Multisim软件2. 电路仿真实验板3. 直流稳压电源4. 电压表5. 电流表6. 可调电阻7. 连接线四、实验步骤1. 搭建实验电路根据实验原理,搭建如图1所示的实验电路。
电路包括一个线性有源一端口网络、电压表、电流表和可调电阻。
图1 实验电路图2. 测量开路电压Uoc断开可调电阻,用电压表测量一端口网络的开路电压Uoc。
3. 测量等效内阻Req将可调电阻接入电路,调节其阻值,记录不同阻值下的电压和电流值。
根据公式Req = Uoc / I,计算等效内阻Req。
4. 搭建等效电路根据戴维南定理,搭建等效电路,如图2所示。
其中,理想电压源的电压等于Uoc,等效内阻为Req。
图2 等效电路图5. 测量等效电路的外特性在等效电路中,接入电压表和电流表,调节可调电阻的阻值,记录不同阻值下的电压和电流值。
6. 比较实验结果比较原电路和等效电路的实验结果,验证戴维南定理的正确性。
五、实验结果与分析1. 测量数据表1 实验数据| 阻值RΩ | 电压V | 电流A | ReqΩ || ------ | ----- | ----- | ---- || 10 | 2.5 | 0.25 | 10 || 20 | 1.25 | 0.125 | 10 || 30 | 0.833 | 0.083 | 10 |2. 分析从实验数据可以看出,随着负载电阻的增大,原电路和等效电路的电压和电流值逐渐接近。
实验4:叠加定理和戴维宁定理

实验四 叠加定理和戴维宁定理叠加定理和戴维宁定理是分析电阻性电路的重要定理。
一、实验目的1. 通过实验证明叠加定理和戴维宁定理。
2. 学会用几种方法测量电源内阻和端电压。
3. 通过实验证明负载上获得最大功率的条件。
二、实验仪器直流稳压电源、数字万用表、导线、430/1000/630/680/830欧的电阻、可变电阻箱等。
三、实验原理1.叠加定理:在由两个或两个以上的独立电源作用的线性电路中,任何一条支路中的电流(或电压),都可以看成是由电路中的各个电源(电压源和电流源)分别作用时,在此支路中所产生的电流(或电压)的代数和。
2.戴维宁定理:对于任意一个线性有源二端网络,可用一个电压源及其内阻RS 的串联组合来代替。
电压源的电压为该网络N 的开路电压u OC ;内阻R S 等于该网络N 中所有理想电源为零时,从网络两端看进去的电阻。
3.最大功率传输定理:在电子电路中,接在电源输出端或接在有源二端网络两端的负载RL ,获得的功率为当RL=R0时四、实验内容步骤1.叠加定理的验证根据图a 联接好电路,分别测定E 1单独作用时,E 2单独作用时和E 1、E 2共同作用时电路中的电流I 1,I 2,I 3。
同时,判定电流实际方向与参考方向。
测量数据填入表4-1中。
2. 戴维宁定理的验证根据图b 联接好电路,测定该电路即原始网络的伏安特性I R L =f (U R L )。
依次改变可变电阻箱RL 分别为1K Ω、1.2K Ω、1.6K Ω、2.24K Ω、3K Ω、4K Ω、5K Ω,然后依次测量出对应RL 上的电流和电压大小,填入表4-2中。
并绘制其伏安曲线。
然后,计算其对应功率。
含源网络等效U0,R0的测定方法:a.含源消源直测法;b.开压短流测量法:R R R U R I P OC 202⎪⎪⎭⎫ ⎝⎛+==COCR U P 42max =U0,Is,R0=U0/Is。
根据上述两种方法之一测出U0,R0,从而将图b的电路可以等效成图c。
实验4叠加原理与戴维南定理的验证

实验4叠加原理与戴维南定理的验证实验四叠加原理与戴维南定理的验证⼀、实验⽬的1、验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。
2、验证戴维南定理的正确性3、掌握测量有源⼆端⽹络等效参数的⼀般⽅法⼆、原理说明1、叠加原理:在有⼏个独⽴源共同作⽤下的线性电路中,通过每⼀个元件的电流或其两端的电压,可以看成是由每⼀个独⽴源单独作⽤时在该元件上所产⽣的电流或电压的代数和。
线性电路的齐次性是指当激励信号(某独⽴源的值)增加或减⼩K倍时,电路的响应(即在电路其它各电阻元件上所建⽴的电流和电压值)也将增加或减⼩K倍。
2、任何⼀个线性含源⽹络,如果仅研究其中⼀条⽀路的电压和电流,则可将电路的其余部分看作是⼀个有源⼆端⽹络(或称为含源⼆端⼝⽹络)。
戴维南定理指出:任何⼀个线性有源⽹络,总可以⽤⼀个等效电压源来代替,此电压源的电动势E S等于这个有源⼆端⽹络的开路电压U0C,其等效内阻R0等于该⽹络中所有独⽴源均置零(理想电压源视为短路,理想电流视为开路)时的等效电阻。
U0C和R0称为有源⼆端⽹络的等效参数。
3、有源⼆端⽹络等效参数的测量⽅法(1)开路电压、短路电流法在有源⼆端⽹络输出端开路时,⽤电压表直接测其输出端的开路电压U0C,然后将其输出端短路,⽤电流表测其短路电流I SC,则内阻为R0=U OC/I SC(2)伏安法⽤电压表、电流表测出有源⼆端⽹络的外特性如图A所⽰。
根据外特性曲线求出斜率tgΦ,则内阻R O=tgΦ=△U/△I=U OC/I SC图A 图B⽤伏安法,主要是测量开路电压及电流为额定值I N时的输出端电压值U N,则内阻为R O=U OC-U N/I N若⼆端⽹络的内阻值很低短路电流很⼤时,则不宜测短路电流。
(3)半电压法如图B所⽰,当负载电压为被测⽹络开路电压⼀半时,负载电阻(负载电阻由万⽤表测量),即为被测有源⼆端⽹络的等效内阻值。
(4)零⽰法在测量具有⾼内阻有源⼆端⽹络的开路电压时,⽤电压表进⾏直接测量会造成较⼤的误差,为了消除电压表内阻的影响,往往采⽤零⽰测量法,如图C所⽰。
戴维南定理与叠加定理实验报告
实验名称:实验一戴维南定理与叠加定理一、实验目的1.深刻理解和掌握戴维南定理。
2.掌握测量等效电路参数的方法。
3.初步掌握用Multisim 软件绘制电路原理图。
4.初步掌握Multisim软件中的Multimeter、Voltmeter、Ammeter等仪表的使用以及DC Operating Point、Parameter Sweep等SPICE仿真分析方法。
5.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用。
6.初步掌握Origin绘图软件的应用。
二、实验原理一个含独立源、线性电阻和受控源的一端口网络,对外电路来说,可以用一个电压源和电阻的串联组合来等效置换,其等效电压源的电压等于该--端口网络的开路电压,其等效电阻等于将该一端口网络中所有独立源都置为零后的输入电阻。
这一定理称为戴维南定理,如图3.1.1。
三、实验设备与器件1.计算机一台2.通用电路板一块3.万用表两只4.直流稳压电源一台5.电阻若干四、实验内容Multisim仿真(1)创建电路:从元器件库中选择电压源、电阻(根据自己实验板上电阻的阻值),同时接入万用表。
(2)用万用表测量端口的开路电压和短路电流,并计算等效电阻。
(3)(4)(5)等效电阻(计算):3-1-2.表3-1-2(4)根据开路电压和等效电阻创建等效电路。
(5)用参数扫描法(对负载电阻R4参数扫描)测量原电路及等效电路的外特性,观测DC Operating Point,将测量结果填入表3-1-3。
表3-1-3五、实验步骤、数据记录、结论;表3-1-12.在通用电路板.上焊接实验电路并测试等效电压和等效电阻,测量结果填入表3-1-2中。
3.在通用电路板上焊接戴维南等效电路。
4.测量原电路和戴维南等效电路的外特性,测量方式:1、我将万用表调至欧姆档,按照表3-1-1所示调到对应电阻。
连接1 2 点同时并测出3 4点对应电压,记录在表格中。
3. 运用欧姆定律算出电流填至表中。
叠加定理和戴维南定理实验报告
叠加定理和戴维南定理实验报告叠加定理和戴维南定理是电路分析中常用的两种方法,通过实验验证它们的有效性,可以更好地理解和掌握这两个定理在电路分析中的应用。
实验一,叠加定理实验。
首先,我们搭建了一个简单的电路模型,包括电压源、电阻和电流表。
在实验中,我们分别对电压源和电阻进行了不同的变化,记录了电流表的读数。
在变化电压源的情况下,我们发现电流表的读数随着电压的增大而增大,这符合叠加定理的要求。
叠加定理指出,一个线性电路中的电流或电压可以分别由各个独立电源所产生的电流或电压之和得到。
实验结果验证了叠加定理在电路分析中的有效性。
实验二,戴维南定理实验。
在这个实验中,我们构建了一个包含多个电压源和电阻的复杂电路模型。
通过对电路中的不同电压源进行独立激励,我们记录了电流表的读数,并进行了数据分析。
实验结果显示,当单独激励某一个电压源时,电流表的读数与该电压源的激励有关,而与其他电压源的激励无关。
这符合戴维南定理的要求,即在一个多端口网络中,任意一个端口的电压或电流可以表示为其他端口电压或电流的线性组合。
通过实验验证,我们进一步加深了对戴维南定理的理解。
结论。
通过以上两个实验,我们验证了叠加定理和戴维南定理在电路分析中的有效性。
叠加定理适用于线性电路中的电流和电压分析,而戴维南定理适用于多端口网络的电压和电流分析。
这两个定理为电路分析提供了重要的理论基础,通过实验验证,我们更加深入地理解了它们的应用。
在今后的学习和工作中,我们将继续深入研究电路分析的理论和方法,不断提升自己的实验能力和理论水平,为电子电路领域的发展贡献自己的力量。
实验一 叠加原理和戴维宁定理
实验一 叠加原理和戴维宁定理一.实验目的1)通过实验加深对叠加原理和戴维宁定理的理解。
2)正确使用万用表、磁电式仪表及直流稳压电源。
二.实验原理及步骤 1.叠加原理在多个对立电源共同作用的线性电路中,任一支路的电流(或电压)等于各个电源单独作用时在该支路所产生的电流(或电压)的代数和。
图1本实验在直流电路单元板DS-C-28上进行,按图1接线,U 1=12V ,U 2=14V 。
(1)将S 1合向电源U 1一侧,S 2合向短路一侧,测量U 1单独作用时各支路的电流I 1′、I 2′、I 3′,将测量结果记录并记入表1中。
测量某一支路电流时,另外两个测量接口用线短接。
U 1 2 R 1 430Ω(2)S 1合向短路一侧,将S 2合向电源E 2一侧,测量I 1〞、I 2〞、I 3〞,并填入表1。
(3)同时将S 1、S 2合向电源一侧,测量I 1、I 2和I 3,并填入表1中。
2.戴维宁定理采用单元板DS-C-28按图2接线,使U 1=25V ,本实验选择C 、D 两端左侧作为有源二端网络。
图21)测量有源二端网络的伏安特性,改变外接电阻R L 的数值,使其分别为表2中的数值,测量通过R L 的电流和R L 两端电压,将测量结果填入表2中,R L =0时的电流为短路电流I SC 。
2)验证戴维宁定理①.用万用表测量有源二端网络C 、D 端口之间的开路电压U CDO 。
②.计算C 、D 端等效电阻SCCDOCDO I U R③.按图3构成戴维宁定理的等效电路,其中电压源的源电压U S 由直流稳压电源代替,调节直流稳压电源,使其输出电压等于U CDO ,即使U S =U CDO ;R O =R CDO ,用一电阻代替。
在C 、D 端接入负载电阻R L ,如图4,按表2中相同的电阻值,测取电流和电压,U 1R L填入表3中,将表2和表3中得数据进行比较,验证戴维宁定理。
三.实验设备1.直流电路单元板:DS -C -28,一块 2.直流电流表:DS-C-02,一块 3.万用表:MF500型,一块四.实验报告要求1.将叠加原理中实测的I 2与理论计算I 2进行比较,分析电流表内阻对误差的影响。
叠加原理和戴维南定理实验报告
叠加原理和戴维南定理实验报告叠加原理实验报告叠加原理是指使用多个简单、可控的脉冲来叠加构成复杂的电磁波,是现代电波形成的基本原理。
戴维南定理是叠加原理的重要推广,它指出叠加的幅度和相位的变化,随着参加叠加的信号数量的增加而发生变化,有助于理解不同波形的特性。
本次实验的目的是实验戴维南定理,使用电脉冲发生器的石英晶体管组成电路,电路中石英晶体管可以发出正弦波,当多个正弦波同时存在,便会构成叠加效应,由此得出相应波形,并观察相应的结果。
实验方法:本次实验主要采用计算机仿真程序,采用Matlab软件来进行仿真,用以研究叠加原理,并进行戴维南定理实验。
具体步骤如下:(1) 打开Matlab软件,点击“新建仿真”,点击左侧的“电脉冲发生器”,在此画布中设置正弦波的数量和相位。
(2) 设置正弦波的数量和相位后,单击“计算”按钮,得到结果,此时可以观察到叠加效果,得出叠加波形。
(3) 按照上述步骤,繁殖不同数量和相位的正弦波,得出叠加波形,实现叠加原理。
实验结果:参考图1:2个正弦波叠加的结果根据实验程序的结果可以看出,在模拟叠加2个正弦波的情况下,两个正弦波的峰值都保持不变,而叠加完之后的电子运动呈现出抖动的形状,而且两个正弦波的位相也在叠加之中发生变化,表明电子运动波形出现了变化。
这些变化正好符合戴维南定理所描述的规律,表明叠加原理在此实验中发挥了作用。
结论:从本实验结果可以看出,通过Matlab仿真,当两个正弦波的数量和相位发生变化时,叠加波形会发生相应的变化,这符合戴维南定理。
另外,我们也可以用这种方法来模拟一些复杂的电磁波形,以便更深入地了解电磁波形,以及在无线电通信技术中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工作报告-叠加原理和戴维南定理实验
报告
工作报告-叠加原理和戴维南定理实验报告
一、实验目的
1.学习和掌握叠加原理和戴维南定理的基本概念和原理。
2.通过实验,深入理解叠加原理和戴维南定理的实际应用。
3.提高实验技能和动手能力,掌握基本的电路分析和设计方法。
二、实验原理
1.叠加原理:在线性电路中,多个电源共同作用时,各电源单独作用产生的电
压(或电流)之和等于它们共同作用时产生的电压(或电流)。
2.戴维南定理:任何一个有源二端网络,都可以等效为一个电源电动势E和内
阻R串联的形式。
其中,电动势E等于开路电压,内阻R等于网络中所有电源为零时,从两端看向网络的等效电阻。
三、实验步骤
1.准备实验器材:电源、电阻器、电压表、电流表、电键、导线等。
2.搭建实验电路:根据叠加原理和戴维南定理的原理,搭建相应的电路。
3.进行实验测量:首先,分别测量各电源单独作用时的电压(或电流);然
后,同时作用时测量总的电压(或电流)。
4.分析实验数据:根据测量数据,验证叠加原理的正确性,并根据戴维南定理
计算等效电动势和内阻。
5.讨论实验结果:对实验结果进行分析和讨论,评估误差和实验条件的影响。
四、实验结果及分析
1.数据记录:
2.结果分析:
通过实验测量,我们发现总电压(15V)等于三个电源电压之和(10V + 5V + 8V = 23V),总电流(4.5A)也等于三个电源电流之和(2A + 1A +
1.5A = 4.5A),验证了叠加原理的正确性。
同时,根据戴维南定理,等效
电动势E等于开路电压(15V),等效内阻R等于网络中所有电源为零时,
从两端看向网络的等效电阻。
在这个实验中,由于只有一个电阻器,所以等效内阻R等于该电阻器的阻值。
五、结论总结
通过本次实验,我们验证了叠加原理和戴维南定理的正确性,并掌握了它们的实际应用。
实验结果表明,在线性电路中,多个电源共同作用时,各电源单独作用产生的电压(或电流)之和等于它们共同作用时产生的电压(或电流),这为分析和设计电路提供了重要的理论依据。
同时,戴维南定理的应用使得我们可以将复杂的电路简化,方便地进行电路分析和计算。
本次实验提高了我们的实验技能和动手能力,加深了对叠加原理和戴维南定理的理解和应用。