2019年北京市西城区初三一模数学试卷及答案

合集下载

2019西城一模数学

2019西城一模数学

2019年北京市西城区初三一模数学试卷数 学 2019.4一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个。

1.下列图形中,是圆锥的侧面展开图的为 A .B .C .D .2.实数a b c ,,在数轴上的对应点的位置如图所示,则正确的结论是A .a b >B .+0a b >C .0ac >D . ||||a c >3.方程组20529x y x y ì-=ïí+=ïî的解为A .17x y ì=-ïí=ïîB .36x y ì=ïí=ïîC .12x y ì=ïí=ïîD .12x y ì=-ïí=ïî4.如图,点D 在BA 的延长线上,AE//BC .若10065DAC B ?靶=?,,则∠EAC 的度数为 A .65° B .35°C .30°D .40°5.广阔无垠的太空中有无数颗恒星,其中离太阳系最近的一颗恒星称为“比邻星”,它距离太阳系约4.2光年.光年是天文学中一种计量天体时空距离的长度单位,1光年约为9 500 000 000 000千米,则“比邻星”距离太阳系约为A .13410´千米B .12410´千米C .139.510´千米D .129.510´千米6. 如果2310a a ++=,那么代数式2292(6)3a a a a ++?+的值为 A .1 B .-1 C .2 D .-27.三名快递员某天的工作情况如图所示,其中点123A A A ,,的横、纵左边分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点123B B B ,,的横、纵左边分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下三个结论:①上午派送快递所用时间最短的是甲; ②下午派送快递件数最多的是丙; ③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是A .①②B .①③C .②D .②③8. 中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(图1),它是分别以等边三角的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形,图2是等宽的勒洛三角形和圆.图1 图2 下列说法中错误的是 A .勒洛三角形是轴对称图形B .图1中,点A 到BC 上任意一点的距离都相等C .图2中,勒洛三角形上任意一点到等边三角形DEF 中心1O 的距离都相等D .图2中,勒洛三角形的周长与圆的周长相等二、填空题(本题共16分,每小题2分)9. 如图,在线段AD AE AF ,,中,ABC 的高是线段 .10.在实数范围内有意义,则实数x 的取值范围是 . 11.分解因式:225ab a -= .12. 如图,点O A B ,,都在正方形网格的格点上,将OAB 绕点O 顺时针旋转后得到''OA B ,点A B ,的对应点','A B 也在格点上,则旋转角0180a a 鞍(<<)的度数为 .13.用一组,a b 的值说明命题“对于非零实数,a b ,若a b <,则11a b >”是错误的,这组值可以是____,____a b ==.14. 如图,在矩形ABCD 中,点E 在边CD 上,将矩形ABCD 沿AE 所在直线折叠,点D 恰好落在边BC 上的点F 处.若54DE FC ==,,则AB 的长为 .15.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在(填“甲”、“乙”或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.16. 高速公路某收费站出城方向有编号为A,B,C,D,E的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:在A,B,C,D,E五个收费出口中,每20分钟通过小客车数量最多的一个收费出口的编号是.三、解答题(本题共68分,第17—22题,每小题5分,第23—26题,每小题6分,第27、28题,每小题7分)解答应写出文字说明、演算步骤或证明过程。

2019届北京市西城区九年级下学期第一次中考模拟测验数学试卷【含答案及解析】

2019届北京市西城区九年级下学期第一次中考模拟测验数学试卷【含答案及解析】

2019届北京市西城区九年级下学期第一次中考模拟测验数学试卷【含答案及解析】————————————————————————————————作者:————————————————————————————————日期:2019届北京市西城区九年级下学期第一次中考模拟考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________题号一二三四总分得分一、选择题1. 64的立方根是()A. ±8B. ±4C. 8D. 42. 2014年11月北京主办了第二十二届APEC(亚太经合组织)领导人会议,“亚太经合组织”联通太平洋两岸,从地理概念上逐渐变成了一个拥有280000000人口的经济合作体,把“280000000”用科学记数法表示正确的是()A. B. C. D.3. 如右图是由四个相同的小正方体组成的立体图形,它的俯视图为()4. 一名射击爱好者5次射击的中靶环数依次为:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.95. 下列图形中,是中心对称图形的是()6. 在函数中,自变量x的取值范围是()A. B. C. D.7. 一个不透明的口袋中,装有4个红球,3个黄球,1个白球,这些球除颜色外其余都相同,从口袋中随机摸一个球,则摸到红球的概率为()A. B. C. D.8. 如图,⊙的半径为5,为⊙的弦,⊥于点.若,则弦的长为()A.4 B.6 C.8 D.109. 若正多边形的一个外角为60º,则这个正多边形的中心角的度数是()A.30° B.60° C.90° D.120°10. 如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从点B出发,沿着B-A-D在菱形ABCD的边上运动,运动到点D停止,点是点P关于BD的对称点,交BD于点M,若BM=x,的面积为y,则y与x之间的函数图象大致为()二、填空题11. 若则.12. 质量检测部门对甲、乙两工厂生产的同样产品抽样调查,计算出甲厂的样本方差为0.99,乙厂的样本方差为1.22.由此可以推断出生产此类产品,质量比较稳定的是厂.13. 在综合实践课上,小明同学设计了如图测河塘宽AB的方案:在河塘外选一点O,连结AO,BO,测得m,m,延长AO,BO分别到D,C两点,使m,m,又测得m,则河塘宽AB= m.14. 写出一个当自变量时,y随x的增大而增大的反比例函数表达式_____.15. 居民用电计费实行“一户一表”政策,以年为周期执行阶梯电价,即:一户居民全年不超过2880度的电量,执行第一档电价标准为0.48元/度;全年用电量在2880度到4800度之间(含4800),超过2880度的部分,执行第二档电价标准为0.53元/度;全年用电量超过4800度,超过4800度的部分,执行第三档电价标准为0.78元/度.小敏家2014年用电量为3000度,则2014年小敏家电费为元.16. 规定:在平面直角坐标系xOy中,“把某一图形先沿x轴翻折,再沿y轴翻折”为一次变化.如图,已知正方形ABCD,顶点A(1,3),C(3,1).若正方形ABCD经过一次上述变化,则点A变化后的坐标为,如此这样,对正方形ABCD连续做2015次这样的变化,则点D变化后的坐标为.三、计算题17. 计算:.18. 解不等式组:四、解答题19. 如图,C,D为线段AB上两点,且AC=BD,AE∥BF.AE=BF.求证:∠E=∠F.20. 已知,求代数式的值.21. 已知关于的一元二次方程有两个不相等的实数根.(1)、求k的取值范围;(2)、若k为小于2的整数,且方程的根都是整数,求k的值.22. 列方程或方程组解应用题:在练习100米跑步时,小丽为了帮助好朋友小云提高成绩,让小云先跑7.5秒后自己再跑,结果两人同时到达终点,这次练习中小丽的平均速度是小云的1.6倍,求小云这次练习中跑100米所用的时间.23. 如图,平行四边形ABCD中,点E是AD边上一点,且CE⊥BD于点F,将△DEC沿从D 到A的方向平移,使点D与点A重合,点E平移后的点记为G.(1)、画出△DEC平移后的三角形;(2)、若BC=,BD=6,CE=3,求AG的长.24. 为了提倡“绿色”出行,顺义区启动了公租自行车项目,为了解我区居民公租自行车的使用情况,某校的社团把使用情况分为A(经常租用)、B(偶尔租用)、C(不使用)三种情况.先后在2015年1月底和3月底做了两次调查,并根据调查结果绘制成了如下两幅不完整的统计图:根据以上信息解答下列问题:(1)在扇形统计图中,A(经常租用)所占的百分比是;(2)求两次共抽样调查了多少人;并补全折线统计图;(3)根据调查的结果,请你谈谈从2015年1月底到2015年3月底,我区居民使用公租自行车的变化情况.25. 如图,是⊙的直径,是⊙上一点,是的中点,过点D作⊙O的切线,与AB,AC的延长线分别交于点E,F,连结AD.(1)求证:AF⊥EF;(2)若,AB=5,求线段BE的长.26. 阅读、操作与探究:小亮发现一种方法,可以借助某些直角三角形画矩形,使矩形邻边比的最简形式(如4:6的最简形式为2:3)为两个连续自然数的比,具体操作如下:如图1,Rt△ABC中,BC,AC,AB的长分别为3,4,5,先以点B为圆心,线段BA的长为半径画弧,交CB的延长线于点D,再过D,A两点分别作AC,CD的平行线,交于点E.得到矩形ACDE,则矩形ACDE的邻边比为.请仿照小亮的方法解决下列问题:(1)如图2,已知Rt△FGH中,GH:GF:FH= 5:12:13,请你在图2中画一个矩形,使所画矩形邻边比的最简形式为两个连续自然数的比,并写出这个比值;(2)若已知直角三角形的三边比为(n为正整数),则所画矩形(邻边比的最简形式为两个连续自然数的比)的邻边比为.27. 在平面直角坐标系xOy中,抛物线与y轴交于C点,与x轴交于A,B两点(点A在点B左侧),且点A的横坐标为-1.(1)求a的值;(2)设抛物线的顶点P关于原点的对称点为,求点的坐标;(3)将抛物线在A,B两点之间的部分(包括A, B两点),先向下平移3个单位,再向左平移m()个单位,平移后的图象记为图象G,若图象G与直线无交点,求m 的取值范围.28. 如图,△ABC中,AB=AC,点P是三角形右外一点,且∠APB=∠ABC.(1)如图1,若∠BAC=60°,点P恰巧在∠ABC的平分线上,PA=2,求PB的长;(2)如图2,若∠BAC=60°,探究PA,PB,PC的数量关系,并证明;(3)如图3,若∠BAC=120°,请直接写出PA,PB,PC的数量关系.29. 已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A 在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.(1)①如图2,求出抛物线的“完美三角形”斜边AB的长;②抛物线与的“完美三角形”的斜边长的数量关系是;(2)若抛物线的“完美三角形”的斜边长为4,求a的值;(3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】第29题【答案】。

2019年北京市西城区初三一模数学试卷及答案

2019年北京市西城区初三一模数学试卷及答案

2019年北京市西城区初三一模数学试卷数 学 2019.4一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个。

1.下列图形中,是圆锥的侧面展开图的为A .B .C .D .2.实数a b c ,,在数轴上的对应点的位置如图所示,则正确的结论是A .a b >B .+0a b >C .0ac >D . ||||a c >3.方程组20529x y x y ì-=ïí+=ïî的解为A .17x y ì=-ïí=ïîB .36x y ì=ïí=ïîC .12x y ì=ïí=ïîD .12x y ì=-ïí=ïî4.如图,点D 在BA 的延长线上,AE//BC .若10065DAC B ?靶=?,,则∠EAC 的度数为 A .65° B .35°C .30°D .40°5.广阔无垠的太空中有无数颗恒星,其中离太阳系最近的一颗恒星称为“比邻星”,它距离太阳系约4.2光年.光年是天文学中一种计量天体时空距离的长度单位,1光年约为9 500 000 000 000千米,则“比邻星”距离太阳系约为A .13410´千米B .12410´千米C .139.510´千米D .129.510´千米6. 如果2310a a ++=,那么代数式2292(6)3a a a a ++?+的值为 A .1 B .-1 C .2 D .-27.三名快递员某天的工作情况如图所示,其中点123A A A ,,的横、纵左边分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点123B B B ,,的横、纵左边分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数. 有如下三个结论:①上午派送快递所用时间最短的是甲; ②下午派送快递件数最多的是丙; ③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是 A .①②B .①③C .②D .②③8. 中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(图1),它是分别以等边三角的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形,图2是等宽的勒洛三角形和圆.图1 图2 下列说法中错误的是A .勒洛三角形是轴对称图形B .图1中,点A 到»BC上任意一点的距离都相等C .图2中,勒洛三角形上任意一点到等边三角形DEF 中心1O 的距离都相等D .图2中,勒洛三角形的周长与圆的周长相等 二、填空题(本题共16分,每小题2分)9. 如图,在线段AD AE AF ,,中,ABC V 的高是线段.10.若3x -在实数范围内有意义,则实数x 的取值范围是. 11.分解因式:225ab a -=.12. 如图,点O A B ,,都在正方形网格的格点上,将OAB V 绕点O 顺时针旋转后得到''OA B V ,点A B ,的对应点','A B 也在格点上,则旋转角0180a a 鞍(<<)的度数为o .13.用一组,a b 的值说明命题“对于非零实数,a b ,若a b <,则11a b >”是错误的,这组值可以是____,____a b ==.14. 如图,在矩形ABCD 中,点E 在边CD 上,将矩形ABCD 沿AE 所在直线折叠,点D 恰好落在边BC 上的点F 处.若54DE FC ==,,则AB 的长为.15.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在(填“甲”、“乙”或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.16. 高速公路某收费站出城方向有编号为A,B,C,D,E的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:在A,B,C,D,E五个收费出口中,每20分钟通过小客车数量最多的一个收费出口的编号是.三、解答题(本题共68分,第17—22题,每小题5分,第23—26题,每小题6分,第27、28题,每小题7分)解答应写出文字说明、演算步骤或证明过程。

2019北京市西城区初三一模数学试题及答案

2019北京市西城区初三一模数学试题及答案

2019北京西城初三一模数 学2019.4考生须知1.本试卷共8页,共三道大题,28道小题,满分100分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、班级、姓名和学号。

3.试题答案一律填涂或书写在答题卡上.在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回 第1-8题均有四个选项。

符合题众的选项只有一个。

1.下列图形中,是圆锥的侧面展开图的为2.实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是A. a>bB. a=b>0C. ac>0D. |a |>|c |3. 方程组{2x −y =05x +2y =9的解为A. {x =−1y =7B. {x =3y =6C. {x =1y =3D. {x =−1y =24. 如图,点D 在BA 的延长线,AE ∥BC 若∠DAC=100°∠B=65°,则∠EAC 的度数为 A. 65°B. 35°C. 30°D. 40°5.广阔无垠的太空中有无数颗恒星,其中离太阳系最近的一颗恒星称为“比邻星”,它距离太阳系约4.2光年.光年是天文学中一种计量天体时空距离的长度单位,1光年约为9 500 000 000 000千米,则“比邻星”距离太阳系约为(A) 4×1013千米(B) 4×1012千米(C) 9.5×1013千米(D) 9.5×1012千米 6. 如果a 2+3a+1=0,那么代数式(a 2+9a+6)·2a 2a+3的值为 A. 1B. -1C. 2D. -27. 三名快递员某天的工作情况如图所示,其中点A 1,A 2,A 3的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点B 1, B 2,B 3,的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数。

2019初三数学西城一模

2019初三数学西城一模

对平行切线的距离总是相等的,所以圆是 “等宽曲线”.除 了 圆 以 外,还 有 一 些 几 何
图形也是 “等宽曲线”,如勒洛三角形(图1),它是分 别 以 等 边 三 角 形 的 每 个 顶 点 为
圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.
图2是等宽的勒洛三角形和圆.
图1
角线 AC,BD 的夹角为60°.
作法:如图,
①作☉O 的直径AC;
②以点 A 为圆心,AO 长为半径画弧,交 直 线 AC
上方的圆弧于点B;
③连接 BO 并延长交☉O 于点D;
④连接 AB,BC,CD,DA.
所以四边形 ABCD 就是所求作的矩形.
根据小东设计的尺规作图过程,
(1)使 用 直 尺 和 圆 规 , 补 全 图 形 (保 留 作 图 痕 迹 );
(A)
(B)
(C)
(D)
2.实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是
(A)a>b
(B)a+b>0
{ 3.方程组 2x-y=0,的解为 5x+2y=9
{x=-1,
(A) y=7
{x=3,
(B) y=6
(C)ac>0
{x=1,
(C) y=2
(D) a > c
{x=-1,
(D) y=2
西城区九年级统一测试
数学试卷
2019.4
1.本 试 卷 共 8 页 ,共 三 道 大 题 ,28 道 小 题 ,满 分 100 分 。 考 试 时 间 120 分 钟 。
考 2.在试卷和答题卡上准确填写学校名称、班级、姓名和学号。
生 须
3.试 题 答 案 一 律 填 涂 或 书 写 在 答 题 卡 上 ,在 试 卷 上 作 答 无 效 。

北京市西城区2019年初三统一测试数学试卷

北京市西城区2019年初三统一测试数学试卷

CBA北京市西城区2019年初三统一测试数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一...个.是符合题意的. 1.在平面直角坐标系中,将点 A (﹣2,3)向右平移3个单位长度后得到的对应点 A ′的坐标是()A .(1,3)B .(﹣2,﹣3)C .(﹣2,6)D .(﹣2,1) 2.下面四个几何体中,主视图是圆的是()A B C D 3.“双十二”期间,小冉的妈妈在网上商城给小冉买了一个书包,除了书包打八折外还随机赠送购买者1支笔(除颜色外其它都相同且数量有限).小冉的妈妈购买成功时,还有5支黑色,3支绿色,2支红色的笔.那么随机赠送的笔为绿色的概率为()A .110B .15C .310D .25 4. 已知⊙O 的半径长为5,若点P 在⊙O 内,那么下列结论正确的是() A. OP >5B. OP =5 C. 0<OP <5 D. 0≤OP <5 5.如右图,在Rt △ABC 中,∠C=90°,AC =4,BC =3,则sin B 的值等于()A .43B .34C .45D .356.已知(2)2m y m x =-+是y 关于x 的二次函数,那么m 的值为()A .-2 B. 2 C. 2± D. 07.如右图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠AOD 等于() A .120° B . 140° C .150° D .160° 8.二次函数223y x x =--的最小值为()A. 5B. 0C. -3D.ABB 1BA A 1-49.如右图,将△ABC 绕着点C 顺时针旋转50°后得到△A 1B 1C .若∠A =40°,∠B 1=110°,则∠BCA 1的度数是() A .90° B . 80°C .50°D .30°10. 如右图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF与BC ,CD 分别相交于点G ,H ,则EF GH的值为()322二、填空题(本题共18分,每小题3分) 11.分解因式:=-1232a .12. 右图中的四边形均是矩形,根据图形,写出一个正确的等式: 13. “……日啖荔枝三百颗,不辞长作岭南人”。

2019年北京市西城区中考一模数学试卷 (word版含答案)

2019年北京市西城区中考一模数学试卷 (word版含答案)
2.在数轴上,实数a,b对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是
(A) (B) (C) (D)
3.如图,AB∥CD,DA⊥CE于点A.若∠EAB=55°,则∠D的度数为
(A)25°(B)35°
(C)45°(D)55°
4.右图是某几何体的三视图,该几何体是
(A)三棱柱(B)长方体
表1甲种种植技术种出的西瓜质量统计表
编号
1
2
3
4
5
6
7
8
9
10
西瓜质量.(单位:kg)
3.5
4.8
5.4
4.9
4.2
5.0
4.9
4.8
5.8
4.8
编号
11
12
13
14
15
16
17
18
19
20
西瓜质量.(单位:kg)
5.0
4.8
5.2
4.9
5.1
5.0
4.8
6.0
5.7
5.0
表2乙种种植技术种出的西瓜质量统计表
16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.
已知:如图1,直线l和直线l外一点P.
求作:直线l的平行直线,使它经过点P.
作法:如图2.
(1)过点P作直线m与直线l交于点O;
(2) 在直线m上取一点A(OA<OP),以点O为圆心,OA长为半径画弧,与直线l交于点B;
(3) 以点P为圆心,OA长为半径画弧,交直线m于点C,以点C为圆心,AB长为半径画弧,两弧交于点D;
优等品西瓜个数
平均数
方差
甲种种植技术种出的西瓜质量

2019北京西城区一模数学答案

2019北京西城区一模数学答案
3
7
27.(1)证明: ∵ ∠ABC = 90 , BA=BC ∴ ∠BAC = ∵ ∠DAB = 90 ∴ ∠DAC = 90 − ∠BAC = 在∆ABF 和∆ADF 中,
‫=ܤ‬ ∠BAC = ∠DAC
‫ܨ =ܨ‬ ∴ ∆ABF ≅ ∆ADF (SAS) (2)证明: 在 BC 上取 BH=EC,连接 BC,延长 BF 交 DC 于点 M ∵ AD//BC, AD = BC ∴ 四边形 ABCD 是平行四边形 ∵ ∠ABC = 90 , ‫ܤ = ܤ‬䳌 ∴ 四边形 ABCD 是正方形 ∴ ∆ABH ≅ ∆DCE (SAS) ∴ ∠BAH = ∠CDE ∵ ∆ABF ≅ ∆ADF (SAS) ∴ ∠ABF = ∠ADF ∴ 90 − ∠ABC = 90 − ∠ADF 即∠CBF = ∠CDE=∠BAH ∵在 Rt∆ABH 中, ∠BAH + ∠BHA = 90 ∴ ∠CBF + ∠BHA = 90
C:以内接正三角形的边长为桥梁,表示中心 O 到两点的距离,并不相等;
D:图 1 可转化成与图 2 半径相等的等圆,周长相等
1
二.填空题 9. AF
10. x 3
11. ab 5b 5
12. 90
13. a 1,b 1(答案不唯一,符合要求即可)
解析:a 值为负,b 值为正即可 14. 8 15. 丙 解析:不低于四星,即比较四星和五星的总和,丙最多 16. B 解析:两两对比,根据相同出口流量固定进行比较
1<yP< ∴﹣1<k<﹣
4
23、(1)证明:
∵CB为切线 ABC 90 ∵ EF AB AHE 90 EF ∥ BC MED C 又∵ BC BD MDE C MED MDE
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年北京市西城区初三一模数学试卷数 学 2019.4一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个。

1.下列图形中,是圆锥的侧面展开图的为A .B .C .D .2.实数a b c ,,在数轴上的对应点的位置如图所示,则正确的结论是A .a b >B .+0a b >C .0ac >D . ||||a c >3.方程组20529x y x y 的解为A .17x yB .36x yC .12x yD .12x y4.如图,点D 在BA 的延长线上,AE//BC .若10065DAC B ,,则∠EAC 的度数为 A .65° B .35°C .30°D .40°5.广阔无垠的太空中有无数颗恒星,其中离太阳系最近的一颗恒星称为“比邻星”,它距离太阳系约4.2光年.光年是天文学中一种计量天体时空距离的长度单位,1光年约为9 500 000 000 000千米,则“比邻星”距离太阳系约为A .13410千米B .12410千米C .139.510千米D .129.510千米6. 如果2310a a ,那么代数式2292(6)3a a a a 的值为 A .1B .-1C .2D .-27.三名快递员某天的工作情况如图所示,其中点123A A A ,,的横、纵左边分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点123B B B ,,的横、纵左边分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数. 有如下三个结论:①上午派送快递所用时间最短的是甲; ②下午派送快递件数最多的是丙; ③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是 A .①②B .①③C .②D .②③8. 中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(图1),它是分别以等边三角的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形,图2是等宽的勒洛三角形和圆.图1 图2 下列说法中错误的是A .勒洛三角形是轴对称图形B .图1中,点A 到BC 上任意一点的距离都相等C.图2中,勒洛三角形上任意一点到等边三角形DEF中心1O的距离都相等D.图2中,勒洛三角形的周长与圆的周长相等二、填空题(本题共16分,每小题2分)9. 如图,在线段AD AE AF,,中,ABC的高是线段.10.若3x在实数范围内有意义,则实数x的取值范围是.11.分解因式:225ab a=.12. 如图,点O A B,,都在正方形网格的格点上,将OAB绕点O顺时针旋转后得到''OA B,点A B,的对应点','A B也在格点上,则旋转角0180(<<)的度数为.13.用一组,a b的值说明命题“对于非零实数,a b,若a b<,则11a b>”是错误的,这组值可以是____,____a b .14. 如图,在矩形ABCD中,点E在边CD上,将矩形ABCD沿AE所在直线折叠,点D 恰好落在边BC上的点F处.若54DE FC,,则AB的长为.15.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在(填“甲”、“乙”或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.16. 高速公路某收费站出城方向有编号为A,B,C,D,E的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:在A,B,C,D,E五个收费出口中,每20分钟通过小客车数量最多的一个收费出口的编号是.三、解答题(本题共68分,第17—22题,每小题5分,第23—26题,每小题6分,第27、28题,每小题7分)解答应写出文字说明、演算步骤或证明过程。

17.计算:0|5|122sin60(2019)18.解不等式组:4(21)31 385x xxx<<19.下面是小东设计的“作圆的一个内接矩形,并使其对角线的夹角为60”的尺规作图过程.已知:O⊙.求作:矩形ABCD,使得矩形ABCD内接于⊙O,且其对角线AC,BD的夹角为60°作法:如图,①作⊙O的直径AC;②以点A为圆心,AO长为半径画弧,交直线AC上方的圆弧于点B;③连接BO并延长交⊙O于点D;④连接AB,BC,CD,DA.所以四边形ABCD就是所求作的矩形根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明证明:∵点A,C都在⊙O上,∴OA=OC.同理OB=OD.∴四边形ABCD是平行四边形∵AC是⊙O的直径,∴∠ABC=90°()(填推理的依据)∴四边形ABCD是矩形∵AB==BO,∴∠AOB=60°∴四边形ABCD是所求作的矩形.x bx c20.已知关于x的一元二次方程20(1)当2c b时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的非零实数根,写出一组满足条件的b,c的值,并求此时方程的根。

21.如图,在ABC中,AC BC,点D E F,,的中点,连接,,分别时AB AC BC ,.DE DF(1)求证:四边形DFCE是菱形;(2)若754,,求菱形DFCE的面积。

A AC22.在平面直角坐标系xOy 中,直线l y x b :与x 轴交于点0,2,A 与y 轴交于点B .双曲线kyx直线l 交于P Q ,两点,其中点P 的纵坐标大于点Q 的纵坐标。

(1)求点B 的坐标;(2)当点P 的横坐标为2时,求k 的值; (3)连接PO ,记POB 的面积为S ,若112S ,结合函数图象,直接写出k 的取值范围。

23.如图,AB 是O ⊙的直径,CB 与O ⊙相切于点B .点D 在⊙O 上,且BC=BD ,连接CD 交⊙O 于点E .过点E 作EF AB 于点H ,交BD 于点M ,交⊙O 于点F .(1)求证:∠MED=∠MDE ;(2)连接BE ,若ME=3,MB=2,求BE 的长24.如图,AB 是直径AB 所对的半圆弧,C 是AB 上一定点,D 是AB 上一动点,连接DA ,DB ,DC .已知AB =5cm ,设D ,A 两点间的距离为xcm ,D ,B 两点间的距离为1y cm ,D ,C 两点间的距离为2y cm小腾根据学习函数的经验,分别对函数y 1,y 2随自变量x 的变化而变化的规律进行了探究。

下面是小腰的探究过程,请补充完整:(1) 按照下表中自变量x 的值进行取点、画图、测量,分别得到了y 1,y 2与x 的几组对应值;x /cm 0 1 2 3 4 5 y 1/cm 5 4.9 4 3 0 y 2/cm43.322.471.43(2) 在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点12x y x y (,),(,),并画出函数y 1,y 2的图象;(3) 结合函数图象,解决问题:连接BC ,当△BCD 是以CD 为腰的等腰三角形时,DA 的长度约为cm.25.某公司的午餐采用自助的形式,并倡导员工“适度取餐,减少浪费”该公司共有10个部门,且各部门的人数相同,为了解午餐的浪费情况,从这10个部门中随机抽取了A ,B 两个部门,进行了连续四周(20个工作日)的调查,得到这两个部门每天午餐浪费饭菜的重量,以下简称“每日餐余重量”(单位:千克),并对这些数据进行了整理、描述和分析.下面给出了部分信息.a A 部门每日餐余重量的频数分布直方图如下(数据分成6组:02x ,24x ,46x ,68x ,810x ,1012x ):.b A 部门每日餐余重量在6≤x<8这一组的是:6.1 6.67.0 7.0 7.0 7.8.c B 部门每日餐余重量如下:1.42.8 6.9 7.8 1.9 9.73.14.6 6.9 10.86.9 2.67.5 6.9 9.5 7.88.4 8.39.4 8.8.d A ,B 两个部门这20个工作日每日餐余重量的平均数、中位数、众数如下: 部门平均数 中位数 众数 A6.4 m7.0 B 6.6 7.2 n根据以上信息,回答下列问题:(1) 写出表中m n ,的值;(2) 在A ,B 这两个部门中,“适度取餐,减少浪费”做得较好的部门是(填“A”或“B”),理由是;(3) 结合A ,B 这两个部门每日餐余重量的数据,估计该公司(10个部门)一年(按240个工作日计算)的餐余总重量。

26.在平面直角坐标系xOy 中,已知抛物线2yx mx n . (1)当2m 时,①求抛物线的对称轴,并用含n 的式子表示顶点的纵坐标; ②若点1(2,)A y ,22(,)B x y 都在抛物线上,且21y y ,则2x 的取值范围是_______;(2)已知点(1,2)P ,将点P 向右平移4个单位长度,得到点Q . 当3n 时,若抛物线与线段PQ 恰有一个公共点,结合函数图像,求m 的取值范围.27. 如图,在△ABC中,∠ABC=90°,BA=BC.将线段AB绕点A逆时针旋转90°得到线段AD,E是边BC上的一动点,连接DE交AC于点F,连接BF.(1) 求证:FB=FD;(2) 点H在边BC上,且BH=CE,连接AH交BF于点N.①判断AH与BF的位置关系,并证明你的结论;②连接CN.若AB=2,请直接写出线段CN长度的最小值.28.在平面直角坐标系xOy 中,对于两个点,P Q 和图形W ,如果在图形W 上存在点,M N (,M N 可以重合)使得PM QN ,那么称点P 与点Q 是图形W 的一对平衡点.(1)如图1,已知点(0,3)A ,(2,3)B .①设点O 与线段AB 上一点的距离为d ,则d 的最小值是____,最大值是____;②在1233(0)(14)(30)2P P P ,,,,,这三个点中,与点O 是线段AB 的一对平衡点的是____;图1(2)如图2,已知O ⊙的半径为1,点D 的坐标为(5,0).若点(,2)E x 在第一象限,且点D 与点E 是O ⊙的一对平衡点,求x 的取值范围;图2图3(3)如图3,已知点(3,0)H ,以点O 为圆心,OH 长为半径画弧交x 轴的正半轴于点K .点(,)C a b (其中0b )是坐标平面内一动点,且5OC ,C ⊙是以点C 为圆心,半径为2的圆.若HK 上的任意两个点都是C ⊙的一对平衡点,直接写出b 的取值范围.。

相关文档
最新文档