第五讲 事件的独立性
第五节事件讲义的独立性

的对立事件与其它的事件组成的 n 个事件也相
互独立.
例4 设每门炮射击一飞机的命中率为 0.6 , 现有若干
门炮同时独立地对飞机进行一次射击, 问需要多少门
炮才能以 0.99 的把握击中一飞机。
解 设需要 n 门炮。 B “飞机被击落”
解: 设 A = “甲射击一次命中目标” B = “乙射击一次命中目标” C = “目标被命中”
则 A, B 相互独立, 且 CAB P(C) P(AB)P (A )P (B )P (A)B P(A)P(B)P(A)P(B) 0 .5 0 .4 0 .5 0 .4 0.7
例2. 甲, 乙两人的命中率为0.5 和 0.4, 现两人独立 地向目标射击一次, 已知目标被命中, 则它是乙命中
P(D) P(A BA)C P (A) BP (A)C P (AB ) C P ( A ) P ( B ) P ( A ) P ( C ) P ( A ) P ( B ) P ( C ) 0.776
P(A|D) P ( AD ) P ( D ) 1
P(D ) P(D)
P(B|D) P ( BD ) P ( AB ) P(A)P(B) 0.9278
实质: 任何事件发生的概率都不受其它事件发生与否 的影响
思考: 两两独立与相互独立的区别
对 n ( n >2 ) 个事件
相互独立 ?
两两独立
推论: 设 A 1 ,A 2 , ,A n 是 n 个 事 件 1) 若 A1,A2, ,An相互独立, 则其中任意 k 个事件
Ai1,Ai2, ,Aik (2kn) 也相互独立.
以 上 两 个 例 子 说 明 , 事 件 A 的 发 生 与 否 , 不 影 响 事 件 B 发 生 的 概 率
事件的独立性名词解释

事件的独立性名词解释事件的独立性是指一个事件在其发生的过程中并不受到其他事件的影响,具有自身的特定性和独立性质。
它是一个广泛应用于各领域的概念,包括科学、社会学、法律以及人类行为研究等。
在科学领域,事件的独立性是指一个实验或观察所研究的事件与其他变量或因素之间的关系是相互独立的。
在设计实验时,科学家通常会采取措施来保证实验的独立性,例如随机分组、避免再次测试等。
通过保持事件的独立性,科学家可以更准确地分析事件之间的关系,推断出因果或相关性的结论。
在社会学中,独立性是一个重要的概念,用于研究个体、群体或社会的现象,如社会心理、文化传播和社会动态等。
社会学家通过分析事件的独立性来了解不同因素对个体或群体行为产生的影响。
例如,他们可能通过研究某一社交媒体平台上用户的行为来分析用户间的互动模式和社交网络结构。
通过研究事件的独立性,社会学家可以更好地理解社会现象的本质,形成相关的理论。
在法律领域,事件的独立性是一个基本原则,涉及到证据的可信性和判断的公正性。
法官和陪审团必须评估每一个事件的独立性,以确定是否有足够的证据来支持诉讼的结果。
在庭审中,法律专业人士会根据相关法律和证据,评估事件的独立性,并作出公正的判断。
同时,法律也保护事件的独立性,确保每个事件都能得到适当的审理,而不受其他事件的干扰和影响。
在人类行为研究方面,事件的独立性被广泛应用于心理学和行为经济学等领域。
人类行为通常会受到各种因素的影响,例如情绪状态、社会环境和个人观念等。
通过研究事件的独立性,研究人员可以更好地理解人类行为的内在机制,探讨人们在不同情境下做出的决策和选择。
总之,事件的独立性是一个重要的概念,它在科学、社会学、法律和人类行为研究等领域都有着广泛的应用。
研究事件的独立性有助于我们深入了解各个领域中的现象和关系,为我们的决策和判断提供理论基础和依据。
通过保持事件的独立性,我们能够更加准确地理解和解释世界的运作方式,推动人类社会的进步和发展。
《事件的独立性》 讲义

《事件的独立性》讲义在概率与统计的广袤世界中,“事件的独立性”是一个至关重要的概念。
它不仅在理论研究中具有深刻的意义,而且在实际生活中的诸多领域都有着广泛的应用。
要理解事件的独立性,首先得清楚什么是事件。
简单来说,事件就是在一定条件下可能出现也可能不出现的情况。
比如说掷骰子掷出一个“6”,明天会下雨,这些都是事件。
那么,什么又是事件的独立性呢?我们说两个事件 A 和 B 是相互独立的,如果事件 A 的发生与否不影响事件 B 发生的概率,同时事件B 的发生与否也不影响事件 A 发生的概率。
举个例子,假设有一个盒子,里面装有 5 个红球和 5 个白球。
从盒子中先后取出两个球,第一次取出红球记为事件 A,第二次取出红球记为事件 B。
如果我们在取出第一个球后,将其放回盒子中再取第二个球,那么事件 A 和事件 B 就是相互独立的。
因为第一次取出红球后放回,盒子里球的情况没有改变,第二次取出红球的概率依然是5/10。
但如果我们在取出第一个球后,不再放回盒子中就取第二个球,那么事件 A 和事件 B 就不是相互独立的。
因为第一次取出红球后,盒子里球的组成发生了变化,第二次取出红球的概率会受到影响。
独立性的概念在很多实际问题中都有体现。
比如说,一个学生在数学考试中取得好成绩和在语文考试中取得好成绩,在一定程度上可以看作是两个独立事件。
因为学生在数学上的表现不一定能决定其在语文上的表现。
再比如,一个人早上选择吃面包还是吃油条和晚上选择看电影还是看书,这也可以近似地认为是两个独立事件。
因为早上的饮食选择通常不会影响晚上的娱乐活动选择。
那么,如何判断两个事件是否独立呢?这就需要用到数学公式了。
如果事件 A 和事件 B 相互独立,那么它们的概率满足 P(AB) =P(A)P(B) 。
其中,P(AB) 表示事件 A 和事件 B 同时发生的概率,P(A)表示事件 A 发生的概率,P(B) 表示事件 B 发生的概率。
我们通过一个具体的例子来看看如何运用这个公式判断事件的独立性。
《事件的独立性》 讲义

《事件的独立性》讲义在我们的日常生活和各种学科领域中,经常会遇到对事件发生可能性的探讨。
而其中一个重要的概念就是事件的独立性。
理解事件的独立性对于我们准确地分析和预测各种情况都具有关键意义。
首先,我们来明确一下什么是事件的独立性。
简单来说,如果事件A 的发生与否对事件 B 的发生概率没有影响,同时事件 B 的发生与否对事件 A 的发生概率也没有影响,那么我们就称事件 A 和事件 B 是相互独立的。
举个简单的例子,假设我们抛一枚硬币,正面朝上记为事件 A,抛一次骰子,点数为 6 记为事件 B。
这两个事件就是相互独立的。
因为抛硬币的结果不会影响抛骰子出现 6 点的概率,反之亦然。
那么如何判断两个事件是否独立呢?这就需要用到概率的计算。
如果 P(A|B) = P(A) 且 P(B|A) = P(B),其中 P(A|B) 表示在事件 B 发生的条件下事件 A 发生的概率,P(B|A) 表示在事件 A 发生的条件下事件 B 发生的概率,那么事件 A 和事件 B 就是独立的。
再深入一些,对于多个事件的独立性,情况会稍微复杂一些。
如果对于三个事件 A、B、C,如果它们两两独立,并且 P(ABC) =P(A)P(B)P(C),那么这三个事件相互独立。
事件的独立性在实际应用中有很多例子。
比如在抽奖活动中,每次抽奖的结果通常是相互独立的。
不管前面的人是否中奖,后面的人中奖的概率都不会受到影响。
在统计学和概率论的研究中,事件的独立性也是一个基础且重要的概念。
通过判断事件的独立性,我们可以简化概率的计算,更准确地分析数据和预测结果。
另外,在一些复杂的系统中,例如通信系统、金融市场等,事件的独立性假设可以帮助我们建立模型和进行分析。
但需要注意的是,在实际情况中,完全独立的事件并不总是普遍存在的。
很多时候,事件之间可能存在着某种隐藏的关联或者相互影响。
例如,在股市中,一只股票的价格变动可能会受到宏观经济形势、行业发展、公司内部管理等多种因素的影响。
《事件的独立性》 讲义

《事件的独立性》讲义在我们日常生活和数学、统计学的学习研究中,“事件的独立性”是一个非常重要的概念。
理解事件的独立性,对于我们准确分析和预测各种情况有着关键的作用。
那什么是事件的独立性呢?简单来说,如果事件 A 的发生与否对事件 B 的发生概率没有影响,并且事件 B 的发生与否对事件 A 的发生概率也没有影响,那么我们就称事件 A 和事件 B 是相互独立的。
举个简单的例子,假设我们抛一枚均匀的硬币两次。
第一次抛硬币得到正面或者反面,这是事件 A。
第二次抛硬币得到正面或者反面,这是事件 B。
由于每次抛硬币的结果都是相互独立的,第一次抛硬币的结果不会影响第二次抛硬币的结果。
所以事件 A 和事件 B 是相互独立的。
我们再来看一个稍微复杂一点的例子。
从一副扑克牌中随机抽取一张牌,事件 A 是抽到红桃牌,事件 B 是抽到 A 牌。
这两个事件就不是独立的。
因为如果抽到了红桃 A,那么事件 A 和事件 B 就同时发生了。
所以事件 A 的发生会影响事件 B 的发生概率。
那如何判断两个事件是否独立呢?我们有一个重要的公式:如果事件 A 和事件 B 相互独立,那么P(A ∩ B) = P(A) × P(B)。
其中,P(A ∩ B) 表示事件 A 和事件 B 同时发生的概率,P(A) 表示事件 A 发生的概率,P(B) 表示事件 B 发生的概率。
比如说,一个盒子里有 5 个红球和 5 个蓝球,从中随机取出一个球,事件 A 是取出红球,事件 B 是取出偶数号球。
事件 A 的概率 P(A) =5/10 = 1/2,事件 B 的概率 P(B) = 5/10 = 1/2。
而事件 A 和事件 B 同时发生,也就是取出既是红球又是偶数号球的概率P(A ∩ B) = 2/10 =1/5。
因为 1/5 = 1/2 × 1/2,所以事件 A 和事件 B 是相互独立的。
理解了事件的独立性,对于解决很多实际问题都有帮助。
《事件的独立性》PPT课件

定义1.6 对n个事件A1,A2,...,An( n2)如果对其中 任意k 个事件 Ai1,Ai2,...,Aik (2kn)都有
P(A i1A i2...A ik)P (A i1)P (A i2)...P (A ik)
则称这 n 个事件 相互独立.
可以证明, n个事件相互独立,即其中任何一个 事件是否发生 都不受另外一个或几个事件是否发 生的影响. 如
所以A,B独 立.
精选ppt
5
二、有限个事件的独立性
定义1.5 对n个事件 A1,A2,...,An( n2)如果其中 两任意个都互相独立, 即对于 i,j1,2,...,n, i j
有
P( Ai Aj ) P(Ai)P(Aj)
则称这 n 个事件 两两独立.
这里共有C
2 n
个等式.
当P(Aj )时0,
的球 各一个,另一个是涂有红、黑、白三色的彩球.
从中任取一个,事件A、B、C 分别表示取到的球上 有红色、黑色、白色,判别A,B,C的独立性.
解P(A )
2
4
P (B )
2
4
P (A B )
1 4
P(A)P(B)
P (C )
2
4P(AC )源自1 4P(A)P(C)
P (BC )
1 4
P(B)P(C)
则称事件A 与 B 是相互独立的,简称 A与 独B 立. 推论1 对于两个事件A与B
若P(B) 0则 A 与 B 独立 若P(A) 0则 A 与 B 独立
P ( A B ) P(A) P ( B A) P(B)
定义 两个事件 A 与 B , 如果其中任何一个 事件发生的概率,都不受另一个事件发生与否 的影响, 则称事件 A 与 B 是相互独立的.
《事件的独立性》 讲义

《事件的独立性》讲义在我们的日常生活和各种学科领域中,经常会遇到与事件的独立性相关的问题。
那么,什么是事件的独立性呢?简单来说,就是指一个事件的发生与否,对另一个事件的发生概率没有影响。
为了更好地理解事件的独立性,让我们先从一些简单的例子入手。
比如说,抛一枚硬币,得到正面和反面的概率各是 1/2。
我们抛第一次得到正面的结果,并不会影响第二次抛硬币得到正面或反面的概率。
也就是说,每次抛硬币都是一个独立的事件。
再比如,从一副扑克牌中随机抽取一张牌。
第一次抽取到红桃的概率是 1/4,而第一次抽取的结果并不会改变第二次抽取到红桃的概率,仍然是 1/4。
接下来,我们深入探讨一下事件独立性的数学定义。
设有两个事件A 和 B,如果事件 A 发生的概率 P(A)不受事件 B 发生与否的影响,即P(A|B) = P(A);同时,事件 B 发生的概率 P(B)也不受事件 A 发生与否的影响,即 P(B|A) = P(B),那么我们就称事件 A 和事件 B 是相互独立的。
这里需要解释一下条件概率的概念。
条件概率 P(A|B)表示在事件 B 发生的条件下,事件 A 发生的概率。
如果事件 A 和 B 相互独立,那么条件概率 P(A|B)就等于事件 A 本身发生的概率 P(A)。
在实际应用中,判断两个事件是否独立是非常重要的。
比如在进行多次实验或者抽样调查时,如果各个事件是相互独立的,那么我们就可以利用一些简单的概率计算方法来得出最终的结果。
我们来看一个具体的例子。
假设一个盒子里有 5 个红球和 5 个蓝球,每次从盒子里随机取出一个球,记录颜色后放回。
那么第一次取出红球的事件 A 和第二次取出红球的事件 B 就是相互独立的事件。
因为每次取球后都将球放回,所以盒子里球的组成不变,每次取到红球的概率都是 5/10 = 1/2。
即 P(A) = P(B) = 1/2。
而且,在第一次取出红球的条件下,第二次取出红球的概率 P(B|A)仍然是 1/2,等于 P(B)。
事件的独立性 课件

• 『规律总结』 两个事件是否相互独立的判断
• (1)直接法:由事件本身的性质直接判定两个事件发生是否 相互影响.
• (2)定义法:如果事件A,B同时发生的概率等于事件A发生 的概率与事件B发生的概率的积,则事件A,B为相互独立 事件.
P(A)P(B) P( A )P( B )
• 典例 3 (西安高二检测)在一场娱乐晚会上,有5位民间 歌手(1至5号)登台演唱,由现场数百名观众投票选出最受 欢迎歌手.各位观众须彼此独立地在选票上选3名歌手, 其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另 在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有 偏爱,因此在1至5号中随机选3名歌手.
• (1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
• (2)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的 分布列.
[解析] (1)设事件 A 表示:观众甲选中 3 号歌手且观众乙未选中 3 号歌手. 观众甲选中 3 号歌手的概率为23,观众乙未选中 3 号歌手的概率为 1-35. 所以 P(A)=23×(1-35)=145. 因此,观众甲选中 3 号歌手且观众乙未选中 3 号歌手的概率为145.
[解析] 用 A,B,C 分别表示这三列火车正点到达的事件,则 P(A)=0.8, P(B)=0.7,P(C)=0.9,所以 P( A )=0.2,P( B )=0.3,P( C )=0.1.
(1)由题意得 A,B,C 之间互相独立,所以恰好有两列正点到达的概率为 P1 =P( A BC)+P(A B C)+P(AB C )=P( A )P(B)P(C)+P(A)P( B )P(C)+P(A)P(B)P( C )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试证其一 A, B 独立 A, B 独立
事实上
P( AB) P( A AB) P( A) P( AB)
P( A) P( A) P( B)
P( A) 1 P( B) P( A) P( B)
定义 若有
P ( AB) P ( A) P ( B ) P ( AC ) P ( A) P (C ) P ( BC ) P ( B ) P (C )
n
1 P( A1 A2 An ) n 1 P ( A1 A2 An ) 1 P( Ai )
1 (1 P( Ai ))
n
i 1
特别, 当 P ( Ai ) p ,则
P( Ai ) 1 (1 p )
i 1
n
n
例5 设每个人的血清中含肝炎病毒的概率 为0.4%, 求来自不同地区的100个人的 血清混合液中含有肝炎病毒的概率 解 设这100 个人的血清混合液中含有肝炎 病毒为事件 A, 第 i 个人的血清中含有 肝炎病毒为事件 Ai i =1,2,…,100 则 A Ai
P( ABC) P( A) P( B) P(C ) (2)
(1)
则称A, B, C 相互独立。
注: 仅满足(1)式时,称 A, B, C 两两独立
A, B, C 相互独立
A, B, C 两两独立
例2 有一均匀的八面体, 各面涂有颜色如下 1 R W Y 2 R W 3 R W 4 R 5 W Y Y Y 6 7 8
若 A1, A2, …, An 相互独立, 则
1 P( A1 A2 An ) P A P A P A
1 2 n
2 P( Ai ) 1 (1 P( Ai ))
i 1
i 1
n
n
P( Ai ) P( A1 A2 An )
i 1
k n k
P( A) p, 0 p 1
nk
则 Pn (k ) C p (1 p)
,
k 0,1,2,, nS1:源自A1 B1A2 B2
P(S1 ) P A1 A2 B1B2 P( A1 A2 ) P( B1B2 ) P( A1 A2 B1B2 ) 2 4 2 2 2 p p p (2 p )
S2:
A1 B1
A2 B2
2
P(S2 ) P A1 B1 A2 B2 P ( Ai Bi ) 2 p p
P( A2 ) P( A2 A1 )
事件 A1 发生与否对 A2 发生的概率没有影 响可视为事件A1与A2相互独立
P( A1 A2 ) P( A1 ) P( A2 A1 ) P( A1 ) P( A2 )
定义 设 A , B 为E的两事件,若
P( AB) P ( A) P ( B)
p (2 p)
2
2
p (2 p ) P( S1 ) .
2 2
i 1
2 2
注 利用导数可证, 当 p ( 0 , 1) 时, 恒有
f ( p) (2 p) (2 p ) 0
2 2
伯努利试验概型
n 重伯努利 (Bernoulli) 试验概型: 试验可重复 n 次 每次试验只有两个可能的结果: A A, 且 P( A) p, 0 p 1
P ( Ai A j Ak ) P ( Ai ) P ( A j ) P ( Ak ), 1 i j k n
P ( A1 A2 An ) P ( A1 ) P ( A2 ) P ( An )
常由实际问题的意义 判断事件的独立性
例4 已知事件 A, B, C 相互独立,证明事件 A 与 B C 也相互独立 证
P ( B ) P (C ) P ( BC )
PA ( B C ) P( B C ) P A( B C )
P ( AB) P ( AC ) P ( ABC )
P( A )P( B) P(C ) P( BC )
P( A ) P( B C )
将八面体向上抛掷一次, 观察向下一面 出现的颜色。 R 红色 设事件 W 白色 Y 黄色
则
3 1 P( RW ) , P(WY ) P( RY ) 8 8 1 P( RWY ) P( R) P(W ) P(Y )
8
4 1 P( R) P(W ) P(Y ) 8 2
但
P( RW ) P( R) P(W )
P (WY ) P(W ) P(Y ) P ( RY ) P ( R) P (Y )
本例说明不能由关系式(2)推出关系式(1)
定义 n 个事件 A1, A2, …, An 相互独立 是指下面的关系式同时成立
P ( Ai A j ) P ( Ai ) P ( A j ), 1 i j n
感兴趣的问题为:4次试验中A 发生2次的概率
A1 A2 A3 A4 A1 A2 A3 A4
A1 A2 A3 A4 A1 A2 A3 A4
2 2 2 4
A1 A2 A3 A4 A1 A2 A3 A4
3 2 P( B) C 0.3456 . 5 5
一般地,若
则称事件 A 与事件 B 相互独立。
两事件相互独立的性质
1、两事件 A 与 B 相互独立是相互对称的。 若 P( B) 0, 则事件A与B独立 P( A) P( A B) 3、四对事件 A, B; A, B ; A , B; A , B 任何一对相互独立,则其它三对也 相互独立。
2、若P( A) 0, 则事件A与B独立 P( B) P( B A)
i 1 100
P( A) 1 1 P( Ai ) 1 (1 0.004)
i 1
100
100
0.33
若Bn 表示 n 个人的血清混合液中含有肝 炎病毒,则
P( Bn ) 1 (1 ) ,
n
0 1
n 1,2,
lim P( Bn ) 1
每次试验的结果与其他次试验无关—— 称为这 n 次试验是相互独立的
n重Bernoulli试验中事件 A 出现 k 次的概率 记为
Pn (k )
例7 袋中有3个白球,2个红球,有放回地取球 4 次,每次一只,求其中恰有2个白球的概率.
解 古典概型
设 B 表示4个球中恰有2个白球
n 5
4
nB C 3 2
n
—— 不能忽视小概率事件, 小概率事件迟早要发生
例6
系统的可靠性问题
一个元件(或系统)能正常工作的概率称为 元件(或系统)的可靠性 系统由元件组成,常见的元件连接方式: 串联
1 1
2
并联
2
设
两系统都是由 4 个元件组成,每个元件 正常工作的概率为 p , 每个元件是否正常工 作相互独立.两系统的连接方式如下图所示, 比较两系统的可靠性.
2 4 2
2 4 2 2
2
2
C 32 2 3 P( B) C4 4 5 5
2
2 0.3456 . 5
解二 每取一个球看作是做了一次试验 记取得白球为事件 A , P( A) 3 / 5. 有放回地取4个球看作做了 4 重Bernoulli 试验, 记第 i 次取得白球为事件 Ai
§1.6 事件的独立性
事件的独立性
例1 已知袋中有5只红球, 3只白球.从袋中 有放回地取球两次,每次取1球. 设第 i 次 取得白球为事件 Ai ( i =1, 2 ) . 求 P( A2 ) , P ( A2 A1 ) . 解
3 P( A2 ) , 8
P( A2 A1 ) 3 / 8 ,