事件的相互独立性的教案
关于两个事件相互独立性的教学设计

关于两个事件相互独立性的教学设计
一、教学目标:
1. 了解并理解两个事件相互独立性的概念;
2. 能够判断两个事件是否相互独立;
3. 能够应用相互独立性的概念解决实际问题。
三、教学步骤:
步骤一:概念讲解(20分钟)
1. 教师引导学生思考并回顾事件的概念。
2. 教师出示两个骰子,并扔出一个骰子,让学生预测掷出的点数。
3. 教师解释事件A为第一个骰子的点数为奇数,事件B为第二个骰子的点数为偶数。
4. 教师解释相互独立性的概念:事件A的发生与事件B的发生互不影响。
5. 教师让学生思考事件A和事件B是否相互独立,并引导学生得出结论:事件A和事件B相互独立。
步骤二:判断练习(30分钟)
1. 教师出示几个判断题,让学生判断两个事件是否相互独立,并解释他们的判断依据。
2. 学生进行小组讨论,然后展示自己的判断结果,通过班内讨论来确认正确答案。
3. 教师对学生的回答进行点评,并解释正确答案。
步骤三:应用问题解决(30分钟)
1. 教师提供一些实际问题,引导学生应用相互独立性的概念解决问题。
例如:有两个红球和两个蓝球,每次从中随机取出一个球,不放回,求第一个球是红球第二个球是蓝球的概率。
2. 学生在小组内进行讨论和解答,然后展示自己的解答过程。
3. 教师对学生的解答进行点评,并给出正确的解答。
四、教学评价:
1. 教师观察学生在概念讲解、判断练习和应用问题解决中的参与情况和表现。
2. 学生通过小组讨论和展示,检验和评价自己和他人的回答。
3. 教师对学生的回答和解答进行点评和评价,给予及时的反馈。
事件的独立性教案5篇范文

事件的独立性教案5篇范文第一篇:事件的独立性教案事件的相互独立性数学与统计学学院芮丽娟2009212085一、教学目标:1、知识与技能:(1)了解独立性的定义(即事件A的发生对事件B的发生没有影响);(2)掌握相互独立事件的概率乘法公式P(AB)=P(A)P(B)2、过程与方法:通过对现实生活中不同事件问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力3、情感态度与价值观: 通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:正确理解独立性的定义与互斥事件的差别,掌握并运用独立事件概率公式三、教学设想:1、创设情境:通过回顾上节课学习的条件概率,引入本节课独立性的定义例:3张奖券中只有一张能中奖,现分别由3名同学无放回的抽取,事件A为“第一名同学没有抽到中奖奖券”,事件B为“最后一名同学抽到中奖奖券”。
则问事件A的发生会影响事件B发生的概率吗?若条件改为有放回,这时又是什么情况?解:显然无放回时,A的发生影响着B,即是条件概率。
而当有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A的发生不会影响事件B发生的概率。
于是P(B|A)=P(B),代入条件概率公式得P(AB)=P(B|A)P(A)=P(A)P(B)2、基本概念:独立性定义:设A,B为两个事件,如果满足P(AB)=P(A)P(B),则称事件A与事件B相互独立。
例1:分别抛掷两枚质地均匀的硬币,设A是事件“第1枚为正面”,B是事件“第2枚为正面”,C是事件“2枚结果相同”。
问:A,B,C中哪两个相互独立?分析:理解相互独立的定义,即是一事件的发生对另一事件的发生与否没有影响,由于A事件抛掷第一枚硬币为正面,对B事件第二枚硬币为正面没有影响,故A与B独立,而C事件要求抛掷的两次结果相同,当第一枚为正面时此时第二枚也必须为正,显然有影响,故不独立。
关于两个事件相互独立性的教学设计

关于两个事件相互独立性的教学设计【摘要】本文旨在探讨两个事件相互独立性的教学设计。
在介绍了两个事件相互独立性的概念,并阐述了教学设计的重要性。
在详细设计了教学内容、教学方法、教学评估方式、教学资源和教学实践活动。
结论部分总结了教学设计在理解两个事件相互独立性方面的重要性,并展望了未来的发展,强调了教学设计的价值。
通过本文的阐述,希望能够帮助读者深入理解两个事件相互独立性的概念,提高他们的教学水平和教学能力,促进教育事业的发展。
【关键词】关键词:两个事件相互独立性、教学设计、教学内容、教学方法、教学评估方式、教学资源、教学实践活动、教学的重要性、未来发展、教学设计的价值。
1. 引言1.1 介绍两个事件相互独立性两个事件的相互独立性是指一个事件的发生不会影响另一个事件的发生,它们之间不存在任何因果关系。
在统计学中,两个事件相互独立是指它们的概率是独立的,即一个事件的发生不会影响另一个事件的概率。
了解和掌握两个事件相互独立性的概念对于进行统计分析和推断是非常重要的。
在现实生活中,我们经常会遇到各种各样的事件,有些事件可能相互影响,而有些事件则是相互独立的。
理解两个事件的相互独立性有助于我们更准确地分析和解释事件之间的关系,帮助我们做出科学的决策。
教学设计中引入两个事件相互独立性的概念,有助于学生理解事件之间的关联性,培养他们的逻辑思维能力和判断能力。
通过教学设计,学生不仅可以掌握相关知识,还可以运用这些知识解决实际问题,提高他们的综合素质和应用能力。
引入两个事件相互独立性的教学内容具有重要的意义和价值。
1.2 说明教学设计的重要性教学设计在教育中扮演着至关重要的角色,特别是在探讨两个事件相互独立性这一主题时。
通过精心设计的教学活动和资源,可以帮助学生更好地理解和掌握这一概念。
教学设计可以帮助教师在教学过程中有条不紊地引导学生学习,确保他们获得全面的知识和技能。
教学设计也可以激发学生的学习兴趣,提高他们的学习积极性。
新人教版高中数学必修第二册《事件的相互独立性》教案

事件的相互独立性【教学重难点】【教学目标】【核心素养】相互独立事件的概念理解相互独立事件的概念及意义数学抽象相互独立事件同时发生的概念能记住相互独立事件概率的乘法公式;能综合运用互斥事件的概率加法公式及独立事件的乘法公式解题数学运算、数学建模【教学过程】一、问题导入预习教材内容,思考以下问题:1.事件的相互独立性的定义是什么?2.相互独立事件有哪些性质?3.相互独立事件与互斥事件有什么区别?二、基础知识1.相互独立的概念设A ,B 为两个事件,若P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立.2.相互独立的性质若事件A 与B 相互独立,那么A 与B - ,A - 与B ,A - 与B -也都相互独立.■名师点拨 (1)必然事件Ω,不可能事件∅都与任意事件相互独立.(2)事件A ,B 相互独立的充要条件是P (AB )=P (A )·P (B ).三、合作探究1.相互独立事件的判断一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A ={一个家庭中既有男孩又有女孩},B ={一个家庭中最多有一个女孩}.对下述两种情形,讨论A 与B 的独立性:(1)家庭中有两个小孩;(2)家庭中有三个小孩.【解】(1)有两个小孩的家庭,男孩、女孩的可能情形为Ω={(男,男),(男,女),(女,男),(女,女)},它有4个基本事件,由等可能性知概率都为14.这时A ={(男,女),(女,男)},B ={(男,男),(男,女),(女,男)},AB ={(男,女),(女,男)},于是P (A )=12,P (B )=34,P (AB )=12.由此可知P (AB )≠P (A )P (B ),所以事件A ,B 不相互独立.(2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(男,女,女),(女,男,男),(女,男,女),(女,女,男),(女,女,女)}.由等可能性知这8个基本事件的概率均为18,这时A 中含有6个基本事件,B 中含有4个基本事件,AB 中含有3个基本事件.于是P (A )=68=34,P (B )=48=12,P (AB )=38,显然有P (AB )=38=P (A )P (B )成立.从而事件A 与B 是相互独立的.判断两个事件是否相互独立的两种方法(1)根据问题的实质,直观上看一事件的发生是否影响另一事件发生的概率来判断,若没有影响,则两个事件就是相互独立事件;(2)定义法:通过式子P (AB )=P (A )P (B )来判断两个事件是否独立,若上式成立,则事件A ,B 相互独立,这是定量判断.2.相互独立事件同时发生的概率王敏某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率;(2)这三列火车至少有一列正点到达的概率.【解】 用A ,B ,C 分别表示这三列火车正点到达的事件.则P (A )=0.8,P (B )=0.7,P (C )=0.9,所以P (A - )=0.2,P (B - )=0.3,P (C -)=0.1.(1)由题意得A ,B ,C 之间互相独立,所以恰好有两列正点到达的概率为P 1=P (A - BC )+P (A B - C )+P (AB C - )=P (A - )P (B )P (C )+P (A )P (B - )P (C )+P (A )P (B )P (C - )=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)三列火车至少有一列正点到达的概率为P 2=1-P (A - B - C - )=1-P (A - )P (B - )P (C -)=1-0.2×0.3×0.1=0.994.1.[变问法]在本例条件下,求恰有一列火车正点到达的概率.解:恰有一列火车正点到达的概率为P 3=P (A B - C - )+P (A - B C - )+P (A - B - C )=P (A )P (B - )P (C - )+P (A - )P (B )P (C - )+P (A - )P (B -)P(C )=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9=0.092.2.[变条件]若一列火车正点到达记10分,用ξ表示三列火车的总得分,求P (ξ≤20).解:事件“ξ≤20”表示“至多两列火车正点到达”,其对立事件为“三列火车都正点到达”,所以P (ξ≤20)=1-P (ABC )=1-P (A )P (B )P (C )=1-0.8×0.7×0.9=0.496.与相互独立事件有关的概率问题的求解策略明确事件中的“至少有一个发生”“至多有一个发生”“恰好有一个发生”“都发生”“都不发生”“不都发生”等词语的意义.一般地,已知两个事件A ,B ,它们的概率分别为P (A ),P (B ),那么:(1)A ,B 中至少有一个发生为事件A +B .(2)A ,B 都发生为事件AB .(3)A ,B 都不发生为事件A - B -.(4)A ,B 恰有一个发生为事件A B - +A -B .(5)A ,B 中至多有一个发生为事件A B - +A - B +A - B -.它们之间的概率关系如表所示:A ,B 互斥A ,B 相互独立P (A +B )P (A )+P (B )1-P (A - )P (B - )P (AB )0P (A )P (B )P (A B )1-[P (A )+P (B )]P (A - )P (B -)3.相互独立事件的综合应用本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租用时间不超过两小时免费,超过两小时的部分每小时收费2元(不足一小时的部分按一小时计算).有甲、乙两人独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12,超过两小时但不超过三小时还车的概率分别为12,14,两人租车时间都不会超过四小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设ξ为甲、乙两人所付的租车费用之和,求P (ξ=4)和P (ξ=6)的值.【解】(1)由题意可得甲、乙两人超过三小时但不超过四小时还车的概率分别为14,14.记甲、乙两人所付的租车费用相同为事件A ,则P (A )=14×12+12×14+14×14=516.所以甲、乙两人所付租车费用相同的概率为516.(2)P (ξ=4)=14×14+12×14+12×14=516,P (ξ=6)=14×14+12×14=316.概率问题中的数学思想(1)正难则反.灵活应用对立事件的概率关系(P (A )+P (A -)=1)简化问题,是求解概率问题最常用的方法.(2)化繁为简.将复杂事件的概率转化为简单事件的概率,即寻找所求事件与已知事件之间的关系.“所求事件”分几类(考虑加法公式转化为互斥事件)还是分几步组成(考虑乘法公式转化为相互独立事件).(3)方程思想.利用有关的概率公式和问题中的数量关系,建立方程(组),通过解方程(组)使问题获解.四、课堂检测1.如图,在两个圆盘中,指针落在圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是()A .49B .29C .23D .13解析:选A .左边圆盘指针落在奇数区域的概率为46=23,右边圆盘指针落在奇数区域的概率也为23,所以两个指针同时落在奇数区域的概率为23×23=49.2.已知A ,B 是相互独立事件,且P (A )=12,P (B )=23,则P (A B - )=________;P (A -B -)=________.解析:因为P (A )=12,P (B )=23.所以P (A - )=12,P (B - )=13.所以P (A B - )=P (A )P (B - )=12×13=16,P (A - B - )=P (A - )P (B - )=12×13=16.答案:16163.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话;(2)拨号不超过3次而接通电话.解:设A i ={第i 次拨号接通电话},i =1,2,3.(1)第3次才接通电话可表示为A 1- A 2-A 3,于是所求概率为P (A 1- A 2- A 3)=910×89×18=110.(2)拨号不超过3次而接通电话可表示为A 1+A 1- A 2+A 1- A 2-A 3,于是所求概率为P (A 1+A 1- A 2+A 1- A 2-A 3)=P (A 1)+P (A 1- A 2)+P (A 1- A 2-A 3)=110+910×19+910×89×18=310.。
关于两个事件相互独立性的教学设计

关于两个事件相互独立性的教学设计1. 引言1.1 引言在教学设计中,关于两个事件相互独立性的理解和运用是非常重要的。
了解这个概念可以帮助我们更好地设计教学活动,使学生在学习过程中获得更好的效果。
在教育教学中,我们经常需要考虑到不同事件之间的关系,尤其是在设计教学活动时。
两个事件的相互独立性指的是一个事件的发生不会影响另一个事件的发生,它们之间没有任何因果关系。
这种概念在教学设计中是非常重要的,因为只有当我们能够确保事件之间的独立性的时候,我们才能够更好地控制教学活动的进程,确保学生能够有效地学习。
在本文中,我们将深入探讨两个事件的定义、相互独立事件的概念、独立事件的性质以及独立事件的性质在教学设计中的应用。
我们还将通过案例分析来展示如何在实际的教学活动中运用这些概念。
希望通过本文的学习,读者能够更好地理解和运用两个事件相互独立性的概念,在教学设计中取得更好的效果。
2. 正文2.1 两个事件的定义两个事件的定义指的是两个事件之间的关系,包括它们是否会相互影响或者互相独立。
在概率论中,两个事件的定义是指它们是否会互相影响对方发生的概率。
如果两个事件是独立的,那么它们发生的概率是相互独立的,即一个事件发生不会影响另一个事件的发生。
例如,如果有两个事件A和B,如果事件A的发生不会影响事件B 的发生,那么我们可以说事件A和事件B是独立的。
这意味着事件A 发生与否并不影响事件B的发生概率,反之亦然。
在教学设计中,理解两个事件的定义是非常重要的。
因为只有理解了两个事件是否相互独立,才能够正确地设计课程内容,确保学生能够正确地理解和应用知识。
总之,理解两个事件的定义是概率论中非常基础但又非常重要的概念。
只有正确理解了两个事件之间的关系,才能够正确地应用概率论知识,并设计出高质量的教学内容。
2.2 相互独立事件的概念相互独立事件是指两个事件之间不存在任何相互影响或关联的情况。
在统计学中,两个事件A和B被称为相互独立事件,如果事件A 的发生与否不会对事件B的发生概率产生影响,反之亦然。
关于两个事件相互独立性的教学设计

关于两个事件相互独立性的教学设计教学目标:1. 学生能够理解两个事件相互独立的概念。
2. 学生能够应用相互独立的概念解决相关问题。
3. 学生能够通过实际例子理解相互独立性的重要性。
教学重难点:1. 相互独立事件的定义和特点。
2. 通过实际例子理解相互独立事件的概念。
教学过程:第一步:引入教师用一个简单的实际例子引入相互独立性的概念,例如投掷硬币的结果和掷骰子的结果是否互相影响。
通过这个例子,让学生认识到相互独立事件的概念。
第二步:讲解教师对相互独立事件进行详细的讲解,包括定义、特点和应用。
通过具体的例子和计算方法,让学生逐步理解相互独立性的概念,并能够应用到实际问题中。
第三步:示范教师通过几个实际例子进行示范,让学生学会如何判断两个事件是否相互独立,以及如何计算相互独立事件的概率。
第四步:练习教师布置一些相关的练习题,让学生独立完成并相互交流讨论。
通过练习,加强学生对相互独立性概念的理解和应用能力。
第五步:讨论教师安排小组讨论,让学生就相互独立性在日常生活中的应用进行讨论。
通过讨论,加深学生对相互独立性的认识,并能够发现身边的实际例子。
第六步:总结教师对本节课的内容进行总结,强调相互独立性的重要性和应用。
鼓励学生在日常生活中积极应用相关知识,加深对相互独立性的理解。
教学方法:1. 实例教学法:通过具体的例子引入、讲解和示范,让学生更容易理解相互独立性的概念。
2. 组织讨论法:通过小组讨论,激发学生的学习兴趣,加深对相互独立性的理解。
教学手段:1. 实物或图片:如硬币、骰子等实物或图片,用于示范相互独立事件的概念。
2. 黑板或幻灯片:用于讲解和示范相互独立性的相关概念和计算方法。
3. 练习题:布置相关的练习题,让学生巩固和应用所学知识。
教学评估:1. 学生课堂表现:包括对问题的回答和参与讨论的情况。
2. 练习成绩:学生完成的练习题的得分情况。
3. 讨论质量:学生小组讨论的深度和广度。
教学反思:1. 教学设计要力求形象生动,引入的实例要贴近学生的日常生活。
事件的相互独立性教案

§2.2.2事件的相互独立性教学目标:知识与技能:理解两个事件相互独立的概念。
过程与方法:能进行一些与事件独立有关的概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:独立事件同时发生的概率教学难点:有关独立事件发生的概率计算授课类型:新授课课时安排:2课时教学过程:一、复习引入:1事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率m总是接近某个常数,在它附近摆动,这时就把这个常数叫n做事件A的概率,记作()P A.3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1≤≤,必然事件和不可能事件看作随机事件的两P A个极端情形5基本事件:一次试验连同其中可能出现的每一个结果(事件A)称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n = 8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++=12()()()n P A P A P A +++探究:(1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少? 事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上(2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件A:从甲坛子里摸出1个球,得到白球;事件B:从乙坛子里摸出1个球,得到白球问题(1)、(2)中事件A、B是否互斥?(不互斥)可以同时发生吗?(可以)问题(1)、(2)中事件A(或B)是否发生对事件B(或A)发生的概率有无影响?(无影响)思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A为“第一名同学没有抽到中奖奖券”, 事件B为“最后一名同学抽到中奖奖券”. 事件A的发生会影响事件B 发生的概率吗?显然,有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A的发生不会影响事件B 发生的概率.于是P(B| A)=P(B),P(AB)=P( A ) P ( B |A)=P(A)P(B).二、讲解新课:1.相互独立事件的定义:设A, B为两个事件,如果P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B相互独立(mutually independent ) .事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件若A与B是相互独立事件,则A与B,A与B,A与B也相互独立2.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ⋅.(简称积事件)从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54⨯种等可能的结果同时摸出白球的结果有32⨯种所以从这两个坛子里分别摸出1个球,它们都是白球的概率323()5410P A B ⨯⋅==⨯. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5P A =,从乙坛子里摸出1个球,得到白球的概率2()4P B =.显然()()()P A B P A P B ⋅=⋅.这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即 1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅.3.对于事件A 与B 及它们的和事件与积事件有下面的关系:)()()()(B A P B P A P B A P ⋅-+=+三、讲解范例:例 1.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.解:(1)记“第一次抽奖抽到某一指定号码”为事件A, “第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB.由于两次抽奖结果互不影响,因此A与B相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025.(2 ) “两次抽奖恰有一次抽到某一指定号码”可以用(A B)U (A B)表示.由于事件A B与A B互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P (A B)十P(A B)=P(A)P(B)+ P(A)P(B )= 0. 05×(1-0.05 ) + (1-0.05 ) ×0.05 = 0. 095.( 3 ) “两次抽奖至少有一次抽到某一指定号码”可以用(AB ) U ( A B)U(A B)表示.由于事件AB , A B和A B 两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P ( AB ) + P(A B)+ P(A B ) = 0.0025 +0. 095 = 0. 097 5.例2.甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;(2)2人中恰有1人射中目标的概率;(3)2人至少有1人射中目标的概率;(4)2人至多有1人射中目标的概率?解:记“甲射击1次,击中目标”为事件A,“乙射击1次,击中目标”为事件B,则A与B,A与B,A与B,A与B为相互独立事件,(1)2人都射中的概率为:⋅=⋅=⨯=,P A B P A P B()()()0.80.90.72∴2人都射中目标的概率是0.72.(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中、乙未击中(事件A B⋅发生),另一种是甲未击中、乙击中(事件A B⋅发生)根据题意,事件A B⋅与A B⋅互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:⋅+⋅=⋅+⋅P A B P A B P A P B P A P B()()()()()()=⨯-+-⨯=+=0.8(10.9)(10.8)0.90.080.180.26∴2人中恰有1人射中目标的概率是0.26.(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为=⋅+⋅+⋅=+=.()[()()]0.720.260.98P P A B P A B P A B(法2):“2人至少有一个击中”与“2人都未击中”为对立事件,2个都未击中目标的概率是P A B P A P B⋅=⋅=--=,()()()(10.8)(10.9)0.02∴“两人至少有1人击中目标”的概率为=-⋅=-=.1()10.020.98P P A B(4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”,故所求概率为:=⋅+⋅+⋅P P A B P A B P A B()()()=⋅+⋅+⋅()()()()()()P A P B P A P B P A P B0.020.080.180.28=++=.(法2):“至多有1人击中目标”的对立事件是“2人都击中目标”,故所求概率为1()1()()10.720.28P P A B P A P B =-⋅=-⋅=-=例 3.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率解:分别记这段时间内开关A J ,B J ,C J 能够闭合为事件A ,B ,C . 由题意,这段时间内3个开关是否能够闭合相互之间没有影响根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是()()()()P A B C P A P B P C ⋅⋅=⋅⋅[][][]1()1()1()P A P B P C =--- (10.7)(10.7)(10.7)0.027=---=∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是1()10.0270.973P A B C -⋅⋅=-=.答:在这段时间内线路正常工作的概率是0.973.变式题1:如图添加第四个开关D J 与其它三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率 (1()()0.9730.70.6811P A B C P D ⎡⎤-⋅⋅⋅=⨯=⎣⎦)变式题2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率方法一:()()()()()P A B C P A B C P A B C P A B C P A B C ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅ ()()()()()()()()()()()()()()()P A P B P C P A P B P C P A P B P C P A P B P C P A P B P C =⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅ 0.847= 方法二:分析要使这段时间内线路正常工作只要排除C J 开且A J 与B J 至少有1个开的情况[]21()1()10.3(10.7)0.847P C P A B --⋅=-⨯-= 例 4.已知某种高炮在它控制的区域内击中敌机的概率为0.2. (1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率解:(1)设敌机被第k 门高炮击中的事件为K A (k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为12345A A A A A ⋅⋅⋅⋅.∵事件1A ,2A ,3A ,4A ,5A 相互独立,∴敌机未被击中的概率为12345()P A A A A A ⋅⋅⋅⋅=12345()()()()()P A P A P A P A P A ⋅⋅⋅⋅5(10.2)=-=5)54( ∴敌机未被击中的概率为5)54(.(2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得:敌机被击中的概率为1-n )54( ∴令41()0.95n -≥,∴41()510n ≤两边取常用对数,得110.313lg 2n ≥≈- ∵+∈N n ,∴11n =∴至少需要布置11门高炮才能有0.9以上的概率击中敌机 点评:上面例1和例2的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便四、课堂练习: 1.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )()A 320 ()B 15 ()C 25()D 9202.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个口袋内各摸出1个球,那么56等于()()A2个球都是白球的概率()B2个球都不是白球的概率()C2个球不都是白球的概率()D2个球中恰好有1个是白球的概率3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是()()A0.128 ()B0.096 ()C0.104 ()D0.384 4.某道路的A、B、C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是()()A35192()B25192()C35576()D651925.(1)将一个硬币连掷5次,5次都出现正面的概率是;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是.6.棉籽的发芽率为0.9,发育为壮苗的概率为0.6,(1)每穴播两粒,此穴缺苗的概率为;此穴无壮苗的概率为.(2)每穴播三粒,此穴有苗的概率为;此穴有壮苗的概率为.7.一个工人负责看管4台机床,如果在1小时内这些机床不需要人去照顾的概率第1台是0.79,第2台是0.79,第3台是0.80,第4台是0.81,且各台机床是否需要照顾相互之间没有影响,计算在这个小时内这4台机床都不需要人去照顾的概率.8.制造一种零件,甲机床的废品率是0.04,乙机床的废品率是0.05.从它们制造的产品中各任抽1件,其中恰有1件废品的概率是多少?9.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率是多少?答案:1. C 2. C 3. B 4. A 5.(1)1(2) 0.56326.(1)0.01,0.16(2)0.999,0.9367. P=22⨯≈0.790.810.4048. P=0.040.950.960.050.086⨯+⨯≈9.提示:86461P=⋅+⋅=121212122五、小结:两个事件相互独立,是指它们其中一个事件的发生与否对另一个事件发生的概率没有影响一般地,两个事件不可能即互斥又相互独立,因为互斥事件是不可能同时发生的,而相互独立事件是以它们能够同时发生为前提的相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的六、课后作业:课本58页练习1、2、3第60页习题2. 2A组4. B 组1七、板书设计(略)八、教学反思:1. 理解两个事件相互独立的概念。
人教版高中数学选修2-3:2.2.2 事件的相互独立性教案

(一) 复习引入问题1:三个臭皮匠能顶一个诸葛亮吗?诸葛亮一人组成的团队PK臭皮匠三人组成的团队,他们解决同一个问题的概率分别为:诸葛亮解决问题的概率为0.85;臭皮匠老大解决问题的概率为0.5,老二为0.4,老三为0.3,要求臭皮匠团队成员必须独立解决,三人中至少有一人解决问题就算团队胜出,问臭皮匠团队与诸葛亮团队谁的胜算比较大?臭皮匠团队的亲友团做了如下的解释,设事件A:臭皮匠老大能解决问题;事件B:臭皮匠老二能解决问题;事件C:臭皮匠老三能解决问题;则臭皮匠团队能胜出的概率为P=P(A)+P(B)+P(C)=0.5+0.45+0.4=1.35,所以臭皮匠团队必胜。
你认为这种计算方法合理吗?教师提问,让学生利用已有知识对臭皮匠亲友团的回答做出是否正确的判断。
将我们的俗语改编成题,激发学生学习兴趣,同时引出本节主要内容:事件的独立性。
课题2.2.2 事件的相互独立性课时 1 授课时间主备人:教学目标知识与技能了解相互独立事件的概念,初步掌握用定义判断某些事件是否相互独立,能区分互斥事件与相互独立事件。
了解相互独立事件同时发生的概率的乘法公式,会运用此公式计算一些简单的概率问题。
过程与方法:经历概念的形成及公式的探究、应用过程,培养学生观察、分析、类比、归纳的能力,培养学生自主学习的能力与探究问题的能力。
情感态度与价值观:通过设置恰当而有趣的课前引例,激发学生学习本小节知识的兴趣,通过小组合作学习让学生体会合作学习的乐趣教学准备ppt重点难点教学重点:了解相互独立事件的概念,如何求相互独立事件都发生的概率。
教学难点:公式的推导与应用。
教师活动学生活动设计意图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
事件的相互独立性的教
案
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
2.2.2事件的相互独立性
一、教学目标:
1、知识与技能: ①理解事件独立性的概念
②相互独立事件同时发生的概率公式
2、过程与方法: 通过实例探究事件独立性的过程,学会判断事件相
互独立性的方法。
3、情感态度价值观:通过本节的学习,体会数学来源于实践又服务于
实践,发现数学的应用意识。
二、教学重点:件事相互独立性的概念
三、教学难点:相互独立事件同时发生的概率公式
四,教学过程:
1、复习回顾:(1)条件概率
(2)条件概率计算公式
(3)互斥事件及和事件的概率计算公式
2、思考探究:
三张奖券只有一张可以中奖,现分别由三名同学有放回地抽取,事件A 为“第一位同学没有抽到中奖奖券”,事件B 为“最后一名同学抽到中奖奖券”。
事件A 的发生会影响事件B 发生的概率吗?
分析:事件A 的发生不会影响事件B 发生的概率。
于是:
3、事件的相互独立性
设A ,B 为两个事件,如果 P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。
即事件A (或B )是否发生,对事件B (或A )发生的概率没有影响,这样两个事件叫做相互独立事件。
注:①如果A 与B 相互独立,那么A 与B ,B 与A ,A 与B 都是相互独立的。
(举例说明)
②推广:如果事件12,,...n A A A 相互独立,那么
1212(...)()()...()n n P A A A P A P A P A =
(|)()P B A P B =()()(|)P AB P A P B A =()()()
P AB P A P B ∴=
4、例题:
例1、判断下列事件是否为相互独立事件
1、分别抛掷两枚质地均匀的硬币,设“第一枚为正面”为事件A,“第二
枚为正面”为事件B。
2、袋中有3个红球,2个白球,采取有放回的取球:
事件A:从中任取一个球是白球
事件B:第二次从中任取一个球是白球
3、袋中有3个红球,2个白球,采取无放回的取球:
事件A:从中任取一个球是白球
事件B:第二次从中任取一个球是白
4、篮球比赛的“罚球两次”中:
事件A:第一次罚球,球进了
件事B:第二次罚球,球没进
例2、在乒乓球团体比赛项目中,我们的中国女队夺冠的概率是0.9,中国男队夺冠的概率是0.7,那么男女两队双双夺冠的概率是多少?
例3、某商场推出两次开奖活动,凡购买一定价值的商品可以获得一张奖券。
奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动。
如果两次兑奖活动的中奖概率都为0.05,求两次抽奖中以下事件的概率:
(1)“都抽到某一指定号码”;
(2)“恰有一次抽到某一指定号码”;
(3)“至少有一次抽到某一指定号码”。
5、练习:天气预报,在元旦假期甲地的降雨概率是0.2,乙地的降雨概
率是0.3,假定在这段时间内两地是否降雨相互之间没有影响,计算在这段时间内:①甲乙两地都降雨的概率;
②恰有一个地方降雨的概率;
③甲乙两地都不降雨的概率;
④其中至少一个地方降雨的概率
6、课后思考:已知诸葛亮解出问题的概率为0.8,臭皮匠老大解出问题
的概率为0.5,老二为0.45,老三为0.4,且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大?
7、作业:假使在即将到来的世乒赛上,我国乒乓球健儿克服规则上的种
种困难,技术上不断开拓创新,在乒乓球团体比赛项目中,我们的中国女队夺冠的概率是0.9,中国男队夺冠的概率是0.7,那么
(1)男女两队双双夺冠的概率是多少?
(2)只有女队夺冠的概率有多大?
(3)恰有一队夺冠的概率有多大?
(4)至少有一队夺冠的概率有多大?
8、小结:(1)相互独立事件
(2)解题步骤。