高考数学模拟试卷复习试题第一学期高三调研测试二数学文科
高考模拟复习试卷试题模拟卷高三数学数学试卷文科

高考模拟复习试卷试题模拟卷高三数学数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=15.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.17.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.18.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}【分析】根据题意,将集合B用列举法表示出来,可得B={1,3,5},由交集的定义计算可得答案.【解答】解:根据题意,集合A={1,2,3},而B={y|y=2x﹣1,x∈A},则B={1,3,5},则A∩B={1,3},故选:A.【点评】本题考查集合的运算,注意集合B的表示方法.2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.【分析】利用互斥事件的概率加法公式即可得出.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=.故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.【分析】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解答】解:由主视图和俯视图可知切去的棱锥为D﹣AD1C,棱CD1在左侧面的投影为BA1,故选:B.【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于基础题.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,求出几何量a,b,c,即可求出双曲线的方程.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,∴c=,∵双曲线的一条渐近线与直线2x+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.5.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]【分析】函数f(x)=,由f(x)=0,可得=0,解得x=∉(π,2π),因此ω∉∪∪∪…=∪,即可得出.【解答】解:函数f(x)=+sinωx﹣=+sinωx=,由f(x)=0,可得=0,解得x=∉(π,2π),∴ω∉∪∪∪…=∪,∵f(x)在区间(π,2π)内没有零点,∴ω∈∪.故选:D.【点评】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为 1 .【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为3 .【分析】先求导,再带值计算.【解答】解:∵f(x)=(2x+1)ex,∴f′(x)=2ex+(2x+1)ex,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为 4 .【分析】根据循环结构,结合循环的条件,求出最后输出S的值.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.【点评】本题主要考查程序框图,循环结构,注意循环的条件,属于基础题.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为(x﹣2)2+y2=9 .【分析】由题意设出圆的方程,把点M的坐标代入圆的方程,结合圆心到直线的距离列式求解.【解答】解:由题意设圆的方程为(x﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2x﹣y=0的距离为,得,解得a=2,r=3.∴圆C的方程为:(x﹣2)2+y2=9.故答案为:(x﹣2)2+y2=9.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是[,).【分析】由减函数可知f(x)在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|f(x)|和y=2﹣的图象,根据交点个数判断3a与2的大小关系,列出不等式组解出.【解答】解:∵f(x)是R上的单调递减函数,∴y=x2+(4a﹣3)x+3a在(﹣∞.,0)上单调递减,y=loga(x+1)+1在(0,+∞)上单调递减,且f(x)在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f(x)|和y=2﹣的函数草图如图所示:由图象可知|f(x)|=2﹣在[0,+∞)上有且只有一解,∵|f(x)|=2﹣恰有两个不相等的实数解,∴x2+(4a﹣3)x+3a=2﹣在(﹣∞,0)上只有1解,即x2+(4a﹣)x+3a﹣2=0在(﹣∞,0)上只有1解,∴或,解得a=或a<,又≤a≤,∴.故答案为[,).【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【分析】(Ⅰ)设出变量,建立不等式关系,即可作出可行域.(Ⅱ)设出目标函数,利用平移直线法进行求解即可.【解答】解:(Ⅰ)由已知x,y满足不等式,则不等式对应的平面区域为,(Ⅱ)设年利润为z万元,则目标函数为z=2x+3y,即y=﹣x+,平移直线y=﹣x+,由图象得当直线经过点M时,直线的截距最大,此时z最大,由得,即M(20,24),此时z=40+72=112,即分别生产甲肥料20车皮,乙肥料24车皮,能够产生最大的利润,最大利润为112万元.【点评】本题主要考查线性规划的应用,根据条件建立约束条件,作出可行域,利用平移法是解决本题的关键.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.【分析】(1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;(2)根据余弦定理求出BD=,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;(3)先判断出直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,再根据余弦定理和解直角三角形即可求出答案.【解答】证明:(1)BD的中点为O,连接OE,OG,在△BCD中,∵G是BC的中点,∴OG∥DC,且OG=DC=1,又∵EF∥AB,AB∥DC,∴EF∥OG,且EF=OG,即四边形OGEF是平行四边形,∴FG∥OE,∵FG⊄平面BED,OE⊂平面BED,∴FG∥平面BED;(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,仅而∠ADB=90°,即BD⊥AD,又∵平面AED⊥平面ABCD,BD⊂平面ABCD,平面AED∩平面ABCD=AD,∴BD⊥平面AED,∵BD⊂平面BED,∴平面BED⊥平面AED.(Ⅲ)∵EF∥AB,∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,过点A作AH⊥DE于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB与平面BED所成的角为∠ABH,在△ADE,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,∴sin∠ADE=,∴AH=AD•,在Rt△AHB中,sin∠ABH==,∴直线EF与平面BED所成角的正弦值【点评】本题考查了直线与平面的平行和垂直,平面与平面的垂直,直线与平面所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.18.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.【分析】(1)根据等比数列的通项公式列方程解出公比q,利用求和公式解出a1,得出通项公式;(2)利用对数的运算性质求出bn,使用分项求和法和平方差公式计算.【解答】解:(1)设{an}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴an=2n﹣1.(2)∵bn是log2an和log2an+1的等差中项,∴bn=(log2an+log2an+1)=(log22n﹣1+log22n)=n﹣.∴bn+1﹣bn=1.∴{bn}是以为首项,以1为公差的等差数列.设{(﹣1)nbn2}的前2n项和为Tn,则Tn=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a的方程,解方程求得a值,则椭圆方程可求;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,得,整理得到M的坐标与k的关系,由∠MOA=∠MAO,得到x0=1,转化为关于k的等式求得k的值.【解答】解:(1)由+=,得+=,即=,∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.∴椭圆方程为;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),设B(x1,y1),M(x0,k(x0﹣2)),∵∠MOA=∠MAO,∴x0=1,再设H(0,yH),联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.由根与系数的关系得,∴,,MH所在直线方程为y﹣k(x0﹣2)=﹣(x﹣x0),令x=0,得yH=(k+)x0﹣2k,∵BF⊥HF,∴,即1﹣x1+y1yH=1﹣[(k+)x0﹣2k]=0,整理得:=1,即8k2=3.∴k=﹣或k=.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a>0,且x0≠0,由f′(x0)=0求出x0,分别代入解析式化简f (x0),f(﹣2x0),化简整理后可得证;(3)设g(x)在区间[﹣1,1]上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||}=max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高考数学高三模拟试卷第一学期高三摸底考试文科数学试题和参考答案及评分标准

高考数学高三模拟试卷第一学期高三摸底考试文科数学试题和参考答案及评分标准一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项. 1.设集合2{|1}P x x ==,那么集合P 的真子集个数是() A .3 B .4 C .7D .8 【答案】A【解析】211x x =⇒=±,所以{}1,1P =-.集合{}1,1P =-的真子集有{}{},1,1∅-共3个.故A 正确.2.在平行四边形ABCD 中,AC 为一条对角线,(2,4)AB =,(1,3)AC =,则DA =( ) A .(2,4) B .(3,5)C .(1,1) D .(-1,-1) 【答案】C .【解析】()(1,1)DA AD AC AB =-=--=. 3.设()2112i iz +++=,则z =( ) A .3 B .1 C .2 D .2 【答案】D【解析】根据题意得121z i i i =-+=+,所以2z =.4.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )【答案】D【解析】所得几何体的轮廓线中,除长方体原有的棱外,有两条是原长方体的面对角线,它们在侧视图中落在矩形的两条边上,另一条是原长方体的对角线,在侧视图中的矩形的自左下而右上的一条对角线,因在左侧不可见,故而用虚线,所由上分析知,应选D.5.如图,大正方形的面积是 34,四个全等直角三角形围成一个小正方形,直角三角形的较短边长为 3,向大正方形内抛撒一枚幸运小花朵,则小花朵落在小正方形内的概率为( ) A .117 B .217 C .317 D .417【答案】B【解析】直角三角形的较短边长为 3,则较长边为5,所以小正方形边长为2,面积为4,所以向大正方形内抛撒一枚幸运小花朵,则小花朵落在小正方形内的概率为423417=,故选B .6.某商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温约为6℃,据此估计该商场下个月毛衣销售量约为()件. A.46 B.40 C.38 D.58 【答案】A为:(10,38),又在回归方程y bx a =+上,且2b =-, ∴3810(2)a =⨯-+,解得:58a =,∴258y x =-+,当x=6时,265846y =-⨯+=.故选:A .7.设m n ,是两条不同的直线,αβ,是两个不同的平面,下列命题中正确的是 ( ) A .若αβ⊥,,m n αβ⊂⊂,则m n ⊥B .若α∥β,,m n αβ⊂⊂,则n ∥m C .若m n ⊥,,m n αβ⊂⊂,则αβ⊥D .若m α⊥,n ∥m ,n ∥β,则αβ⊥【答案】D【解析】位于两个互相垂直的平面内的两条直线位置关系不确定,故A 错;分别在两个平行平面内的两条直线可平行也可以异面,故B 错;由m α⊥,n ∥m 得n α⊥,因为n ∥β,设,n l γλβ⊂=,则//n l ,从而l α⊥,又l β⊂,故αβ⊥,D 正确.考点:空间直线和直线、直线和平面,平面和平面的位置关系. 8.已知函数()sin 2f x x =向左平移6π个单位后,得到函数()y g x =,下列关于()y g x =的说法正确的是( ) A .图象关于点(,0)3π-中心对称B .图象关于6x π=-轴对称C .在区间5[,]126ππ--单调递增D .在[,]63ππ-单调递减 【答案】C【解析】∵函数f (x )=sin2x 向左平移6π个单位,得到函数y=g (x )=sin2(x+6π)=sin(2x+3π);∴对于A :当x=3π时,y=g (x )=sin (32π+3π)=23≠0∴命题A 错误;对于B :当x=6π时,y=g (x )=sin (3π+3π)=0≠±1,∴命题B 错误; 对于C :当x ∈5[,]126ππ--时,2x+3π∈[2π,0],∴函数y=g (x )= sin (2x+3π)是增函数,∴命题C 正确;对于D :当x ∈[,]63ππ-时,2x+3π∈[0,π],∴函数y=g (x )= sin (2x+3π)是先增后减的函数,∴命题D 错误.9.阅读上图所示的程序框图,运行相应的程序,输出的结果是( ).A .123 B.38 C .11D .3 【答案】C 【解析】试题分析:依此程序框图,变量a 初始值为1,满足条件a <10,执行循环,a=12+2=3,满足条件a <10,执行循环,a=32+2=11,不满足循环条件a <10,退出循环, 故输出11.故选C .10.己知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线l 与直线320x y -+=平行,若数列1()f n ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则2015S 的值为( ) A .20142015B .20122013 C .20132014 D .20152016【答案】D【解析】由已知得,'()2f x x b =+,函数2()f x x bx =+的图象在点(1,(1))A f 处的切线斜率为'(1)23k f b ==+=,故1b =,所以2()f x x x=+,则1111()(1)1f n n n n n ==-++,所以111111(1)())122311n S n n n =-+-+-=-++…+(,故2015S =20152016. 11.椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,若F 30x y +=的对称点A 是椭圆C 上的点,则椭圆C 的离心率为( ) A .12B .312C .32D 31【答案】D .【解析】设(,0)Fc -0y +=的对称点A 的坐标为(m,n),则(1022n m cmc n ⎧⋅=-⎪⎪+-+=,所以2c m =,2n =,将其代入椭圆方程可得22223441c c a b +=,化简可得42840e e -+=,解得1e =-,故应选D .12.若a 满足4lg =+x x ,b 满足410=+xx ,函数⎩⎨⎧>≤+++=0202)()(2x x x b a x x f ,,,则关于x 的方程x x f =)(解的个数是( ) A .1 B .2 C .3 D .4【答案】C【解析】由已知得,lg 4x x =-,104x x =-,在同一坐标系中作出10xy =,lg y x =以及4y x =-的图象,其中10xy =,lg y x =的图象关于y x =对称,直线y x =与4y x =-的交点为(2,2),所以4a b +=,2420()2,0x x x f x x ⎧++≤=⎨>⎩,,当0x ≤时,242x x x ++=,1x =-或2-;当0x >,2x =,所以方程x x f =)(解的个数是3个.二、填空题:本大题共4小题,每小题5分,满分20分.13.设公比为(0)q q >的等比数列{}n a 的前n 项和为n S .若224432,32S a S a =+=+,则q =.【答案】23【解析】由已知可得2322+=a S ,23224+=q a S ,两式相减得)1(3)1(222-=+q a q a 即0322=--q q ,解得23=q 或1-=q (舍),答案为23. 14.已知函数()()1623++++=x a ax x x f 有极大值和极小值,则a 的取值范围是【答案】63>-<a a 或【解析】因为()()1623++++=x a ax x x f 有极大值和极小值,则说明导函数()()2'3260f x x ax a =+++=有两个不同的实数根,即为2(2)43(6)0a a ∆=-⨯⨯+≥解得为63>-<a a 或.15.已知实数,x y 满足约束条件⎪⎩⎪⎨⎧≤≤-≥++0005y y x y x ,则241z x y =++的最小值是____________【答案】14【解析】作出不等式⎪⎩⎪⎨⎧≤≤-≥++0005y y x y x 组表示的平面区域,如图所示的阴影部分 由z=2x+4y+1可得421z x y +-=, 4z 表示直线421zx y +-=在y 轴上的截距,截距越小,z 越小,由题意可得,当y=2x+z 经过点A 时,z 最小由⎩⎨⎧=-=++005y x y x 可得A (25-,25-),此时141254252-=+⨯-⨯-=z .故答案为:14. 16.若抛物线28y x =的焦点F 与双曲线2213x y n-=的一个焦点重合,则n 的值为. 【答案】1【解析】试题分析:已知抛物线28y x =,则其焦点F 坐标为(2,0)双曲线2213x y n-=的右焦点为(3,0)n +所以32n +=,解得1n =,故答案为1. 三、解答题:本大题共8小题,考生作答6小题,共70分.解答须写出文字说明、证明过程和演算步骤。
高考数学模拟试卷复习试题第一学期调研考试高三数学文科试题卷

高考数学模拟试卷复习试题第一学期调研考试高三数学(文科)试题卷第Ⅰ卷一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知全集R U =,集合{}0322≤--=x x x M ,{}12+-==x y y N ,则=)(N C M U ( ) A .{}11≤≤-x x B .{}11<≤-x x C .{}31≤≤x x D .{}31≤<x x 2.一个棱锥的三视图如图,则该棱锥的体积是( ) A .34 B .2 C .38D .4 3.已知b a ,都是实数,那么“b a >”是“b a >”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件4.已知n m ,为不同的直线,βα,为不同的平面,则下列说法正确的是( ) A.αα∥∥n m n m ⇒⊂, B.αα⊥⇒⊥⊂n m n m ,C.βαβα⊥⇒⊥∥∥n m m m ,,D.βαβα∥∥⇒⊂⊂n m n m ,,5.若函数)10(1)(<<-+=a b a a x f xx 的图象关于原点对称,则函数)(log )(b x x g a +=的大致图象是( ) 6.已知1F ,2F 是双曲线)0(14222>=-b by x 的两焦点,在双曲线上存在一点P ,使得 6021=∠PF F ,且321=∆PF F S ,则双曲线的渐近线方程为( )A.02=±y xB.02=±y xC.03=±y xD.03=±y x 7.已知正实数b a ,满足691=+ba ,则)9)(1(++b a 的最小值是( ) A.36 B.32 C.16 D.88.设函数)(x f y =定义域为D ,且对任意D a ∈,都有唯一的实数b 满足b a f b f -=)(2)(.则该函数可能是( )A .xx f 1)(=B .x x f =)(C .xx f 2)(= D .x x x f 1)(+=第Ⅱ卷二、填空题(本大题有7小题,多空题每题6分,单空题每题4分,共36分.将答案填在答题纸上)9.若84=a,则=a _____,若1lg 2lg =+b ,则=b ____.10.等差数列{}n a 的前n 项和为n S ,若11=a ,32a S =,则=2a ______,=n S ______.11.将函数x y 2sin =的图象向右平移ϕ个单位长度后所得图象的解析式为)62sin(π-=x y ,则=ϕ___)20(πϕ<<,再将函数)62sin(π-=x y 图象上各点的横坐标伸长到原来的2倍(纵坐标不变)后得到的图象的解析式为_______.12.已知函数⎩⎨⎧>-≤-=1),1(1,13)(x x f x x f x ,则=))2((f f _____,函数)(x f 的零点有______个.13.同一个平面上的两个非零向量,-=+,则向量,夹角的取值范围为_____.14.实数y x ,满足不等式组⎩⎨⎧≤≤≥-+--,20,0)52)(1(x y x y x 则1++=x y x t 的取值范围是_____.15.已知椭圆)0(1:2222>>=+b a by a x C 的右焦点为F ,左顶点为A ,过点F 作倾斜角为120的直线l 交椭圆的上半部分于点P ,此时AP 垂直PF ,则椭圆C 的离心率是______.三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16.(本题满分15分)在锐角ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,且21=a ,C B A c b a sin sin sin ++=++. (1)求角A 的大小; (2)求ABC ∆面积的最大值. 17.(本题满分15分)已知数列{}n a 中的相邻两项k k a a 212,-是关于x 的方程02)24(22=++-+k kk x k x 的两个根,且,...)3,2,1(212=≤-k a a k k .(1)求983,,a a a 的值,并直接写出12-k a 与)5(2≥k a k ,不需证明; 且3:1:11=DC D B .过点D 作11B A DE ∥交11C A 于点E . (1)求证:⊥C A 1平面BDE ;(2)当点1B 到平面BD A 1的距离为21时,求直线D B 1与平面BD A 1所成的角. 19.(本题满分15分)已知抛物线y x C 4:2=,F 为抛物线焦点,圆1)1(:22=++y x E ,斜率为)0(>k k 的直线l 与抛物线C 和圆E 都相切,切点分别为P 和Q ,直线PF 和PQ 分别交x 轴于点N M ,. (1)求直线l 的方程; (2)求PMN ∆内切圆半径. 20.(本题满分14分) 已知函数t xtx x f ()(+=为常数),且方程)2()(x f x f -=有三个不等的实根321x x x <<. (1)当43=t 时,求函数)(x f 在区间],[21x x 上的最大值; (2)令)2()()(x f x f x g --=,若对任意的),2()2,1(+∞∈ x ,都有0)13)()(2(>---x x g x 成立,求实数t 的取值范围.金华十校第一学期调研考试 高三数学(文科)卷参考答案一、选择题1.D2.A3.B4.C5.D6.B7.C8.C 二、填空题9.5,23==b a 10.2,22n n + 11.)6sin(,12ππ-=x y12.1,2 13.]3,0[π14.]5,0[ 15.32三、解答题16.解:(1)设ABC ∆的外接圆的半径为R ,则)sin sin (sin 2C B A R c b a ++=++,∴12=R ,212sin ==R a A ,又ABC ∆是锐角三角形,故6π=A .(2)∵23241cos 22=-+=bc c b A ,∴bc c b 34122=-+, 即41)32()(2++=+bc c b ,又bc c b 2≥+,17.解:(1)方程02)24(22=⋅++-+k kk x k x 的一个根为k 4,另一根为k 2,∴43=a ,168=a 209=a ,当5≥k 时,kk 24<,∴)5(2,4212≥==-k a k a k k k . (2)由条件知:2212224+-⋅=⋅=⋅=k k k k k k k a a b ,利用错位相减法可知:2432122221+⨯+⋅⋅⋅+⨯+⨯=+⋅⋅⋅++=n n n n b b b T ,354222212+⨯+⋅⋅⋅+⨯+⨯=n n n T ,相减得82)1(222233243-⋅-=⋅-+⋅⋅⋅++=-+++n n n n n n T ,故82)1(1+⋅-=+n n n T .18.解:(1)由于11B A DE ∥,则11C A DE ⊥,由直三棱柱111C B A ABC -可知1AA DE ⊥, ∴⊥DE 平面C A 1,∴C A DE 1⊥.连接AE 在矩形CA C A 11中,由AC A E AA 11∆≅∆可得C A AE 1⊥, 又由于AB B A DE ∥∥11,∴平面BDE 就是平面BDEA , ∴⊥C A 1平面BDEA ,故⊥C A 1平面BDE .(2)作D A F B 11⊥,垂足为F ,连接BF ,则由11BB D A ⊥可知F BB D A 11平面⊥, 所以D A BF 1⊥,作BF G B ⊥1,则BD A G B 11平面⊥,连接GD , 则DG B 1∠就是直线D B 1与面BD A 1所成的角.由已知可知211=G B ,由于11=B B ,∴331=F B ,∴44921+=a D A ,又由于44111111aS S C B A DB A ==∆∆,∴4334492121211a a F B D A =⋅+⋅=⋅, 解得332=a ,此时233321sin 111===∠D B G B DG B ,故直线D B 1与面BD A 1所成的角为3π.19.解:(1)设直线l 的方程:)0(>+=k b kx y 联立抛物线方程得:0442=--b kx x ,则002=+⇒=∆b k ,①圆心)1,0(-E ,半径为1,则圆心E 到直线l 的距离1112=++=k b d ,整理得3-=b ,代入①式得3=k ,所以直线l 的方程:33-=x y .(2)由(1)可知)3,32(P ,直线PQ 与x 轴交于N 坐标)0,3(,直线133:+=x y PF ,则)0,3(-M , 直线PQ 的倾斜角为60,直线PF 的倾斜角为30, ∴PMN ∆为等腰三角形,33120sin 212==∆ MN S PMN . 故内切圆半径336)(21-=++=∆MN PN PM S r PMN.20.解:(1)方程)2()(x f x f -=,即0)22(=-+--+xt x x t x , 把43=t 代入化简得:0)2()432)(1(2=-+--x x x x x , 解得23,1,21321===x x x , ∵函数xx x f 43)(+=在)23,0(上递减,在),23(+∞上递增, ∴函数)(x f 在)23,21[上递减,在]23,23(上递增, 又2)21()23(==f f ,故2)(max =x f .(2)方程)2()(x f x f -=,即0)22(=-+--+xtx x t x ,化简得0)2()2)(1(2=-+--x x t x x x , ∵方程)2()(x f x f -=有三个不等的正根321x x x <<, ∴方程022=+-t x x 有两个不等正根31,x x ,此时,10<<t ,由题13)2()2)(1(13)(2---+--=--x x x t x x x x x g ,且对任意)2,1(∈x ,013)(<--x x g ,对任意的),2(+∞∈x ,013)(>--x x g , 令u x =-1,则)1(3)4(13)(224-+-+=--u u u t u x x g , 再令2u v =,问题等价于当),1()1,0(+∞∈ v 时,03)4(2>+-+v t v 恒成立,即)3(4v v t +->-,而32)3(-≤+-vv ,∴324->t ,又10<<t , 故实数t取值范围为)1,324(-.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高考模拟复习试卷试题模拟卷高三数学高三第二次联考 数学试题文科

高考模拟复习试卷试题模拟卷高三数学高三第二次联考 数学试题(文科)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上.2.回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效. 3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}{}=22,x A x B y y x <=,则A B =( )A.[)0,1B.()0,2C.()1+∞,D.[)0+∞, 2.已知复数z 满足()z 1i i +=-,则z =( ) A.122 C.123.在等比数列{}n a 中,2348a a a =,78a =,则1=a ( ) A.1 B. 1± C.2 D.2±4.如图所示的程序框图的运行结果为( ) A. 1- B.12C.1D.2 5.在区间[]0,4上随机取两个实数,x y ,使得28x y +≤的概率为( )A.14 B.316 C. 916D. 34 6.在平行四边形ABCD 中,4,3,3AB AD DAB π==∠=,点,E F 分别在,BC DC 边上,且2,BE EC DF FC ==,则AE BF ⋅=( )A.83-B.1-C. 2D. 1037.已知圆C 方程为()()22210x y r r -+=>,若p :13r ≤≤;q :圆C 上至多有3个点到直线3+30x -=的距离为1,则p 是q 的( ) A.充分不必要条件 B. 必要不充分条件 C.充要条件 D.既不充分也不必要条件开始结束2016i ?≥ 是否2,1a i ==1i i =+输出a11a a=-(第4题图)FEBDA(第6题图)第二次八校联考文科数学 第 1 页(共6页)8.已知函数()22,0lg ,0x x x f x x x ⎧+⎪=⎨>⎪⎩≤,则函数()()11g x f x =--的零点个数为( )A.1B.2C.3D.49.某空间几何体的三视图如图所示,则该几何体的外接球的表面积是( )A.36πB.52πC. 72πD.100π10.若()()()2cos 2+0f x x ϕϕ=>的图像关于直线3x π=对称,且当ϕ取最小值时,00,2x π⎛⎫∃∈ ⎪⎝⎭,使得()0f x a =,则a 的取值范围是( )A.(]1,2-B. [)2,1--C.()1,1-D.[)2,1-11.已知F 是抛物线24x y =的焦点,P 为抛物线上的动点,且A 的坐标为()0,1-,则PF PA的最小值是( )A.14 B. 122312.已知函数()2()e x f x x ax b =++,当1b <时,函数()f x 在(),2-∞-,()1,+∞上均为增函数,则2a ba +-的取值范围是( ) A .22,3⎛⎤- ⎥⎝⎦B .1,23⎡⎫-⎪⎢⎣⎭C .2,3⎛⎤-∞ ⎥⎝⎦D .2,23⎡⎤-⎢⎥⎣⎦第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分. 13.已知()f x 是定义在R 上的奇函数,当0x >时,()2=log 1f x x -,则2f ⎛ ⎝⎭=.14.若244xy+=,则2x y +的最大值是.15.已知12,l l 分别为双曲线()222210,0x y a b a b-=>>的两条渐近线,且右焦点关于1l 的对称点在2l 上,则双曲线的离心率为.16.数列{}n a 满足1=1a ,()()1=11n n na n a n n ++++,且2=cos 3n n n b a π,记n S 为数列{}n b 的前n 项和,则120S =.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.第二次八校联考文科数学 第 2 页(共6页) 俯视图正视图 侧视图224224第9题图)17.(本小题满分12分)如图,在平面四边形ABCD 中,AB AD ⊥,1AB =,7AC =,23ABC π∠=,3ACD π∠=. (Ⅰ)求sin BAC ∠; (Ⅱ)求DC 的长.18.(本小题满分12分)国内某知名大学有男生14000人,女生10000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间,如下表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是[]0,3.)平均每天运动的时间[)0,0.5 [)0.5,1 [)1,1.5 [)1.5,2 [)2,2.5 []2.5,3人数 2 12 231810x平均每天运动的时间[)0,0.5 [)0.5,1 [)1,1.5 [)1.5,2 [)2,2.5 []2.5,3人数5 12 18103y(Ⅰ)请根据样本估算该校男生平均每天运动的时间(结果精确到);(Ⅱ)若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生 为“非运动达人”.①请根据样本估算该校“运动达人”的数量;②请根据上述表格中的统计数据填写下面22⨯列联表,并通过计算判断能否在犯错 误的概率不超过0.05 运动达人 非运动达人 总 计男 生女 生总 计 参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中.n a b c d =+++参考数据:19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,ABC △是等边三角形,14BC CC ==,D 是11A C 中点.(Ⅰ)求证:1A B ∥平面1B CD ;(Ⅱ)当三棱锥11C B C D -体积最大时,求点B 到平面1B CD 的距离.20. (本小题满分12分)定义:在平面内,点P 到曲线Γ上的点的距离的最小值称为点P 到曲线Γ的距离.在平面直角坐标系xOy 中,已知圆:()22212x y -+=及点()2,0A -,A C D B(第17题图)A B1A1C D 1B (第19题图) 第二次八校联考文科数学 第 3 页(共6页)第二次八校联考文科数学 第 4 页(共6页)动点P 到圆M 的距离与到A 点的距离相等,记P 点的轨迹为曲线W . (Ⅰ)求曲线W 的方程;(Ⅱ)过原点的直线l (l 不与坐标轴重合)与曲线W 交于不同的两点,C D ,点E 在曲线W 上,且CE CD ⊥,直线DE 与x 轴交于点F ,设直线,DE CF 的斜率分别为12,k k ,求12.k k 21.(本小题满分12分)已知函数()()ln 4f x ax x a =--∈R . (Ⅰ)讨论()f x 的单调性;(Ⅱ)当2a =时,若存在区间[]1,,2m n ⎡⎫⊆+∞⎪⎢⎣⎭,使()f x 在[],m n 上的值域是,11k k m n ⎡⎤⎢⎥++⎣⎦,求k 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答题时请用2B 铅笔在答题卡上把所选题目的题号涂黑. 22. (本小题满分10分)41 :几何证明选讲如图,在锐角三角形ABC 中,AB AC =,以AB 为直径的圆O 与边,BC AC 另外的交点分别为,D E ,且DF AC ⊥于.F (Ⅰ)求证:DF 是O ⊙的切线;(Ⅱ)若3CD =,7=5EA ,求AB 的长.23.(本小题满分10分)44 :坐标系与参数方程已知曲线1C 的参数方程为1cos 3sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0απ<≤),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22sin 4πρθ⎛⎫=+ ⎪⎝⎭.(Ⅰ)若极坐标为2,4π⎛⎫ ⎪⎝⎭的点A 在曲线1C 上,求曲线1C 与曲线2C 的交点坐标;(Ⅱ)若点P 的坐标为()1,3-,且曲线1C 与曲线2C 交于,B D 两点,求.PB PD ⋅ 24.(本小题满分10分)选修45:不等式选讲 已知函数()+122f x x x =--. (Ⅰ)求不等式()1f x x -≥的解集;(Ⅱ)若()f x 的最大值是m ,且,,a b c 均为正数,a b c m ++=,求222b c a a b c++的最小值.八校高三第二次联考第二次八校联考文科数学 第 5 页(共6页)第二次八校联考文科数学 第 6 页(共6页)DFC B EO (第22题图) 华师一附中 黄冈中学 黄石二中 荆州中学 襄阳四中 襄阳五中 孝感高中 鄂南高中文科数学参考答案一、选择题答案: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B AADCACBDCA二、填空题: 13.32; 14.2; 15.2; 16.7280 三、解答题:17.(Ⅰ)在ABC ∆中,由余弦定理得:2222cos AC BC BA BC BA B =+-⋅,即260BC BC +-=,解得:2BC =,或3BC =-(舍), ………………3分由正弦定理得:sin 21sin .sin sin 7BC AC BC B BAC BAC B AC =⇒∠==∠………………6分(Ⅱ)由(Ⅰ)有:21cos sin CAD BAC ∠=∠=,327sin 17CAD ∠=-=, 所以27121357sin sin 32D CAD π⎛⎫=∠+=⨯+⨯= ⎪⎝⎭, ………………9分 由正弦定理得:277sin 477.sin sin sin 57DC AC AC CAD DC CAD D D⨯∠=⇒===∠……………12分(其他方法相应给分)18.(Ⅰ)由分层抽样得:男生抽取的人数为14000120=7014000+10000⨯人,女生抽取人数为1207050-=人,故x =5,y =2, ……………2分则该校男生平均每天运动的时间为:0.2520.7512 1.2523 1.7518 2.2510 2.7551.570⨯+⨯+⨯+⨯+⨯+⨯≈, ……………5分故该校男生平均每天运动的时间约为1.5小时; (Ⅱ)①样本中“运动达人”所占比例是201=1206,故估计该校“运动达人”有 ()1140001000040006⨯+=人; ……………8分 ②由表格可知:运动达人 非运动达人总 计 男 生 15 55 70 女 生 5 45 50 总 计20100 120……………9分 故2K 的观测值()2120154555596=2.7433.841.20100507035k ⨯-⨯=≈<⨯⨯⨯……………11分 故在犯错误的概率不超过0.05的前提下不能认为“是否为‘运动达人’与性别有关”. ……………12分19.(Ⅰ)连结1BC ,交1B C 于O ,连DO .在三棱柱111ABC A B C -中,四边形11BB C C 为平行四边形,则1BO OC =,又D 是11A C 中点,∴1DO A B ∥,而DO ⊂平面1B CD ,1A B ⊄平面1B CD ,∴1A B ∥平面1B CD . ……………4分(Ⅱ)设点C 到平面111A B C 的距离是h ,则1111123==33C B CD B C D V S h h -△,而14h CC =≤,故当三棱锥11C B C D -体积最大时,1=4h CC =,即1CC ⊥平面111A B C . ……………6分 由(Ⅰ)知:1BO OC =,所以B 到平面1B CD 的距离与1C 到平面1B CD 的距离相等. ∵1CC ⊥平面111A B C ,1B D ⊂平面111A B C ,∴11CC B D ⊥, ∵ABC △是等边三角形,D 是11A C 中点,∴111AC B D ⊥,又1111=CC AC C ,1CC ⊂平面11AA C C ,11AC ⊂平面11AA C C ,∴1B D ⊥平面11AA C C ,∴1B D CD ⊥,由计算得:1=23,25B D CD =,所以1=215B CD S ∆, ……………9分设1C 到平面1B CD 的距离为h ',由1111=C B C D C B CD V V --得:1231454=3B CD S h h ''⨯⇒=△,所以B 到平面1B CD 的距离是45.……………12分 (其他方法相应给分)20.(Ⅰ)由分析知:点P 在圆内且不为圆心,故2322PA PM AM +=>=, 所以P 点的轨迹为以A 、M 为焦点的椭圆, ……………2分设椭圆方程为()222210x y a b a b +=>>,则22332222a a c c ⎧⎧==⎪⎪⎨⎨=⎪⎪⎩⎩, 所以21b =,故曲线W 的方程为22 1.3x y +=……………5分(Ⅱ)设111122(,)(0),(,)C x y x y E x y ≠,则11(,)D x y --,则直线CD 的斜率为11CD y k x =,又CE CD ⊥,所以直线CE 的斜率是11CE x k y =-,记11xk y -=,设直线CE 的方程为y kx m =+,由题意知0,0k m ≠≠,由2213y kx mx y =+⎧⎪⎨+=⎪⎩得:()222136330k xmkx m +++-=.∴122613mk x x k +=-+,∴121222()213my y k x x m k +=++=+,由题意知,12x x ≠,所以1211121133y y y k x x k x +==-=+,……………9分所以直线DE 的方程为1111()3y y y x x x +=+,令0y =,得12x x =,即1(2,0)F x . 可得121y k x =-.……………11分 所以1213k k =-,即121=.3k k -……………12分 (其他方法相应给分)21.(Ⅰ)函数()f x 的定义域是()0+∞,,()1ax f x x-'=, 当a ≤0时,()0f x '≤,所以()f x 在()0+∞,上为减函数, ……………2分 当a >0时,令()0f x '=,则1x a =,当10x a ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,()f x 为减函数, 当1+x a ⎛⎫∈∞ ⎪⎝⎭,时,()0f x '>,()f x 为增函数, ……………4分 ∴当a ≤0时,()f x 在()0+∞,上为减函数;当a >0时,()f x 在10a ⎛⎫⎪⎝⎭,上为减函数,在1+a ⎛⎫∞ ⎪⎝⎭,上为增函数.……………5分 (Ⅱ)当2a =时,()2ln 4f x x x =--,由(Ⅰ)知:()f x 在1+2⎛⎫∞ ⎪⎝⎭,上为增函数,而[]1,,2m n ⎡⎫⊆+∞⎪⎢⎣⎭,∴()f x 在[],m n 上为增函数,结合()f x 在[],m n 上的值域是,11kk m n ⎡⎤⎢⎥++⎣⎦知:()(),11k k f m f n m n ==++,其中12m n <≤, 则()1k f x x =+在1,2⎡⎫+∞⎪⎢⎣⎭上至少有两个不同的实数根, ……………7分 由()1kf x x =+得()2=221ln 4k x x x x --+-,记()()2=221ln 4x x x x x ϕ--+-,1,2x ⎡⎫∈+∞⎪⎢⎣⎭,则()1=4ln 3x x x x ϕ'---,记()()1=4ln 3F x x x x xϕ'=---,则()()2222213410x x x x F x x x -+-+'==>, ∴()F x 在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,即()x ϕ'在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,而()1=0ϕ',∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'<,当()1,x ∈+∞时,()0x ϕ'>,∴()x ϕ在1,12⎛⎫⎪⎝⎭上为减函数,在()1,+∞上为增函数, ……………10分而13ln 2922ϕ-⎛⎫= ⎪⎝⎭,()1=4ϕ-,当x →+∞时,()x ϕ→+∞,故结合图像得:()13ln 291422k k ϕϕ-⎛⎫<⇒-< ⎪⎝⎭≤≤,∴k 的取值范围是3ln 294,.2-⎛⎤- ⎥⎝⎦……………12分 (其他方法相应给分)22.(Ⅰ)连结,.AD OD 则AD BC ⊥,又AB AC =,∴D 为BC 的中点, ……………2分 而O 为AB 中点,∴OD AC ∥,又DF AC ⊥,∴OD DF ⊥, 而OD 是半径,∴DF 是O ⊙的切线.……………5分(Ⅱ)连DE ,则CED B C ∠=∠=∠,则DCF DEF △△≌,∴CF FE =,…………7分 设CF FE x ==,则229DF x =-,由切割线定理得:2DF FE FA =⋅,即279+5x x x ⎛⎫-= ⎪⎝⎭,解得:1295=52x x =-,(舍),∴ 5.AB AC ==……………10分(其他方法相应给分)23.(Ⅰ)点2,4π⎛⎫ ⎪⎝⎭对应的直角坐标为()1,1, ……………1分由曲线1C 的参数方程知:曲线1C 是过点()1,3-的直线,故曲线1C 的方程为20x y +-=,……………2分而曲线2C 的直角坐标方程为22220x y x y +--=,联立得2222020x y x y x y ⎧+--=⎨+-=⎩,解得:12122002x x y y ==⎧⎧⎨⎨==⎩⎩,,故交点坐标分别为()()2,0,0,2.……………5分 (Ⅱ)由判断知:P 在直线1C 上,将1+cos 3sin x t y t αα=-⎧⎨=+⎩代入方程22220x y x y +--=得:()24cos sin 60t t αα--+=,设点,B D 对应的参数分别为12,t t ,则12,PB t PD t ==,而126t t =,所以1212==6.PB PD t t t t ⋅=⋅……………10分(其他方法相应给分)24.(Ⅰ)131x x x <-⎧⎨--⎩≥,或11311x x x -⎧⎨--⎩≤≤≥,或131x x x >⎧⎨-+-⎩≥,解得:02x ≤≤故不等式的解集为[]02,; ……………5分 (Ⅱ)()3,131,113,1x x f x x x x x -<-⎧⎪=--⎨⎪-+>⎩ ≤≤,显然当1x =时,()f x 有大值,()1 2.m f ==∴2a b c ++=, ……………7分 而()(()2222222222=b c a a b c a b c a b c a bc a b c ⎡⎤⎛⎫⎡⎤++++++++++⎢⎥ ⎪⎢⎥⎣⎦⎢⎥⎝⎭⎣⎦≥ ∴2222b c a a b c a b c ++++=≥,当且仅当==2a b c b c a ab c a b c ⎧⎪⎪⎪++=⎩,即23a b c ===时取等号,故222b c a a b c++的最小值是2.……………10分 (其他方法相应给分)高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高三第二次调研考试试题(文科数学)

高三第二次调研考试试题(文科数学)高三第二次调研考试试题数学(文科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相对应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相对应选项.1.已知集合,集合,表示空集,那么()A. B. C. D.2.命题“存有实数,使”的否定为()A.对任意实数,都有 B.不存有实数,使C.对任意实数,都有 D.存有实数,使3.双曲线的离心率为()A. B. C. D.4.直线与圆的位置关系是()A.相切 B.相交且直线不经过圆心C.相离 D.相交且直线经过圆心5.已知,,若,则等于()A. B. C. D.6.函数的定义域为()A. B. C. D.7.已知等差数列的前项和为,若,,则为()A. B. C. D.8.已知函数的部分图像如图所示,则的值分别为()A. B.C. D.9.已知为两条不同的直线,为两个不同的平面,给出下列4个命题:①若②若③若④若其中真命题的序号为()A.①② B.②③ C.③④ D.①④10.设是正及其内部的点构成的集合,点是的中心,若集合.则集合表示的平面区域是()A.三角形区域 B.四边形区域C.五边形区域 D.六边形区域二、填空题:(本大题共5小题,分为必做题和选做题两部分.每小题5分,满分20分)(一)必做题:第11至13题为必做题,每道试题考生都必须作答.11.复数的虚部为.12.如图所示,程序框图(算法流程图)的输出结果为.13.设变量满足约束条件,则的最大值为.(二)选做题:第14、15题为选做题,考生只选做其中一题,两题全答的,只计前一题的得分。
全国百所名校2022届高三上学期大联考调研试卷(二)文科数学试题

一、单选题二、多选题1. 在中,若,则的形状是( )A .为钝角的三角形B.为直角的直角三角形C .锐角三角形D .为直角的直角三角形2.已知等差数列的前n 项和为,,与的等差中项为2,则的值为( )A .6B.C .或6D .2或63. 已知复数z 满足,则( )A .1B.C.D .54. ( )A.B .1C.D.5. 某种药物呈胶囊形状,该胶囊中间部分为圆柱,左右两端均为半径为的半球.已知该胶囊的体积为,则它的表面积为()A.B.C.D.6. 已知空间三条直线,,.若,,则( )A.与平行B.与相交C.与异面D.与平行、相交、异面都有可能7. 蚊香具有悠久的历史,我国蚊香的发明与古人端午节的习俗有关.如图为某校数学社团用数学软件制作的“蚊香”. 画法如下:在水平直线上取长度为1的线段AB ,作一个等边三角形ABC ,然后以点B 为圆心,AB 为半径逆时针画圆弧交线段CB 的延长线于点D (第一段圆弧),再以点C 为圆心,CD 为半径逆时针画圆弧交线段AC 的延长线于点E ,再以点A 为圆心,AE 为半径逆时针画圆弧……以此类推,当得到的“蚊香”恰好有11段圆弧时,“蚊香”的长度为()A.B.C.D.8. 教室通风的目的是通过空气的流动,排出室内的污浊空气和致病微生物,降低室内二氧化碳和致病微生物的浓度,送进室外的新鲜空气.按照国家标准,教室内空气中二氧化碳最高容许浓度为.经测定,刚下课时,空气中含有的二氧化碳,若开窗通风后教室内二氧化碳的浓度为,且y 随时间t (单位:分钟)的变化规律可以用函数描述,则该教室内的二氧化碳浓度达到国家标准需要的时间t (单位:分钟)的最小整数值为( )(参考数据)A .5B .7C .9D .109. 如图所示,该多面体是一个由6个正方形和8个正三角形围成的十四面体,所有棱长均为1,所有顶点均在球的球面上.关于这个多面体给全国百所名校2022届高三上学期大联考调研试卷(二)文科数学试题全国百所名校2022届高三上学期大联考调研试卷(二)文科数学试题三、填空题出以下结论,其中正确的有()A.平面B.与平面所成的角的余弦值为C.该多面体的体积为D.该多面体的外接球的表面积为10. 用“五点法”画函数(,,)在一个周期内的图象时,列表并填入的部分数据如下表,则下列说法正确的是( )x200A.B .不等式的解集为C.函数的图象关于直线对称D .函数在区间上单调递增11.已知椭圆的左、右两个焦点分别是,,过点且斜率为的直线与椭圆交于,两点,则下列说法中正确的有( )A .当时,的周长为B.若的中点为,则(为坐标原点,与不重合)C .若,则椭圆的离心率的取值范围是D .若的最小值为,则椭圆的离心率12. 已知数列,均为等比数列,则下列结论中一定正确的有( )A.数列是等比数列B .数列是等比数列C .数列是等差数列D .数列是等差数列13. 已知在棱长为1的正方体中,为的中心,为的中点,过作交于点,则三棱锥体积为______.14. 已知函数.给出下列四个结论:①的最小正周期是;②的一条对称轴方程为;③若函数在区间上有5个零点,从小到大依次记为,则;④存在实数a,使得对任意,都存在且,满足.其中所有正确结论的序号是__________.四、解答题15.已知随机变量,则___________.16. 已知函数,其中,.(1)求函数的单调区间;(2)当时,函数恰有两个零点,求a 的取值范围.17.已知数列满足,.(1)求数列的通项公式;(2)设,求数列的前n 项和.18. 已知点,直线,点是上的动点,过点垂直于轴的直线与线段的垂直平分线相交于点.(1)求点的轨迹方程;(2)若,直线与点的轨迹交于两点,试问的轨迹上是否存在两点,使得四点共圆?若存在,求出圆的方程;若不存在,请说明理由.19. 盒中有 4个球,分别标有数字1、1、2、3,从中随机取2个球.(1)求取到2个标有数字1的球的概率;(2)设X 为取出的2个球上的数字之和,求随机变量X 的分布列及数学期望.20. 为实现绿色发展,避免浪费能源,某市政府计划对居民用电采用阶梯收费的办法,为此相关部门在该市随机调查了200位居民的户月均用电量(单位:千瓦时)得到了频率分布直方图,如图:(同一组中的数据用该组区间的中点值作代表,精确到个位)(1)试估计该地区居民的户月均用电量平均值;(2)如果该市计划实施3阶的阶梯电价,使用户在第一档(最低一档),用户在第二档,用户在第三档(最高一档).①试估计第一档与第二档的临界值,第二档与第三档的临界值;②市政府给出的阶梯电价标准是:第一档元/千瓦时,第二档元/千瓦时,第三档元/千瓦时,即:设用户的用电量是千瓦时,电费是元,则,试估计该地区居民的户月均电费平均值.21. 已知棱长为2的正方体中,E ,F 分别是棱,的中点.(1)求多面体的体积;(2)求直线和平面所成角的正弦值.。
2024年高考数学(文科)第二次模拟考试卷及答案解析(全国卷)

2024年高考数学(文科)第二次模拟考试卷及答案解析(全国卷)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}22,U xx x =-≤≤∈∣Z ,集合{1,1,2},{2,0,1,2}A B =-=-,则U ()A B ⋂=ð()A .{1,0,1}-B .∅C .{2,1,0}--D .{}1-【答案】C【分析】本题首先可以根据题意求出A B ⋂,然后根据补集的概念得出结果.【详解】由题意得{}{}{}22,2,1,0,1,2,1,2U xx x A B =-≤≤∈=--⋂=Z ∣,所以,U (){2,1,0}A B =-- ð,故选:C .2.设i 为虚数单位,若复数1i1ia -+为纯虚数,则=a ()A .1-B .1C .0D .2【答案】B【分析】分子分母同乘分母的共轭复数,再根据纯虚数的概念得到答案.【详解】()()()()()1i 1i 11i 1i 1i 1i 1i 22a a a a --+--==-++-,所以102a -=且102a +≠,解得1a =.故选:B3.已知向量()1,0a = ,()4,b m =,若2a b - 不超过3,则m 的取值范围为()A .⎡⎣B .⎡⎣C .[]3,3-D .[]5,5-【答案】B【分析】根据平面向量的坐标表示和几何意义可得249m +≤,解之即可求解.【详解】由题意知,2(2,)a b m -=--,所以23a b -=,得249m +≤,即25m ≤,解得m ≤≤即实数m 的取值范围为[.故选:B4.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .2【答案】D【解析】阅读程序框图,程序运行如下:首先初始化数值:1,100,0t M S ===,然后进入循环体:此时应满足t N ≤,执行循环语句:100,10,1210MS S M M t t =+==-=-=+=;此时应满足t N ≤,执行循环语句:90,1,1310MS S M M t t =+==-==+=;此时满足91S <,可以跳出循环,则输入的正整数N 的最小值为2.故选D.5.若{}n a 是等差数列,n S 表示{}n a 的前n 项和,3890,0a a S +><,则{}n S 中最小的项是()A .4S B .5S C .6S D .7S 【答案】B【分析】根据等差数列的前n 项和公式可得50a <,再结合等差数列的性质判断处6a 的符号,即可得出答案.【详解】因为()19959902a a S a +==<,所以50a <,因为56380a a a a +=+>,所以650a a >->,所以公差650d a a =->,故当5n ≤时,0n a <,当6n ≥时,0n a >,所以当5n =时,n S 取得最小值,即{}n S 中最小的项是5S .故选:B.6.已知函数()f x 的定义域为R ,设()()x g x e f x =.设甲:()f x 是增函数,乙:()g x 是增函数,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】D【分析】利用导数分别求出()f x 与()g x 为增函数的条件并结合充分必要条件进行判断即可求解.【详解】由题意得()f x 的定义域为R ,()()xg x f x =e 的定义域也为R ;充分性:若()f x 是增函数,则()0f x '≥恒成立,()()()()xg x f x f x ='+'e ,因为e 0x >,但()()f x f x +'的正负不能确定,所以()g x 的单调性不确定,故充分性不满足;必要性:若()g x 是增函数,则()()()()0xg x f x f x ='+'≥e恒成立,因为e 0x >,所以()()0f x f x +'≥恒成立,但()f x '的正负不能确定,所以()f x 的单调性不确定,故必要性不满足;所以甲既不是乙的充分条件也不是乙的必要条件,故D 正确.故选:D.7.已知点A 为椭圆M :22143x y +=的一点,1F ,2F 分别为椭圆M 的左,右焦点,12F AF ∠的平分线交y 轴于点10,3B ⎛⎫- ⎪⎝⎭,则12AF F △的面积为()A .12B .22C .1D .2【答案】C【分析】结合光学性质,列出直线AB 方程,即可求解答案.【详解】设点()00,A x y 且不为顶点,因为椭圆方程为22143x y +=,所以过A 的切线方程即直线DE 为00143x x y y ⋅⋅+=,即000334x y x y y =-+,由光学几何性质知,1AB DE k k ⋅=-,所以043AB y k x =,则直线AB 的方程为()000043y y y x x x -=-.令0x =,得0133B y y =-=-,所以01y =.所以1212112AF F S =⨯⨯=△.故选:C8.设0.814a ⎛⎫= ⎪⎝⎭,0.3log 0.2b =,0.3log 0.4c =,则a ,b ,c 的大小关系为()A .a b c >>B .b a c >>C .c a b >>D .b c a>>【答案】D【分析】首先将对数式和指数式与临界值比较,再判断大小关系.【详解】 1.61122a ⎛⎫=< ⎪⎝⎭,即102a <<,0.3log 0.21b =>,即1b >,因为20.40.3<,所以20.30.3log 0.4log 0.31>=,即0.31log 0.42>,且0.30.3log 0.4log 0.31<=,则112c <<,所以b c a >>.故选:D9.已知双曲线222:33C x y m -=的一条渐近线l 与椭圆222:1(0)x y E a b a b+=>>交于A ,B 两点,若12||F F AB =,(12,F F 是椭圆的两个焦点),则E 的离心率为()A 1BC .(,1)-∞D .(,0)-∞【答案】A【分析】由题意求出双曲线的渐近线,则可得260AOF ∠=︒,由已知条件可得四边形12AF BF 为矩形,则22AO OF AF c ===,1AF =,再根据椭圆的定义列方程化简可求出离心率.【详解】由已知2222:13x y C m m-=,则双曲线的一条渐近线:l y =,即260AOF ∠=︒,又12F F AB =,即2OF OA =,且四边形12AF BF 为矩形,所以22AO OF AF c ===,则1AF ==,又根据椭圆定义可知122AF AF c a ++=,所以离心率1ce a ==.故选:A10.已知四棱锥P ABCD -中,侧面PAB ⊥底面ABCD ,PA PB ==ABCD 是边长为12的正方形,S 是四边形ABCD 及其内部的动点,且满足6PS ≤,则动点S 构成的区域面积为()A .B .12πC .24πD .【答案】B【分析】取线段AB 的中点E ,连接PE 、SE ,推导出PE ⊥平面ABCD ,可知点S 的轨迹是以点E为圆心,半径为.【详解】取线段AB 的中点E ,连接PE 、SE ,因为PA PB ==E 为AB 的中点,则PE AB ⊥,因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PE ⊂平面PAB ,所以,PE ⊥平面ABCD ,因为SE ⊂平面ABCD ,则PE SE ⊥,因为四边形ABCD 是边长为12的正方形,则6AE =,所以,PE ===SE ==所以,点S 的轨迹是以点E 为圆心,半径为因此,动点S 构成的区域面积为(21π12π2⨯=.故选:B.11.已知等比数列{}n a 的公比为q =n S 为其前n 项和,且*2128,N n nn n S S T n a +-=∈,则当n T 取得最大值时,对应的n 为()A .2B .3C .4D .5【答案】B【分析】利用等比数列通项公式、前n项和公式及已知得12728)2n n T +=-⨯+,应用基本不等式求最大值,并确定取值条件即可.【详解】由题设11nn a a q a +==,1(1)1n n a q S q -==-所以2128(1n n n n S S T a a +-==127128)(228)(1)(14322n +=-⨯+-≤-⨯=-,27n=,即3n =时取等号,所以当n T 取得最大值时,对应的n 为3.故选:B12.已知函数()()sin f x x ϕ=+,0πϕ<<,若函数()f x 在3π0,4⎡⎫⎪⎢⎣⎭上存在最大值,但不存在最小值,则ϕ的取值范围是()A .π0,2⎛⎤ ⎥⎝⎦B .π,8π2⎛⎤ ⎥⎝⎦C .π3π,24⎡⎤⎢⎥⎣⎦D .π3π,84⎛⎤⎥⎝⎦【答案】D【分析】根据题意分类讨论π4ϕ≥和π4ϕ<两种情况,结合题目中所给区间的开和闭以及三角函数图象相关知识求解答案即可.【详解】若3π04x ≤<,则3π4x ϕϕϕ≤+<+,又因为0πϕ<<,函数()f x 在3π0,4⎡⎫⎪⎢⎣⎭上存在最大值,但不存在最小值,所以当3ππ4ϕ+≥,即π4ϕ≥时,只需满足3π3π42ϕ+≤,此时π3π44ϕ≤≤,当3ππ4ϕ+<,即π4ϕ<时,函数一定存在最大值,要让函数无最小值,则π3ππ242ϕϕ-<+-,此时ππ84ϕ<<,综上,π3π84ϕ<≤,即ϕ的取值范围是π3π,84⎛⎤⎥⎝⎦.故选:D第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 是等差数列,数列{}n b 是等比数列,7943a a +=,且26108b b b =.则3813481a a ab b ++=-.【答案】23【分析】根据等差、等比数列的性质即可求解.【详解】因为数列{}n a 是等差数列,且7943a a +=,所以842,3a =即8,32a =因为数列{}n b 是等比数列,且26108b b b =,所以368b =,即62b =,所以81382486332113a a a ab b b ++==--.故答案为:23.14.已知()f x 为定义在R 上的奇函数,当0x ≥时,()()31f x x a x a =-++,则关于x 的不等式()0f x <的解集.【答案】()(),10,1-∞-⋃【分析】由()00f =求出0a =,由奇函数的性质求出()f x 在R 上的解析式,再令()0f x <,即可求出答案.【详解】当0x ≥时,()()31f x x a x a =-++,因为()f x 为定义在R 上的奇函数,所以()00f a ==,所以当0x ≥时,()3f x x x =-,则当0x <时,0x ->,所以()3f x x x -=-+,因为()f x 为定义在R 上的奇函数,所以()()f x f x -=-,所以当0x <时,()3f x x x =-,所以()3,R f x x x x =-∈,令()()()3110f x x x x x x =-=-+<,解得:01x <<或1x <-,故关于x 的不等式()0f x <的解集为()(),10,1-∞-⋃.故答案为:()(),10,1-∞-⋃.15.已知数列{}n a 满足121n n a a n ++=-,若1n n a a +>对*n ∈N 恒成立,则1a 的取值范围为.【答案】11,22⎛⎫- ⎪⎝⎭【分析】先由条件得到22n n a a +-=,再将问题转化为2132a a a a >⎧⎨>⎩或2221212n n n n a a a a +++>⎧⎨>⎩,从而得解.【详解】法一:由121n n a a n ++=-,得2121n n a a n +++=+,两式相减得22n n a a +-=,则数列{}21n a +,{}2n a 都是以2为公差的单调递增数列.要使1n n a a +>对*n ∈N 恒成立,只需2132a a a a >⎧⎨>⎩,而211a a =-,312a a =+,则1111121a a a a ->⎧⎨+>-⎩,解得11122a -<<.法二:由121n n a a n ++=-,得2121n n a a n +++=+,两式相减得22n n a a +-=,又211a a =-,则()21112121n a a n n a =-+-=--,()21112112n a a n n a +=++-=+,要使1n n a a +>对*n ∈N 恒成立,即2221212n n n n a a a a +++>⎧⎨>⎩,即11112212221n a n a n a n a +-->+⎧⎨+>--⎩,解得11122a -<<.故答案为:11,22⎛⎫- ⎪⎝⎭.【点睛】关键点睛:本题解决的关键是将1n n a a +>恒成立,转化为2132a a a a >⎧⎨>⎩或2221212n n n na a a a +++>⎧⎨>⎩,从而得解.16.已知三棱锥S ABC -的所有顶点都在球O 的表面上,且SA ⊥平面π,,3ABC SA ABC AC M ∠===是边BC 上一动点,直线SM 与平面ABC 所成角的正切值的O 的表面积为.【答案】43π【分析】根据题意,结合线面角的定义求得AM 的最小值,从而确定ABC 的形状,再利用直三棱柱的外接球的性质即可得解.【详解】将三棱锥S ABC -放入直三棱柱11SB C ABC -,则两者外接球相同,取底面11,ABC SB C 的外心为12,O O ,连接12O O ,取其中点为O ,连接1,OA AO ,如图所示,SA SA =⊥ 平面ABC ,则SMA ∠为直线SM 与平面ABC 的所成角,又直线SM 与平面ABC所以tan SA SMA AM ∠==min 3AM =,此时AM BC ⊥,在Rt ABM 中,π,33ABM AM ∠==,AB AC ∴==ABC ∴ 是边长为1223O A AM ∴==,又1122SA OO ==,222221143224OA OO O A ⎛∴=+=+= ⎝⎭则球O 的表面积为434π43π4⨯=.故答案为:43π.【点睛】方法点睛:解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,a =,πsin sin 3a B b A ⎛⎫=+ ⎪⎝⎭.(1)求角A ;(2)作角A 的平分线与BC 交于点D ,且AD =b c +.【答案】(1)π3(2)6【分析】(1)由正弦定理边角互化,化简后利用正切值求角即得;(2)充分利用三角形的角平分线将三角形面积进行分割化简得b c cb +=,再运用余弦定理解方程即得.【详解】(1)因πsin sin 3a B b A ⎛⎫=+ ⎪⎝⎭,由正弦定理可得:1sin sin sin sin 022B A A A B ⎛⎫+-= ⎪ ⎪⎝⎭,即1sin cos sin 022B A A ⎛⎫-= ⎪ ⎪⎝⎭.因(0,π)B ∈,故sin 0B ≠1sin 2A A =,即tan A =因(0,π)A ∈,故π3A =......................................................6分(2)因为AD 为角平分线,所以DAB DAC ABC S S S += ,所以111sin sin sin 222AB AD DAB AC AD DAC AB AC BAC ⋅∠+⋅∠=⋅∠.因π3BAC ∠=,6πDAB DAC ∠=∠=,AD =AB AC AB AC ⋅,即AB AC AB AC +=⋅,所以b c cb +=.....................................................9分又由余弦定理可得:2222π2cos()33a b c bc b c bc =+-=+-,把a =,b c cb +=分别代入化简得:2()3()180b c b c +-+-=,解得:6b c +=或3b c +=-(舍去),所以6b c +=......................................................12分18.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,2021)80i ix x =-=∑(,2021)9000i i y y =-=∑(,201)800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r)niix y x y --∑((≈1.414.【答案】(1)12000;(2)0.94;(3)详见解析【解析】【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20()()iix x yy r --=∑计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【详解】(1)样区野生动物平均数为201111200602020ii y ==⨯=∑,地块数为200,该地区这种野生动物的估计值为2006012000⨯=...................................................4分(2)样本(,)i i x y (i =1,2, (20)的相关系数为20()0.943iix x y y r --=≈∑...................................................9分(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性,由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大,采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计....................................................12分19.(12分)在正方体1AC 中,E 、F 分别为11D C 、11B C 的中点,AC BD P =I ,11A C EF Q =I ,如图.(1)若1A C 交平面EFBD 于点R ,证明:P 、Q 、R 三点共线;(2)线段AC 上是否存在点M ,使得平面11//B D M 平面EFBD ,若存在确定M 的位置,若不存在说明理由.【答案】(1)证明见解析;(2)存在,且14AM AC =.【解析】【分析】(1)先得出PQ 为平面EFBD 与平面11AA C C 的交线,然后说明点R 是平面11AA C C 与平面EFBD 的公共点,即可得出P 、Q 、R 三点共线;(2)设1111B D A C O =I ,过点M 作//OM PQ 交AC 于点M ,然后证明出平面11//B D M 平面EFBD ,再确定出点M 在AC 上的位置即可.【详解】(1)AC BD P =Q I ,AC ⊂平面11AA C C ,BD ⊂平面EFBD ,所以,点P 是平面11AA C C 和平面EFBD 的一个公共点,同理可知,点Q 也是平面11AA C C 和平面EFBD 的公共点,则平面11AA C C 和平面EFBD 的交线为PQ ,1A C 平面EFBD R =,1AC ⊂平面11AA C C ,所以,点R 也是平面11AA C C 和平面EFBD 的公共点,由公理三可知,R PQ ∈,因此,P 、Q 、R 三点共线;...................................................6分(2)如下图所示:设1111B D A C O =I ,过点M 作//OM PQ 交AC 于点M ,下面证明平面11//B D M 平面EFBD .E 、F 分别为11D C 、11B C 的中点,11//B D EF ∴,11B D ⊄Q 平面EFBD ,EF ⊂平面EFBD ,11//B D ∴平面EFBD .又//OM PQ ,OM ⊄平面EFBD ,PQ ⊂平面EFBD ,//OM ∴平面EFBD ,11OM B D O =Q I ,OM 、11B D ⊂平面11B D M ,因此,平面11//B D M 平面EFBD .下面来确定点M 的位置:E 、F 分别为11D C 、11B C 的中点,所以,11//EF B D ,且1EF OC Q =I ,则点Q 为1OC 的中点,易知11//A C AC ,即//OQ PM ,又//OM PQ ,所以,四边形OMPQ 为平行四边形,111111244PM OQ OC A C AC ∴====,四边形ABCD 为正方形,且AC BD P =I ,则P 为AC 的中点,所以,点M 为AP 的中点,1124AM AP AC ∴==,因此,线段AC 上是否存在点M ,且14AM AC =时,平面11//B D M 平面EFBD ...................................................12分20.(12分)已知函数()()2e 211xf x x a x ⎡⎤=-++⎣⎦.(1)若12a =,求曲线()y f x =在点()()0,0f 处的切线;(2)讨论()f x 的单调性;【答案】(1)10x y +-=(2)答案见解析【分析】(1)求导,利用导数的几何意义得到切线方程;(2)求导,对导函数因式分解,分12a >-,12a <-和12a =-三种情况,进行求解函数的单调性.【详解】(1)当12a =时,函数()()2e 21xf x x x =-+,则()01f =,切点坐标为()0,1,()()2e 1x f x x ='-,则曲线()y f x =在点()0,1处的切线斜率为()01f '=-,所求切线方程为()10y x -=--,即10x y +-=.....................................................5分(2)()()2e 211xf x x a x ⎡⎤=-++⎣⎦,函数定义域为R ,()()()()2e 122e 21x x f x x a x a x a x ⎡⎤=+--=-+⎣⎦',①12a >-,()0f x '>解得1x <-或2x a >,()0f x '<解得12x a -<<,所以()f x 在(),1∞--和()2,a ∞+上单调递增,在()1,2a -上单调递减,②12a <-,()0f x '>解得2x a <或1x >-,()0f x '<解得21a x <<-,所以()f x 在(),2a ∞-和()1,∞-+上单调递增,在()2,1a -上单调递减,③12a =-,()0f x '≥恒成立,()f x 在(),∞∞-+上单调递增.综上,当12a >-时,()f x 在(),1∞--和()2,a ∞+上单调递增,在()1,2a -上单调递减;当12a <-时,()f x 在(),2a ∞-和()1,∞-+上单调递增,在()2,1a -上单调递减;当12a =-时,()f x 在(),∞∞-+上单调递增.....................................................12分21.(12分)已知抛物线C :22y px =(0p >)的焦点为F ,点(),0D p ,过F 的直线交C 于A ,B 两点,当A 点的横坐标为1时,点A 到抛物线的焦点F 的距离为2.(1)求抛物线C 的方程;(2)设直线AD ,BD 与C 的另一个交点分别为M ,N ,点P ,Q 分别是AB ,MN 的中点,记直线OP ,OQ 的倾斜角分别为α,β.求()tan αβ-的最大值.【答案】(1)24y x =4【分析】(1)关键抛物线的定义可得22A px +=,求出p 即可求解;(2)设222231241234,,,,,,,4444y y y y A y B y M y N y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,将直线:1AB x my =+112:2x AD x y y -=⋅+和直线BD ,分别联立抛物线方程,利用韦达定理表示121212,,y y y y x x ++,1324,y y y y ,进而可得322y y =、412y y =,由中点坐标公式与斜率公式可得2221OP m k m =+和221OQ mk m =+,则tan tan 22OP OQ k k αβ===,当π0,2β⎛⎫∈ ⎪⎝⎭时tan()αβ-最大,由两角差的正切公式和换元法可得()1tan ()12OQ k k k k αβ-==+,结合基本不等式计算即可求解.【详解】(1)抛物线的准线为2p x =-,由抛物线的定义知,22A px +=,又1A x =,所以2p =,所以抛物线C 的方程为24y x =;.....................................................4分(2)由(1)知,(1,0),(2,0)F D ,设222231241234,,,,,,,4444y y y y A y B y M y N y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则34341212(,),(,)2222x x y y x x y y P Q ++++,设直线:1AB x my =+,由214x my y x =+⎧⎨=⎩可得2440y my --=,2121216160,4,4m y y m y y ∆=+>+==-,则21212111()242x x my my m y y m +=+++=++=+,直线112:2x AD x y y -=⋅+,代入抛物线方程可得()1214280x y y y --⋅-=,211314(2()320,8x y y y -∆=-+>=-,所以322y y =,同理可得412y y =,由斜率公式可得12122121222212OPy y y y mk x x x x m ++===+++,3434121222222343434122()2()221244OQy y y y y y y y m k x x y y x x y y m ++++====+++++,又因为直线OP 、OQ 的倾斜角分别为,αβ,所以tan tan 22OP OQ k k αβ===,若要使tan()αβ-最大,需使αβ-最大,则π0,2β⎛⎫∈ ⎪⎝⎭,设220OP OQ k k k ==>,则()2tan tan 1tan 11tan tan 1242k k k k αβαβαβ--====+++,当且仅当12k k =即2k =时,等号成立,所以()tan αβ-的最大值为4 (12)分【点睛】关键点睛:本题求解过程中,需要熟练运用斜率公式以及类比的思想方法,在得到两条直线的关系后,设220OP OQ k k k ==>,利用换元法,化简式子,求最值是难点,也是关键点,属于难题.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.(10分)已知曲线C的参数方程为2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),直线l 过点()0,1P .(1)求曲线C 的普通方程;(2)若直线l 与曲线C 交于A ,B 两点,且1132PA PB +=,求直线l 的倾斜角.【答案】(1)22143x y +=.(2)π4或3π4.【分析】(1)利用参数方程转普通方程即可求解.(2)写出直线l 的参数方程,参数方程代入22143x y +=,设A ,B 两点所对的参数为12,t t ,利用韦达定理代入1132PA PB +=中,化简即可求解.【详解】(1)由曲线C的参数方程为2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),得cos 2sin xαα⎧=⎪⎪⎨⎪=⎪⎩,22sin cos 1θθ+=,2212x ⎛⎫∴+= ⎪⎝⎭,即22143x y +=(为焦点在x 轴上的椭圆)....................................................4分(2)设直线l 的倾斜角为θ,直线l 过点()0,1P ∴直线l 的参数方程为cos 1sin x t y t θθ=⎧⎨=+⎩(t 为参数),将直线l 的参数方程代入22143x y +=,可得()()22i 14cos 13s n t t θθ+=+,()2222222234123484120cos 12sin sin cos sin sin t t t t t t θθθθθθ⇒++=⇒++++-=()22sin s 8n 30i 8t t θθ∴++-=,设A ,B 两点所对的参数为12,t t ,221221883sin sin s 3in t t t t θθθ∴+=-⋅=-++,曲线C 与y轴交于((0,,两点,()0,1P ∴在曲线C 的内部,12,t t ∴一正一负,1212t t t t ∴+=-,而1132PA PB +=,121232t t t t +∴=⋅,121232t t t t -∴=⋅,2211222212294t t t t t t -⋅+∴=⋅,()222121212944t t t t t t ∴+-⋅=⋅,22222sin sin si 88984334si 3n n θθθθ⎛⎫⎛⎫⎛⎫∴---=- ⎪ ⎪+++⎝⎭⎝⎭⎝⎭解得21sin 2θ=,θ为直线l 的倾斜角,[)0πθ∈,,[]1sin 0,θ∈∴,sin θ∴π4θ∴=或3π4θ=,直线l 的倾斜角为π4或3π4.....................................................10分选修4-5:不等式选讲23.(10分)已知函数()223f x x x =--.(1)求不等式()5f x ≥的解集;(2)设函数()()12g x f x x =+++的最小值为m ,若0,0a b >>且2a b m +=,求证:2242a b +≥.【答案】(1)][(),24,-∞-⋃+∞(2)证明见解析【分析】(1)解绝对值不等式时,一般考虑分类讨论法求解,最后再合并;(2)分类讨论()g x 的单调性,判断其在不同区间上的最小值,最后确定m 的值,利用基本不等式即可证明.【详解】(1)不等式()5f x ≥可化为2235x x --≥或2235x x --≤-,由2235x x --≥,可得2280x x --≥,解得4x ≥或2x ≤-;由2235x x --≤-,可得2220x x -+≤,解得x ∈∅,所以不等式()5f x ≥的解集为][(),24,∞∞--⋃+.....................................................4分(2)由题意,知()()()()123112g x f x x x x x =+++=-++++,当1x ≤-时,()(3)(1)(1)2g x x x x =-+-++2317()24x =--,因()g x 在(,1]-∞-上单调递减,则min ()(1)2g x g =-=;当13x -<<时,()(3)(1)(1)2g x x x x =--++++=233324x ⎛⎫--+ ⎪⎝⎭,因()g x 在3(1,2-上单调递增,在3(,3)2上单调递减,故()g x 在(1,3)-无最小值,但是()2g x >;当3x ≥时,()(3)(1)(1)2g x x x x =-++++211(24x =--,因()g x 在[3,)+∞上单调递增,则min ()(3)6g x g ==.综上,当=1x -时,函数()g x 取得最小值2,即2m =,所以22a b +=,因0,0a b >>,所以()()2222224222a b a b a b ++=+≥=,当且仅当1,12a b ==时等号成立,故2242a b +≥...................................................10分。
高三数学上学期入学调研考试题二文 试题

2021届高三入学调研考试卷文 科 数 学〔二〕考前须知:1.在答题之前,先将本人的姓名、准考证号填写上在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的规定的正确位置。
2.选择题的答题:每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目之答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的答题:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.在在考试完毕之后以后,请将本试题卷和答题卡一并上交。
一、选择题:本大题一一共12小题,每一小题5分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的. 1.集合{}||2M x x =∈≤R ,{}04N x x =∈<<R ,那么()M N =R 〔 〕A .[0,2]B .[2,0)-C .[2,0]-D .(,2][4,)-∞+∞2.设复数1z ,2z 在复平面内对应的点关于实轴对称,且11i z =+,那么12iz z =-〔 〕 A .1i +B .13i 55-+ C .1i 3-+D .1i 22- 3.0.5log 5m =,35.1n -=,0.35.1p =,那么实数,,m n p 的大小关系为〔 〕 A .m p n << B .m n p << C .n m p <<D .n p m <<4.焦点在x 轴上的椭圆22213x y a +=〔0a >〕的离心率为22,那么a =〔 〕A .6B .632+C .6D .325.假设函数()f x 为R 上的奇函数,且当0x ≥时,()xf x e m =+,那么1ln 2f ⎛⎫= ⎪⎝⎭〔 〕 A .1-B .0C .2D .2-6.等差数列{}n a 的前n 项和为n S ,6350S S =-≠,那么93S S =〔 〕 A .18B .13C .13-D .18-7.如图,每一个虚线围成的最小正方形边长都为1,某几何体的三视图如图中实线所示,那么该几何体的体积为〔 〕此卷只装订不密封 级 姓名 准考证号 考场号 座位号A .8πB .9πC .28π3D .32π38.随机从3名老年人,2名中老年和1名青年人中抽取2人参加问卷调查,那么抽取的2人来自不同年龄层次的概率是〔 〕A .15B .415C .45D .11159.将函数()2sin 2f x x =的图象向左平移ϕ〔π04ϕ<<〕个单位长度后得到()g x 的图象,且π312g ⎛⎫= ⎪⎝⎭,那么函数()g x 图象的一个对称中心的坐标是〔 〕A .π,06⎛⎫- ⎪⎝⎭B .π,012⎛⎫- ⎪⎝⎭C .π,012⎛⎫ ⎪⎝⎭D .π,06⎛⎫⎪⎝⎭10.秦九韶算法是我国古代算筹学史上光芒的一笔,它把一元n 次多项式的求值转化为n 个一次式的运算,即使在计算机时代,秦九韶算法仍然是高次多项式求值的最优算法,其算法如下图,假设输入的0a ,1a ,2a ,3a ,4a 分别为0,1,1,3,2-,那么该程序框图输出p 的值是〔 〕A .14-B .2-C .30-D .3211.假设在ABC △中,1BC =,其外接圆圆心O 满足3AO AB AC =+, 那么AB AC ⋅=〔 〕A .12B 22C 32D .112.函数()f x 满足:1()()x f x f x e'+=,且(0)1f =,那么关于x 的方程2[()]()0f x mf x n ++=的以下表达中,正确的个数为〔 〕①12m =-,0n =时,方程有三个不等的实根; ②1m n +=-时,方程必有一根为0;③0n <且1m n +>-时,方程有三个不等实根. A .0个 B .1个C .2个D .3个二、填空题:本大题一一共4小题,每一小题5分. 13.2018年俄罗斯世界杯将至,本地球迷协会统计了协会内180名男性球迷,60名女性球迷在观察场所〔家里、酒吧、球迷〕上的选择,制作了如下图的条形图,用分层抽样的方法从中抽取48名球迷进展调查,那么其中选择在酒吧观赛的女球迷人数为_________人.14.设x ,y 满足约束条件1024y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,那么平面直角坐标系对应的可行域面积为_________.15.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,π3A =,6a =,26b =,那么C =_________.16.在平面直角坐标系中,O 为坐标原点,过双曲线222:C x y a -=〔0a >〕的右顶点P 作射线l 与双曲线C 的两条渐近线分别交于第一象限的点M 和第二象限的点N ,且3PN PM =,OMN △的面积为3S =,那么a =________.三、解答题:本大题一一共6大题,一共70分,解容许写出文字说明,证明过程或者演算步骤.17.〔12分〕数列{}n a 满足11a =,112n n n a a ---=〔2n ≥,n +∈N 〕.〔1〕求数列{}n a 的通项公式;〔2〕设数列2log (1)n n b a =+,求数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和n S .18.〔12分〕如图,在四棱锥S ABCD -中,底面ABCD 是菱形,60BAD ∠=︒,SAB △为等边三角形,G 是线段SB 上的一点,且SD ∥平面GAC .〔1〕求证:G 为SB 的中点;〔2〕假设F 为SC 的中点,连接GA ,GC ,FA ,FG ,平面SAB ⊥平面ABCD ,2AB =,求三棱锥F AGC -的体积.19.〔12分〕从集上买回来的蔬菜仍存有残留农药,食用时需要清洗数次,统计表中的x 表示清洗的次数,y 表示清洗x 次后1千克该蔬菜残留的农药量〔单位:微克〕.〔1〕在如图的坐标系中,描出散点图,并根据散点图判断,y bx a =+与x y me n -=+哪一个适宜作为清洗x 次后1千克该蔬菜残留的农药量的回归方程类型;〔给出判断即可,不必说明理由〕〔2〕根据判断及下面表格中的数据,建立y 关于x 的回归方程;表中ix i eω-=,5115i i ωω==∑.〔3〕对所求的回归方程进展残差分析.附:①线性回归方程y bx a =+中系数计算公式分别为121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-;②22121()1()niii n ii y y R y y ==-=--∑∑,20.95R >说明模拟效果非常好;③10.37e ≈,210.14e ≈,310.05e ≈,410.02e ≈,510.01e≈.20.〔12分〕抛物线2:4C x y =,P ,Q 是抛物线C 上的两点,O 是坐标原点,且OP OQ ⊥.〔1〕假设OP OQ =,求OPQ △的面积;〔2〕设M 是线段PQ 上一点,假设OPM △与OQM △的面积相等,求M 的轨迹方程.21.〔12分〕函数()sin 1f x ax x =--,[0,π]x ∈. 〔1〕假设12a =,求()f x 的最大值; 〔2〕当2πa ≤时,求证:()cos 0f x x +≤.请考生在22、23两题中任选一题答题,假如多做,那么按所做的第一题记分. 22.〔10分〕【选修4-4:坐标系与参数方程】 在平面直角坐标系xOy 中,曲线2cos :3sin x C y αα=⎧⎨=⎩〔α为参数〕,直线:28l x y +=,以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系.〔1〕求曲线C 和直线l 的极坐标方程;〔2〕点P 在直线l 上,射线OP 交曲线C 于点R ,点Q 在射线OP 上,且满足229OR OP OQ =⋅,求点Q 的轨迹的直角坐标方程.23.〔10分〕【选修4-5:不等式选讲】函数()31f x x x =--+,M 为不等式()2f x <的解集. 〔1〕求M ;〔2〕证明:当log a b M ∈时,12222a b a b +--<-.2021届高三入学调研考试卷文 科 数 学〔二〕答 案一、选择题:本大题一一共12小题,每一小题5分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的. 1.【答案】C【解析】[2,2]M =-,集合()0,4N =,(,0][4,)N =-∞+∞R,()[2,0]MN =-R .2.【答案】B【解析】复数1z ,2z 在复平面内的对应点关于实轴对称,11i z =+, 所以21i z =-,∴121i 1i (1i)(12i)13i1i i 12i (12i)(12i)55z z i ++++====-+-----+. 3.【答案】B【解析】0.5log 50m =<,30 5.11n -<=<,0.35.11p =>,所以m n p <<.4.【答案】C【解析】因为22213x y a +=〔0a >〕焦点在x 轴上,即23b =,222c e a a b c ⎧==⎪⎨⎪=+⎩,解得a =.5.【答案】A【解析】因为()f x 为R 上的奇函数,且当0x ≥时,()xf x e m =+, 即(0)0f =,1m =-,∵1ln 02<,即1ln 02->,1ln 21ln 112f e -⎛⎫-=-= ⎪⎝⎭,11ln ln 122f f ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭.6.【答案】D【解析】由635S S =-,可设65S a =-,3S a =,∵{}n a 为等差数列,∴3S ,63S S -,96S S -为等差数列,即a ,6a -,96S S -成等差数列,∴9613S S a -=-,即918S a =-, ∴9318S S =-. 7.【答案】C【解析】该几何体为一个半圆锥和一个圆柱组合而成,半圆锥体积为21114π22π233V =⋅⋅⋅=,圆柱体积为22π228πV =⋅⋅=,∴该几何体的体积为1228π3V V +=. 8.【答案】D【解析】记3名老年人,2名中老年和1名青年人分别为1A ,2A ,3A ,1B ,2B ,C ,该随机试验的所有可能结果为12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,1(,)A C ,23(,)A A ,21(,)A B ,22(,)A B ,2(,)A C ,31(,)A B ,32(,)A B ,3(,)A C ,12(,)B B ,1(,)B C ,2(,)B C 一共15种,其中来自不同年龄层的有11种,故古典概型的概率为1115. 9.【答案】B【解析】将函数()2sin 2f x x =的图象向左平移ϕ个单位得到()()sin 22g x x ϕ=+,ππ2sin 221212g ϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭又π04ϕ<<,解得π12ϕ=,即π()2sin 26g x x ⎛⎫=+ ⎪⎝⎭, 又πππ2sin 2012126g ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,∴π,012⎛⎫-⎪⎝⎭是()g x 图象的一个对称中心. 10.【答案】B【解析】根据图中程序框图可知:234()032f x x x x x =+++-,当2x =时,图中的计算是当2x =时,多项式234()032f x x x x x =+++-的值,∴(2)2p f ==-.11.【答案】A【解析】取BC 中点为D ,根据32AO AB AC AD =+=,即O 为ABC △重心,另外O 为ABC △的外接圆圆心,即ABC △为等边三角形,1cos 602AB AC AB AC ⋅=⋅︒=.12.【答案】D【解析】1()()x f x f x e '+=,得(())1x e f x '=,即()xe f x x c =+,()xx c f x e+=,由(0)1f =,得1c =,()x xf x e-'=,()f x 在(,0)-∞上单调递增,在(0,)+∞上单调递减,且(1)0f -=,大致草图如下图,12m =-,0n =,有3个不等实根,①正确;1m n +=-时,()1f x =,即0x =恒满足方程,②正确; 0n <且1m n +>-时,方程有三个不等实根,③正确,所以正确的个数为3个.二、填空题:本大题一一共4小题,每一小题5分.13.【答案】4【解析】总球迷是18060240+=人,家里的女性球迷是12025%30⨯=人,球迷女性8012.5%10⨯=人,所以在酒吧观赛的女球迷是60301020--=人, 抽样中,选择在酒吧观赛的女球迷人数为20484240⨯=人. 14.【答案】4912【解析】画出可行域如下图,那么可行域对应的面积为ABC △,44,33A ⎛⎫-⎪⎝⎭,5,12B ⎛⎫ ⎪⎝⎭,()1,1C -,那么1774922312ABC S =⨯⨯=△.15.【答案】5π12【解析】在ABC △中,∵π3A =,6a =,6b =,由正弦定理sin sin a b A B=,得2sin 2B =a b >,得π4B =,所以5π12C =.16.【答案】3【解析】由等轴双曲线可设11(,)M x x ,22(,)N x x -,10x >,20x <,由3PN PM =,得2211(,)3(,)x a x x a x --=-,整理得213()x a x a -=-, 解得13a x =,213x x =-,12122()32OMN S x x =⋅-=△,解得11x =,即3a =.三、解答题:本大题一一共6大题,一共70分,解容许写出文字说明,证明过程或者演算步骤.17.【答案】〔1〕21nn a =-;〔2〕1n nS n =+. 【解析】〔1〕由112n n n a a ---=,∴11223211()()()()n n n n n n n a a a a a a a a a a -----=-+-+-++-+,∴12321222221n n n n a ---=++++++,∴1(1)1(12)21112n n n n a q a q -⋅-===---. 〔2〕2log (1)n n b a n =+=,11111(1)1n n b b n n n n +==-⋅++, ∴1111111111122334111n nS n n n n =-+-+-++-=-=+++. 18.【答案】〔1〕证明见解析;〔2〕14F AGC V -=. 【解析】〔1〕证明:如图,连接BD 交AC 于E 点,那么E 为BD 的中点,连接GE ,∵SD ∥平面GAC ,平面SDB平面GAC GE =,SD ⊂平面SBD ,∴SD GE ∥,而E 为BD 的中点,∴G 为SB 的中点.〔2〕∵F ,G 分别为SC ,SB 的中点, ∴1111122448F AGC S AGC C AGS C ABS S ABC S ABCD V V V V V V ------=====, 取AB 的中点H ,连接SH ,∵SAB △为等边三角形,∴SH AB ⊥, 又平面SAB ⊥平面ABCD ,平面SAB 平面ABCD AB =,SH ⊂平面SAB ,∴SH ⊥平面ABCD ,而3SH =,菱形ABCD 的面积为1222sin 60232ABCD S =⋅⋅⋅︒=,∴11233233S ABCD ABCD V S SH -=⋅⋅=⋅⋅=,∴1184F AGC S ABCD V V --==.19.【答案】〔1〕见解析;〔2〕100.8xy e -=⨯+;〔3〕拟合效果非常好.【解析】〔1〕散点图如图,用xy men -=+作为清洗x 次后1千克该蔬菜残留的农药量的回归方程类型.〔2〕由题知51521()()0.9100.09()iii ii y y m ωωωω==--===-∑∑,2100.120.8n y m ω=-=-⨯=, 故所求的回归方程为100.8xy e -=⨯+.〔3〕列表如下:所以521()0.19iii y y =-=∑,521()9.1i i y y =-=∑,20.1910.9799.1R =-≈, 所以回归模拟的拟合效果非常好. 20.【答案】〔1〕16OPQ S =△;〔2〕2142y x =+. 【解析】设11(,)P x y ,22(,)Q x y , 〔1〕因为OP OQ =,又由抛物线的对称性可知P ,Q 关于y 轴对称,所以21x x =-,21y y =,因为OP OQ ⊥,所以0OP OQ ⋅=,故12120x x y y +=,那么22110x y -+=, 又2114x y =,解得14y =或者10y =〔舍〕,所以14x =±,于是OPQ △的面积为1112162OPQ S x y ==△. 〔2〕直线PQ 的斜率存在,设直线PQ 的方程为y kx m =+, 代入24x y =,得2440x kx m --=,216160Δk m =+>, 且124x x k +=,124x x m =-,因为OP OQ ⊥,所以12120OP OQ x x y y ⋅=+=,故221212016x x x x +=,那么240m m -+=,所以4m =或者0m =〔舍〕, 因为OPM △与OQM △的面积相等,所以M 为PQ 的中点,那么M 点的横坐标为12022x x x k +==,纵坐标为2000442x y kx =+=+, 故M 点的轨迹方程为2142y x =+.21.【答案】〔1〕π12-;〔2〕证明见解析. 【解析】〔1〕当12a =时,1()cos 2f x x '=-, 由()0f x '=,得π3x =,所以π0,3x ⎡⎫∈⎪⎢⎣⎭时,()0f x '<;π,π3x ⎛⎤∈ ⎥⎝⎦时,()0f x '>, 因此()f x 的单调递减区间为π0,3⎡⎫⎪⎢⎣⎭,单调递增区间为π,π3⎛⎤⎥⎝⎦, ∴()f x 的最大值为{}ππmax (0),(π)max 1,1122f f ⎧⎫=--=-⎨⎬⎩⎭. 〔2〕证明:先证2sin cos 10πx x x -+-≤, 令2()sin cos 1πg x x x x =-+-,那么22π()cos sin )ππ4g x x x x '=--=+,由π)4y x =+,[0,π]x ∈与2πy =的图象易知,存在0[0,π]x ∈,使得0()0g x '=,故0(0,)x x ∈时,()0g x '<;0(,π)x x ∈时,()0g x '>, 所以()g x 的单调递减区间为0(0,)x ,单调递增区间为0(,π)x , 所以()g x 的最大值为max{(0),(π)}g g ,而(0)0g =,(π)0g =,又由2πa ≤,0x ≥,所以2sin 1cos sin 1cos 0πax x x x x x --+≤--+≤, 当且仅当2πa =,0x =或者π,取“=〞成立,即()cos 0f x x +≤. 22.【答案】〔1〕2222cos sin 149ρθρθ+=,2cos sin 8ρθρθ+=;〔2〕22294x y x y +=+.【解析】〔1〕曲线C 的极坐标方程为2222cos sin 149ρθρθ+=,直线l 的极坐标方程为2cos sin 8ρθρθ+=. 〔2〕设点Q 的极坐标为(,)Q ρθ,易知222369cos 4sin OR θθ=+,82cos sin OP θθ=+, 故代入229OR OP OQ =⋅,得2219cos 4sin 2cos sin ρθθθθ=++, 即2222cos sin 9cos 4sin ρθρθρθθ+=+, 所以点Q 的轨迹的直角坐标方程为22294x y x y +=+. 23.【答案】〔1〕(0,)M =+∞;〔2〕证明见解析. 【解析】〔1〕当3x ≥时,()42f x =-<成立;当13x -<<时,()31222f x x x x =---=-<,∴03x <<; 当1x ≤-时,()42f x =>,不成立. 综上,(0,)M =+∞.〔2〕证明:根据题意,得log 0a b >,∴11a b >⎧⎨>⎩或者0101a b <<⎧⎨<<⎩, 要证12222a b a b +--<-成立, 即证144224422aba ba b a b ++-++-⋅<+-⋅成立,即证144440a b a b +-+--<成立,111144444(14)4(41)(41)(44)a b a b a b b b a +----+--=-+-=--, 当11a b >⎧⎨>⎩时,1(41)0b -->,(44)0a-<; 当0101a b <<⎧⎨<<⎩时,1(41)0b --<,(44)0a->,故1(41)(44)0b a ---<,所以144440a b a b +-+--<成立,即12222a b a b +--<-成立.励志赠言经典语录精选句;挥动**,放飞梦想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学模拟试卷复习试题第一学期高三调研测试(二)数学(文科)本试卷共4页,24小题,满分150分.考试用时120分钟. 注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{0,1,2}M =,2{|320}N x x x =-+≤,则M N =( )A .{1}B .{2}C .{0,1}D .{1,2}2.若复数()ai a a z --=2为纯虚数,则实数a 等于( ) A .0 B .1 C .1- D .0或13.已知平面向量a ()1,2=-,b ()4,m =,且⊥a b ,则向量53-a b =( ) A. (7,16)-- B.(7,34)-- C.(7,4)-- D.(7,14)- 4.已知命题p :对任意R x ∈,总有0≥x ;命题q :2=x 是方程02=+x 的根.则下列命题为真命题的是( )A .p q ∧⌝B .p q ⌝∧C .p q ⌝∧⌝D .q p ∧5.如果执行如图1的程序框图,那么输出的值是( )A .B .1-C .21 D .26.当双曲线C 不是等轴双曲线时,我们把以双曲线C 的实轴、虚轴的端点作为顶点的椭圆称为双曲线C 的“伴生椭圆”.则离心率为3的双曲线的“伴生椭圆”的离心率为( ) A .12B .6C .3D .227.随机地从区间] 1 , 0 [任取两数,分别记为x 、y ,则122≤+y x 的概率=P ( ) A .41 B .21C .4π D .41π- 8.用与球心距离为2的平面去截球,所得的截面面积为π,则球的表面积为( )A .320πB .π20C .π12D .100π9.如图2,网格纸是边长为1的小正方形,在其上用粗线画出了某多面体的三视图,则该多面 体的体积为( ) A. 4 B. 8 C. 16 D. 2010.已知数列{}n a 的前n 项和为n S ,且()413n n S a =-,则满足不等式162n n a +>的最小正整数n 的值为( )A .12B .14C .16D .1711.已知函数)cos()(ϕ+ω=x A x f 的图象如图3所示,32)2(-=πf ,则=)0(f ( )A .32B .32-C .21D .21-12.已知11,1()ln ,01x f x x x x ⎧-≥⎪=⎨⎪<<⎩,若函数()()g x f x kx k =-+只有一个零点,则k 的取值范围是( ) A .(,1)(1,)-∞-+∞ B .(1,1)- C .11(,][0,]22-∞- D .(,1][0,1]-∞-第Ⅱ卷本卷包括必考题和选考题两部分。
第1321题为必考题,每个试题考生都必须作答。
第2224题为选考题,考生根据要求作答。
二、填空题(本大题共4小题,每小题5分,共20分)13.设等差数列{}n a 的前n 项和为n S ,已知10100S =,则29a a +=_________.14.已知点P 为抛物线C :2x y =上的一点,F 为抛物线C 的焦点,若|PF|=1,则点P 的纵坐标为 ______________.15.已知奇函数)(x f 在定义域)3,3(-上是减函数,且满足0)1()12(<+-f x f ,则x 的取值范围为___________.16.在如图4所示的坐标平面的可行域内(阴影部分且包括边界),若目标函数z x ay =+取得最小值的最 优解有无数个,则yx a-的最大值是____ . 三、解答题(本大题共6个小题, 共70分.解答应写出必要的文字说明,证明过程或演算步骤.)17.(本小题满分12分)在ABC ∆中,角C B A ,,所对的三边分别为c b a ,,,3B π=,且33, 2.b a ==(1)求sin 2A ; (2)求ABC ∆的面积.18.(本小题满分12分)如图5,三棱柱111ABC A B C -中,底面是边长为2的正三角形,侧棱垂直于底面,侧棱长为2,D 为11A C 中点.(1)求证:1BC ∥平面1AB D ; (2)求三棱锥1B AB D -的体积.19.(本小题满分12分)为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名小学六年级学生进行了问卷调查,并得到如下列联表.平均每天喝500ml 以上为“常喝”,体重超过50kg 为“肥胖”.常喝不常喝 合计肥胖 2 不肥胖 18合计30已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为415.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?请说明你的理由;(3)已知常喝碳酸饮料且肥胖的学生中恰有2名女生,现从常喝碳酸饮料且肥胖的学生中随机抽取2人参加一个电视节目,求恰好抽到一名男生和一名女生的概率. 参考数据:)(2k K P ≥ 0.1000.050 0.025 0.010 0.005 0.001 k2.7063.8415.0246.6357.87910.828))()()(()(2d d c a d c b a bc ad n K ++++-=,其中d c b a n +++=为样本容量.20.(本小题满分12分)已知椭圆:C 22221(0)x y a b a b+=>>的焦距为22,且过点31(,)22A .(1)求椭圆C 的方程;(2)已知:1l y kx =-,是否存在k 使得点A 关于l 的对称点B (不同于点A )在椭圆C 上?若存在求出此时直线l 的方程,若不存在说明理由. 21.(本小题满分12分)已知函数()ln a xf x x x-=+,其中a 为常数,且0>a . (1)若曲线()y f x =在点(1,(1)f )处的切线与直线121+=x y 垂直,求a 的值;(2)求函数()f x 在区间[1,2]上的最小值.请考生从第22、23、24三题中任选一题作答。
注意:只能做所选定的题目。
作答时请用2B 铅笔将所选题号后的方框涂黑,并在括号内写上该题号。
22.(本小题满分10分)选修41:几何证明选讲如图6,圆O 的直径AB =8,圆周上过点C 的切线与BA 的延长线交于点E ,过点B 作AC 的平行线交EC 的延长线于点P .(1)求证:PE CE BE ⋅=2; (2)若EC =25,求PB 的长.23.(本小题满分10分)选修44:坐标系与参数方程在直角坐标系xoy 中, 直线l 经过点P(2,1),且倾斜角为45°,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系, 曲线C 的极坐标方程是2sin 2cos 0ρθθ-=,直线l 与曲线C 在第一、四象限分别交于A 、B 两点.(1)写出直线l 的参数方程,曲线C 的普通方程; (2)求:AP BP 的值.24.(本小题满分10分)选修45:不等式选讲已知函数212)(--+=x x x f . (1)解不等式0)(≥x f ;(2)若存在实数x ,使得a x x f +≤)(,求实数a 的取值范围.第一学期高三调研测试(二) 文科数学参考答案与评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DBAACDCBCDAD二、填空题 13..4315.)2,0(16.25三、解答题17.解:(1) 由,sin sin B b A a =得31sin sin =⋅=b B a A .…………………… 2分因为a b <,所以A B <,则cos 3A =…………………… 4分sin 22sin cos 9A A A ==. …………………… 6分 (2)由B ac c a b cos 2222-+=,c c 24272-+=,…………………… 8分解得,621+=c 1c =-…………………… 10分故1sin 22ABC S a c B ∆=⋅⋅⋅=. ……………………12分法二:因为a b <,所以A B <,则cos A =,sin 32cos cos 32sin )32sin()sin(sin A A A B A C ππππ-=-=--= 6162312132223sin +=⋅+⋅=C ,…………………… 8分 由sin sin c aC A=,得,621+=c …………………… 10分1sin 22ABC S a c B ∆∴=⋅⋅⋅=……………………12分 18.解:(Ⅰ)如图,连结A1B 与AB1交于E ,连结DE ,则E 为A1B 的中点,………… 1分∴BC1∥DE , …………………… 2分DE ⊂平面1AB D ,1BC ⊄平面1AB D , …………………… 3分∴1BC ∥平面1AB D .……………………4分(Ⅱ)过点D 作11DH A B ⊥,垂足为H ,……………………5分 ∵三棱柱111ABC A B C -的侧棱垂直于底面 ,∴1111AA A B C ⊥平面, …………………… 6分1AA DH ⊥,1111AA A B A =, ……………………7分∴DH ⊥平面11ABB A .DH 为三棱锥1D ABB -的高 ……………………8分11122ABB S AB BB ∆== ……………………10分1sin32DH A D π==. ……………………11分∵111326B AB D D ABB V V --==⨯=. ……………………12分 19.解:(1)设全部30人中的肥胖学生共n 名,则4,83015n n =∴=,∴常喝碳酸饮料且肥胖的学生有6名.……………………2分 列联表如下:……………………4分(2)∵()2230618248.5231020228K ⨯-⨯=≈⨯⨯⨯, ……………………6分又8.5237.879>……………………7分∴有99.5%的把握认为肥胖与常喝碳酸饮料有关.……………………8分(3)设常喝碳酸饮料且肥胖的4名男生为,,,A B C D ,2名女生为,e f ,则从中随机抽取2名的情形有,,,,AB AC AD Ae Af ;,,,BC BD Be Bf ;,,CD Ce Cf ;,De Df ;ef 共15种,……………………10分其中一名男生一名女生的情形共有8种,……………………11分 ∴正好抽到一名男生和一名女生的概率为815.……………………12分20.解:(1)由已知,焦距为2c=分 又2222a b c -==……………………2分点31,22A ⎛⎫⎪⎝⎭在椭圆C :22221(0)x y a b a b +=>>上,2291144a b ∴+=………………3分故,所求椭圆的方程为2213x y +=…………………… 4分(2)当k=0时,直线l :y=1,点35(,)22B -不在椭圆上; ……………………5分当k≠0时,可设直线131:()22AB y x k =--+,即2230x ky k +--=………… 6分代入2213x y +=整理得222(412)4(3)(3)120k y k k y k +-+++-=……………………7分因为1224(3)412k k y y k ++=+,所以21212224(3)12(3)(3)()3412412k k k x x k ky ky k k k +++=+-+=+-=++若A,B 关于直线l 对称,则其中点226(3)2(3)(,)412412k k k k k ++++在直线y=kx1上 ……… 9分 所以222(3)6(3)1412412k k k k k k ++=-++,解得k=1因为此时点31,22A ⎛⎫⎪⎝⎭在直线l 上,………11分 所以对称点B 与点A 重合,不合题意,所以不存在k 满足条件.…………………12分 21.解:(1)2221()1'()x a x a x a f x x x x x x----=+=-=(0x >)……………………2分 因为曲线()y f x =在点(1,(1)f )处的切线与直线121+=x y 垂直,所以'(1)2f =-,……………………3分 即12, 3.a a -=-=解得…………………… 4分 (2)当01a <≤时,'()0f x >在(1,2)上恒成立, 这时()f x 在[1,2]上为增函数……………………5分min ()(1)1f x f a ∴==-……………………6分当12a <<时,由'()0f x =得,(1,2)x a =∈……………………7分 对于(1,)x a ∈有'()0,f x <()f x 在[1,a]上为减函数,对于(,2)x a ∈有'()0,f x >()f x 在[a ,2]上为增函数,……………………8分min ()()ln f x f a a ∴==……………………9分当2a ≥时,'()0f x <在(1,2)上恒成立,……………………10分 这时()f x 在[1,2]上为减函数,min ()(2)ln 212af x f ∴==+-.…………………… 11分 综上所述min1,01()ln ,12ln 21,22a a f x a a aa ⎧⎪-<≤⎪=<<⎨⎪⎪+-≥⎩…………………… 12分 22.解:(1)证明: P ACE BP AC ∠=∠∴,//…………………1分P CBE CBE ACE O CE ∠=∠∴∠=∠∴,的切线,为圆 ………………… 2分BECCEB BEP ∆∴∠=∠, 又PEB …………………… 3分BECEPE BE =∴,PE CE BE ⋅=2即:…………………4分 (2)∵EC 为圆O 的切线,EC =AB =8,……………………5分∴EC2=EA·EB =EA(EA +AB),∴EA =2.…………………6分 ∵∠ECA =∠ABC ,∴△ACE ∽△CBE ,∴AC BC =EAEC.………………7分 ∵AB 为圆O 的直径,∴∠ACB =90°,∴AC2+BC2=AB2.………………8分 ∴AC=3,……………………9分 由AC BP =EAEB,可得PB.………………… 10分23.解:(Ⅰ)212x y ⎧=⎪⎪⎨⎪=+⎪⎩t 为参数,……………2分 22sin 2cos 0ρθρθ-=,即22y x =.……………4分(Ⅱ)2122⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,……………5分 得26,t=t ∴=……………7分由参数的意义知AP BP ==……………9分 ∴:AP BP =1……………10分24. (Ⅰ)(去掉绝对值符号,会分三种情况给1分)……………1分①当12x ≤-时,1223x x x --+≥⇒≤-,所以3x ≤-……………2分 ② 当102x -<<时,12123x x x ++≥⇒≥,所以为φ……………3分 ③ 当0x ≥时,121x x +≥⇒≥,所以1x ≥…………4分 综上所述不等式的解集为(][),31,-∞-⋃+∞……………5分(Ⅱ)由已知可得2122x x a +-≤+,即1122ax x +-≤+, ………………6分 由绝对值的几何意义,111222x x -≤+-≤, ………………8分存在实数x,使得不等式成立,只需1122a-≤+,………………9分解得3a≥-………………10分高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2mn (11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.(2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。