磁力轴承

合集下载

磁悬浮轴承

磁悬浮轴承

主动磁轴承技术课程作业姓名:程兆亮学号:201012608磁悬浮轴承原理与应用摘要:磁悬浮轴承也称电磁轴承或磁力轴承,是利用磁场力将轴承无机械摩擦、无润滑地悬浮在空间的一种新型高性能轴承。

由于它具有一系列独特的优点, 近年来对其研究颇为重视。

又因为磁悬浮轴承技术涉及多个领域, 多项技术的交织在其中表现突出, 研究和开发利用的难度较大, 对其研究力度正在进一步加强。

1 磁悬浮轴承概述利用磁力使物体处于无接触悬浮状态的设想由来已久, 但实现起来并不容易。

早在1842 年, Earn show 就证明: 单靠永久磁体是不能将一个铁磁体在所有6 个自由度上都保持在自由稳定的悬浮状态的。

然而, 真正意义上的磁悬浮研究是从本世纪初的利用电磁相吸原理的悬浮车辆研究开始的。

1937 年, Kenper 申请了第一个磁悬浮技术专利, 他认为要使铁磁体实现稳定的磁悬浮, 必须根据物体的悬浮状态不断的调节磁场力的大小, 即采用可控电磁铁才能实现,这一思想成为以后开展磁悬浮列车和磁悬浮轴承研究的主导思想。

伴随着现代控制理论和电子技术的飞跃发展, 本世纪60 年代中期对磁悬浮技术的研究跃上了一个新台阶。

英国、日本、德国都相继开展了对磁悬浮列车的研究。

磁悬浮轴承的研究是磁悬浮技术发展并向应用方向转化的一个重要实例。

据有关资料记载: 1969 年, 法国军部科研实验室(LRBA ) 开始对磁悬浮轴承的研究; 1972 年,将第一个磁悬浮轴承用于卫星导向轮的支撑上, 从而揭开了磁悬浮轴承发展的序幕。

此后, 磁悬浮轴承很快被应用到国防、航天等各个领域。

美国在1983 年11 月搭载于航天飞机上的欧洲空间试验仓里采用了磁悬浮轴承真空泵; 日本将磁悬浮轴承列为80 年代新的加工技术之一, 1984 年, S2M 公司与日本精工电子工业公司联合成立了日本电磁轴承公司, 在日本生产、销售涡轮分子泵和机床电磁主轴等。

经过30 多年的发展, 磁悬浮轴承在国外的应用场合进一步扩大, 从应用角度看,在高速旋转和相关高精度的应用场合磁悬浮轴承具有极大的优势并已逐渐成为应用研究的主流。

磁悬浮轴承原理

磁悬浮轴承原理

磁悬浮轴承原理磁悬浮轴承是一种高精度、高速度、无接触的轴承,具有很多优点,如低摩擦、低振动、长寿命等。

它主要由控制系统和轴承系统两部分组成,其中轴承系统是实现磁悬浮的关键部分。

本文将详细介绍磁悬浮轴承的原理及其构造。

一、磁悬浮原理1.1 磁力平衡原理磁悬浮轴承利用电磁力来支撑转子,使其不接触定子。

当转子偏离中心位置时,控制系统会根据传感器信号调整电流大小和方向,使得电磁力与重力平衡。

这种平衡状态下,转子可以在空气中自由旋转。

1.2 磁场产生原理为了实现磁力平衡,需要在定子和转子之间产生一个稳定的电磁场。

常用的方法是采用永久磁体和电枢线圈相互作用产生的永久磁场和交变电流产生的交变磁场叠加在一起形成稳定的磁场。

这种方法被称为永磁电磁混合悬浮。

1.3 磁悬浮轴承的分类根据磁场的产生方式,磁悬浮轴承可分为永磁电磁混合悬浮、全电磁悬浮和超导磁悬浮三种。

其中,永磁电磁混合悬浮是最常用的一种。

二、永磁电磁混合悬浮原理2.1 永久磁体产生稳定场在永久磁体的作用下,定子上形成一个稳定的永久磁场。

这个稳定的永久磁场可以提供一个方向和大小不变的参考系,使得转子在旋转时保持相对位置不变。

2.2 交变电流产生控制力在转子上装有线圈,当外加交变电流时,在线圈周围形成一个交变的电流场。

由于转子在这个交变电流场中运动,会感受到一个与线圈中电流方向相反的控制力。

通过调整交变电流方向和大小,可以实现对转子位置和运动状态的精确控制。

2.3 稳定性分析在理想情况下,永磁电磁混合悬浮可以实现完美的平衡和控制。

但实际上,由于永久磁体和线圈之间存在磁场耦合和温度漂移等因素,会导致系统的稳定性变差。

因此,在设计和制造过程中需要考虑这些因素,并采取相应的措施来提高系统的稳定性和可靠性。

三、磁悬浮轴承结构3.1 定子结构定子是支撑转子并产生稳定磁场的部件。

它通常由铜线圈、铁芯和永久磁体组成。

铜线圈通过外部电源供电,产生交变电流场;铁芯起到传导磁场和支撑转子的作用;永久磁体产生一个稳定的永久磁场。

磁悬浮轴承原理图

磁悬浮轴承原理图

磁悬浮轴承原理图磁悬浮轴承是一种利用磁力悬浮支撑旋转机械轴的轴承,它不需要接触式的机械支撑,能够实现非接触式的旋转支撑,因此具有无磨损、无摩擦、无振动、无噪音、无润滑等优点,被广泛应用于高速旋转机械领域。

磁悬浮轴承的原理图如下:(图1,磁悬浮轴承原理图)。

磁悬浮轴承由上、下磁悬浮子系统和控制系统组成。

上磁悬浮子系统包括定子和励磁系统,下磁悬浮子系统包括转子和传感器系统。

定子是由一组电磁铁组成的,这些电磁铁被固定在机械设备的外部。

当电流通过这些电磁铁时,它们会产生磁场,这个磁场会与转子上的磁体相互作用,从而使转子悬浮在定子上并保持旋转。

励磁系统是用来提供电流给定子上的电磁铁的系统。

它通常由功率放大器、传感器和控制器组成。

传感器用来监测转子的位置和速度,控制器根据传感器的反馈信号来调节功率放大器输出的电流,以维持转子的稳定悬浮。

转子是由一组永磁体组成的,这些永磁体被固定在机械设备的内部。

当定子上的电磁铁产生磁场时,它们会与转子上的永磁体相互作用,从而使转子悬浮在定子上并保持旋转。

传感器系统用来监测转子的位置和速度,它通常由位移传感器和速度传感器组成。

位移传感器用来监测转子相对于定子的位置,速度传感器用来监测转子的旋转速度。

传感器系统将监测到的数据反馈给控制系统,控制系统根据这些数据来调节励磁系统的输出,从而维持转子的稳定悬浮。

控制系统是用来控制励磁系统的系统,它通常由控制器、传感器和功率放大器组成。

控制器根据传感器系统反馈的数据来调节功率放大器的输出,以维持转子的稳定悬浮。

总的来说,磁悬浮轴承利用电磁力实现了旋转机械轴的非接触式支撑,它由上、下磁悬浮子系统和控制系统组成,通过励磁系统和传感器系统来实现转子的稳定悬浮。

磁悬浮轴承具有无磨损、无摩擦、无振动、无噪音、无润滑等优点,被广泛应用于高速旋转机械领域。

磁悬浮轴承简介

磁悬浮轴承简介

磁力轴承简介磁悬浮轴承又称磁力轴承,是目前世界上公认的高新技术之一。

陆地上广泛采用的是主动控制磁悬浮轴承(简称主动磁轴承-AMB),它是利用可控磁场力提供无接触支承、使转子稳定悬浮于空间且其动力学性能可由控制系统调节的一种新型高性能轴承,是一种典型的机电一体化产品。

其技术涉及到机械学、电磁学、电子学、材料学、转子动力学、控制理论和计算机科学等。

由于磁力轴承具有无接触、无磨损、高速度、高精度、无需润滑和密封等一系列优良品质(能耗是传统机械轴承的5-20%,是空气静压轴承的10-20%;若用于机床,其切除量可提高3-6倍,进给速度提高5-10倍,切屑力降低30%),是本世纪最有发展前途的主导轴承之一。

一、发展历史简述1972年,法国最早将磁力轴承用于通讯卫星的导向飞轮支承上。

美国于1983年在航天飞机的实验室真空泵上采用了磁力轴承。

1986年日本在H-1火箭进行的磁浮飞轮空间实验上获得了成功应用。

民用第一个产品是1983年,第五届欧洲机床展上,S2M公司展出了磁悬浮电主轴部件。

二、主要性能参数目前,磁力轴承可达的技术指标范围至少为:1)转速:(0~8)×105 r/min2)直径14~600 mm3)单个轴承承载力:(0.3~5)×104 N4)使用温度范围:-253~450 °C三、应用范围根据国际上发表的文献统计,磁力轴承可推广应用的领域如下表(此外还可用于飞轮储能、减震器、尖端武器等):四、应用图解典型的五自由度磁轴承-转子系统工作原理及其应用参见下页附图。

五、国内发展及应用现状国内磁力轴承的发展及应用,整体还停留在实验室研究阶段,工业应用很少,水平要落后世界先进水平10-20年。

但在某些方面的研究已经接近甚至达到世界先进水平。

国内在磁力轴承研究具有代表性的机构有清华大学和浙江大学(主要致力于磁轴承高频电主轴和阻尼器的研究)、上海交大和上海微电机研究所(惯性器件和仪器)、西安交大(磁力轴承力学特性研究)、哈工大和广州机床研究所(卫星姿态控制飞轮和机床主轴)等数十家。

磁悬浮轴承简介

磁悬浮轴承简介

磁力轴承简介磁悬浮轴承又称磁力轴承,是目前世界上公认的高新技术之一。

陆地上广泛采用的是主动控制磁悬浮轴承(简称主动磁轴承-AMB),它是利用可控磁场力提供无接触支承、使转子稳定悬浮于空间且其动力学性能可由控制系统调节的一种新型高性能轴承,是一种典型的机电一体化产品。

其技术涉及到机械学、电磁学、电子学、材料学、转子动力学、控制理论和计算机科学等。

由于磁力轴承具有无接触、无磨损、高速度、高精度、无需润滑和密封等一系列优良品质(能耗是传统机械轴承的5-20%,是空气静压轴承的10-20%;若用于机床,其切除量可提高3-6倍,进给速度提高5-10倍,切屑力降低30%),是本世纪最有发展前途的主导轴承之一。

一、发展历史简述1972年,法国最早将磁力轴承用于通讯卫星的导向飞轮支承上。

美国于1983年在航天飞机的实验室真空泵上采用了磁力轴承。

1986年日本在H-1火箭进行的磁浮飞轮空间实验上获得了成功应用。

民用第一个产品是1983年,第五届欧洲机床展上,S2M公司展出了磁悬浮电主轴部件。

二、主要性能参数目前,磁力轴承可达的技术指标范围至少为:1)转速:(0~8)×105 r/min2)直径14~600 mm3)单个轴承承载力:(0.3~5)×104 N4)使用温度范围:-253~450 °C三、应用范围根据国际上发表的文献统计,磁力轴承可推广应用的领域如下表(此外还可用于飞轮储能、减震器、尖端武器等):四、应用图解典型的五自由度磁轴承-转子系统工作原理及其应用参见下页附图。

五、国内发展及应用现状国内磁力轴承的发展及应用,整体还停留在实验室研究阶段,工业应用很少,水平要落后世界先进水平10-20年。

但在某些方面的研究已经接近甚至达到世界先进水平。

国内在磁力轴承研究具有代表性的机构有清华大学和浙江大学(主要致力于磁轴承高频电主轴和阻尼器的研究)、上海交大和上海微电机研究所(惯性器件和仪器)、西安交大(磁力轴承力学特性研究)、哈工大和广州机床研究所(卫星姿态控制飞轮和机床主轴)等数十家。

磁悬浮轴承工作原理

磁悬浮轴承工作原理

磁悬浮轴承工作原理
磁悬浮轴承是一种利用磁力原理实现轴向支撑的设备。

它由固定磁极和浮动磁极组成,通过磁力的作用实现轴和轴承之间的无接触支撑。

具体工作原理如下:
1. 磁场产生:磁悬浮轴承中的固定磁极产生一个稳定的磁场,一般采用电磁线圈或永磁体来产生磁力。

2. 磁力感应:浮动磁极中的磁极感应到固定磁极的磁场,产生一个相同或相反的磁力。

3. 磁力平衡:浮动磁极中的磁力与重力或其它外力平衡。

通过控制电流或磁力调节电磁线圈或永磁体的强度,使得轴承浮在磁场中,与轴的接触力为零。

4. 控制系统:磁悬浮轴承通过传感器实时监测轴的位置和姿态,将信号传输给控制系统。

控制系统根据接收到的信号,调整电磁线圈或永磁体的磁力,使得轴承与轴的接触力保持在预定范围内。

5. 动力传输:当轴转动时,由于磁悬浮轴承与轴无直接接触,轴承可以无摩擦地支撑轴的转动,实现精确定位和高速转动。

总之,磁悬浮轴承利用磁力实现轴的支撑,具有无接触、无摩
擦、低噪音、高精度和高速等优点,广泛应用于高速机械设备、精密加工设备等领域。

磁力轴承简介(1)

磁力轴承简介(1)

磁力轴承简介磁力轴承是磁悬浮原理应用在机械工程领域中的一项新的支承技术,其区别于传统的支承方式,具有无摩擦、无磨损、无润滑、运动阻力小、转速高、精度高、功耗低以及寿命长等优点,随着有关研究的不断发展,已有的电磁轴承种类很多,按工作原理可分为三类:主动磁轴承、被动磁轴承、混合磁轴承。

对于磁力轴承的研究,国外早在 18 世纪 40 年代就开展了理论分析,并在 19 世纪中、后期逐步应用于工业领域,随着轴承的性能在不断提高,某些电磁轴承类产品已相当成熟;国内的相关研究虽然一直在升温,但整体上来说依然处于理论研究阶段,离工业应用仍有较大的差距。

总体来说,磁力轴承有很好的应用前景,这项技术的研究与应用标志着支承技术的全新革命。

一.磁力轴承的工作原理和基本结构在工业应用中,由于主动磁轴承明显的优于被动磁轴承,所以在此以主动磁轴承为例进行探讨。

主动磁轴承一般被称为电磁轴承,其集机械学、力学、控制工程、电磁学、电子学和计算机学于一体,其是靠主动电子控制系统,由可控电磁力使转子非接触地“支承”着轴承体,通常由转子、定子(电磁铁)、放大器、位置传感器、控制器和辅助轴承等部分组成(如图1.1)。

转子是系统的控制对象,转子和电磁铁要求有良好的磁性和机械性能;控制器是电磁轴承系统的核心,决定电磁轴承的好坏;放大器向电磁铁提供产生电磁力所需的控制电流;位置传感器用来检测转子的偏转量;辅助轴承的功能是在电磁轴承出现故障时支承转子或在轴承过载时承受部分载荷承,避免转子与定子的任何直接接触,防止擦伤。

图 1.1 电磁轴承基本结构电磁轴承的机械部分一般是由轴向轴承和径向轴承组成(如图 1.2)。

轴向轴承由定子和推力盘组成;径向轴承由定子和转子组成。

(a) (b)图 1.2 (a)径向轴承横截面结构示意图 (b)轴向轴承结构示意图一个转子要实现完全的悬浮,需要在其五个自由度上施加控制力,即需要两个径向轴承和一个轴向轴承。

一个完整的电磁轴承系统通常包括 2 个径向轴承和 1 个轴向轴承及其控制系统;每个径向轴承有 2 个自由度,每个轴向轴承有 1 个自由度,这样一个电磁轴承共有 5 个自由度。

磁力泵滑动轴承润滑方式

磁力泵滑动轴承润滑方式

磁力泵滑动轴承润滑方式
磁力泵滑动轴承润滑方式:
1. 密封油润滑:这种润滑方式是磁力泵滑动轴承多受采用的,它可确保轴承与零件之间充分润滑;
2. 高粘度油润滑:这种润滑方式不仅能提供充分的润滑,而且能够降低磁力泵滑动轴承的磨损程度;
3. 直接吮吸油液润滑:这种润滑方式使用的是机械力学原理,当轴启动时会产生一种向内吮吸的力,这种力会带动流体润滑油进入滑动轴承,从而达到润滑的效果;
4. 液体压力润滑:这种润滑方式包括液体混合润滑和注油润滑,液体混合润滑是使用混合润滑油将轴承封闭,而注油润滑是通过向磁力泵滑动轴承注入高粘度润滑油来达到润滑的效果;
5. 脂肪润滑:这种润滑方式以脂肪为主要的润滑剂,它的基本特点是极易扩散,能形成一个均匀的薄膜,并具有良好的抗剪切性能。

它可防止外部有害物质侵入,有效地对轴承表面进行保护;
6. 气体润滑:这是一种新型的润滑方式,利用低温、高压气体,将润
滑脂和润滑油混合液体打入轴承,形成良好的润滑状态。

气体润滑技
术有许多优点,它可以提高轴承的寿命,还具备维修保养方便的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁力轴承磁力轴承是磁悬浮原理应用在机械工程领域中的一项新的支承技术,其区别于传统的支承方式,具有无摩擦、无磨损、无润滑、运动阻力小、转速高、精度高、功耗低以及寿命长等优点,随着有关研究的不断发展,已有的电磁轴承种类很多,按工作原理可分为三类:主动磁轴承、被动磁轴承、混合磁轴承。

对于磁力轴承的研究,国外早在18世纪40年代就开展了理论分析,并在19世纪中、后期逐步应用于工业领域,随着轴承的性能在不断提高,某些电磁轴承类产品已相当成熟;国内的相关研究虽然一直在升温,但整体上来说依然处于理论研究阶段,离工业应用仍有较大的差距。

总体来说,磁力轴承有很好的应用前景,这项技术的研究与应用标志着支承技术的全新革命。

一.磁力轴承的工作原理和基本结构在工业应用中,由于主动磁轴承明显的优于被动磁轴承,所以在此以主动磁轴承为例进行探讨。

主动磁轴承一般被称为电磁轴承,其集机械学、力学、控制工程、电磁学、电子学和计算机学于一体,其是靠主动电子控制系统,由可控电磁力使转子非接触地“支承”着轴承体,通常由转子、定子(电磁铁)、放大器、位置传感器、控制器和辅助轴承等部分组成(如图1.1)。

转子是系统的控制对象,转子和电磁铁要求有良好的磁性和机械性能;控制器是电磁轴承系统的核心,决定电磁轴承的好坏;放大器向电磁铁提供产生电磁力所需的控制电流;位置传感器用来检测转子的偏转量;辅助轴承的功能是在电磁轴承出现故障时支承转子或在轴承过载时承受部分载荷承,避免转子与定子的任何直接接触,防止擦伤。

图1.1 电磁轴承基本结构电磁轴承的机械部分一般是由轴向轴承和径向轴承组成(如图1.2)。

轴向轴承由定子和推力盘组成;径向轴承由定子和转子组成。

(a) (b)图1.2 (a)径向轴承横截面结构示意图 (b)轴向轴承结构示意图 一个转子要实现完全的悬浮,需要在其五个自由度上施加控制力,即需要两个径向轴承和一个轴向轴承。

一个完整的电磁轴承系统通常包括2个径向轴承和1个轴向轴承及其控制系统;每个径向轴承有2个自由度,每个轴向轴承有1个自由度,这样一个电磁轴承共有5个自由度。

根据图1.1建立坐标系:图1.3 电磁轴承自由度 如图1.3,在六个自由度中,z y x ,,,ψ,ξ五个自由度由电磁轴承来约束,θ由电机约束。

电磁轴承的工作原理可用单自由度的控制状况来说明。

如图1.3所示,正常情况下,线圈通电,电磁铁和转子的轴向间隙之间磁通变化产生电磁力,实现转子轴向悬浮,此时转子位于中心平衡位置,电磁铁Ⅰ和电磁铁Ⅱ的电磁力1F 和2F 相等,此时两侧气隙均为0x ,当外力作用,转子的位置发生偏转(偏转方向如图中所示),气隙宽度变化,使得磁通量变化:电磁铁Ⅰ的磁通1Φ增大,电磁铁Ⅱ的磁通2Φ减小,此时1F >2F ;位移传感器测出偏转量为x ,经位移信号转换电路后的输出电压为x u ,其与位置参考电压r u 比较后得到的电压为e u ,然后经调节器进行相位和幅值的调节得到输出电压c u ,分别输入给两个功率放大器,功率放大器将信号变为控制电流,该电流流经电磁铁线圈绕组使铁心内产生磁通Φ,该磁通与1Φ方向相同,与2Φ方向相反,故上方气隙的磁通变为Φ-1Φ,下方气隙的磁通变为Φ+2Φ,当221)(Φ-Φ≥Φ时,两个电磁铁的电磁力大小为:12F F ≥,电磁力产生差值,其称为系统回复力,它使转子回到平衡位置。

图1.3 单自由度电磁轴承工作原理二.磁力轴承的主要参数及其作用和对轴承性能的影响这里依然以电磁轴承为研究对象。

电磁轴承的性能主要由设计参数决定,而这些参数组成的技术指标有机械、电气和控制等几部分。

这里主要探讨机械方面的技术指标。

其主要包括了承载能力、刚度、阻尼、回转精度等。

下面主要分析承载力的影响因素以及气隙对轴承性能的影响。

在电磁轴承中,设存储在气隙中的能量为W ,当气隙中的磁场均匀时,有:BHV W 21= 式中,B —气隙磁通密度;H —气隙磁场;V —气隙体积;又sA V 2=(s —气隙宽度;A —气隙横截面积),故BHAs W =承载力f 等于W 对s 的偏导,即:BHA sW f ==d d 又rB H μμ=0(0μ—真空中磁场常数;r μ—相对磁导率,近似为1),得到:02μ=A B f 由于电磁轴承定子铁芯的磁导率很大,可以忽略铁芯中的磁压降,磁极下的气隙磁通密度可近似表示为:sni B 20μ≈,所以: 222020412s i A n s ni A f μ=⎪⎭⎫ ⎝⎛μ= 令A n k 2041μ=,则 22si k f = 从上式可以看出,承载力与线圈匝数的平方、电流的平方、磁极横截面积成正比,与气隙的平方成反比。

则如图2.1所示:(a ) (b)图2.1 (a)0s s =(名义气隙)时力—电流刚度i k ;(b)0i i x =时力—位移刚度x k由上图可知:1)电流越大,电流刚度越大;2)气隙愈大,位移刚度越小,且当0s s <时,位移刚度x k 很大,当0s s >后,x k 迅速变小。

图2.2 电磁轴承的差动激磁方式通常,在轴承磁铁中有两个作用相反的磁铁工作,这种布局使得正向力、负向力都能产生。

如图2.2所示,在电磁轴承中的两个作用相反的磁铁产生的差动激磁方式下,一个磁铁以偏置电流0i 和控制电流x i 之和激磁,一个以两者之差激磁,x f 则代表了两电磁铁间的作用力差,则有: ⎥⎦⎤⎢⎣⎡+---+=-=-+20202020)()()()(x s i i x s i i k f f f x x x则轴承在任意x 处的电流刚度为:⎥⎦⎤⎢⎣⎡+-+-+=∂∂=200200)()()()(2x s i i x s i i k i f k x x x x i 位移刚度为:⎥⎦⎤⎢⎣⎡+-+-+=∂∂=30203020)()()()(2x s i i x s i i k x f k x x x x 在实际的系统正常工作状态下,转子始终保持在平衡位置附近,即x <<0s ,0≈x ,0≈x i ,线性化后为:20020200004s Ai n s ki x f k x i x x i μ==∂∂=== 3020203020004s Ai n s ki x f k x i x x x μ==∂∂=== 由此可以看出,电磁轴承的电流刚度和位移刚度与磁极横截面积、气隙大小、线圈的匝数、偏置电流等参数有很大联系。

特别的,位移刚度与气隙的立方成反比。

此时,总的瞬时力f 作为位移和电流的函数在工作点附近可归结为线性方程为:x i x x i k x k f +=此外,x k 、i k ,x i 也影响刚度和阻尼。

从上面可以知道x k 、i k 与结构参数和平衡位置有关,而电流是位移的函数,它取决于控制规律的设计,所以轴承刚度和阻尼取决于结构参数、平衡位置以及控制规律。

回转精度与诸多因素有关,主要与工作气隙有密切关系。

三.相关专利说明1.磁悬浮轴承(中国专利申请号:0013055.5)原理说明:这种轴承由至少两组径向稳定磁环和其之间设置的至少一组轴向稳定磁环组成。

径向稳定磁环由一与轴承座固定相连的径向静磁环和一并列设置的与沿径向延伸的轴套固定相连的径向动磁环组成,径向静磁环和径向动磁环均由沿径向的两极以上紧密相连的交叉磁极组成,径向静磁环和径向动磁环沿径向对应的磁极磁力大小相等,极性相反;轴向稳定磁环由一与轴承座固定相连的轴向静磁环和一并列设置的与沿轴向延伸的轴套固定相连的轴向动磁环组成,轴向静磁环和轴向动磁环均由沿径向的两极以上紧密相连的交叉磁极组成,轴向静磁环和轴向动磁环沿径向对应的磁极磁力大小相等,极性相反。

轴承实例如图3.1所示:在一根被支承的轴1上,设置了径向稳定磁环2两组,两组径向磁环之间设置有一组轴向稳定磁环7,径向轴承座3和轴向轴承座10固定连接在基座上。

1—转子轴2—径向稳定磁环3—径向轴承座4—径向静磁环5—径向动磁环6—径向轴套7—轴向稳定磁环8—轴向动磁环9—轴向静磁环10—轴向轴承座11—轴向轴套图3.1 磁悬浮轴承径向稳定磁环由并列设置的径向静磁环4和径向动磁环5组成,径向静磁环固定在径向轴承座3上,径向动磁环5固定在沿径向延伸的轴套6上,轴套连接在轴上。

径向静磁环上相间设置有四个紧密相连的交叉磁极,从轴沿径向分别为S极、N极、S极、N极,对应的径向动磁环上也相间设置了四个紧密相连的交叉磁极,从轴沿径向的极性与径向静磁环上相反,分别为N极、S极、N极、S极。

当轴旋转时,径向轴套带动固定在其上的径向动磁环向下偏离耦合态时,由于多极磁力耦合力的作用,径向静磁环拉动轴及径向动磁环回到耦合力最小位置,使磁能降到最低,即径向具有稳定性。

轴向稳定磁环由并排设置的轴向静磁环9和轴向动磁环8组成,轴向静磁环固定在轴向轴承座10上,轴向动磁环固定在沿轴向延伸的轴向套筒11上,轴向套筒与轴连接为一体,轴向静磁环上相间设置有四个紧密相连的交叉磁极,沿轴向从左至右分别为S极、N 极、S极、N极,对应的轴向动磁环上相间也设置有四个紧密相连的交叉磁极,磁极与轴向静轴承相反,从左至右依次为:N极、S极、N极、S极。

当轴旋转时,轴向轴承套带动固定在其上的轴向动磁环旋转,轴向静磁环受轴向轴承座的固定不动。

由于轴向静磁环与轴向动磁环对应的磁极极性相反、大小相等,当两者处于耦合态时,磁能降到最低,使轴向具有稳定性。

总结:这是一种永磁式被动轴承,鉴于目前的永磁力轴承承载力不大、刚度小的缺点,这种轴承在结构设计上,采用了每组稳定磁环由多个紧密相连的交叉磁极组成静磁环和动磁环,且对应的磁极时磁力大小相同、极性相反的。

在径向和轴向形成了拉推磁路,使每组径向稳定磁环和轴向稳定磁环在处于磁极耦合时能态最低,因而一旦偏离耦合就会产生耦合力。

这种轴向稳磁环和径向稳定磁环相间配合使用,就能实现整体悬浮并达到稳定性和刚度的要求。

所以这种轴承结构简单、成本低,稳定性好、刚度大、承载力大,应用领域十分广泛。

相关文档
最新文档