第二章数列单元综合测试
第2章数列单元测试

第2章数列单元测试1.在等比数列}{n a 中,若93-=a ,17-=a ,则5a 的值为_____________。
1.-3.提示:q 4=19--,q 2=13.5a =-9×13=-3. 2.在正整数100至500之间能被11整除的个数为 .2.36.提示:观看出100至500之间能被11整除的数为110、121、132、…它们构成一个等差数列,公差为11,数a n =110+(n -1)·11=11n +99,由a n ≤500,解得n ≤36. 3.在数列{a n }中,a 1=1,a n +1=a n 2-1(n ≥1),则a 1+a 2+a 3+a 4+a 5等于 。
3.-1.提示:由已知:a n +1=a n 2-1=(a n +1)(a n -1), ∴a 2=0,a 3=-1,a 4=0,a 5=-1.4.{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9= 。
4.33.提示:a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9成等差数列,故a 3+a 6+a 9=2×39-45=33. 5.正项等比数列{a n }中,S 2=7,S 6=91,则S 4= 。
5.28.提示:∵{a n }为等比数列,∴S 2,S 4-S 2,S 6-S 4也为等比数列,即7,S 4-7,91-S 4成等比数列,即(S 4-7)2=7(91-S 4),解得S 4=28或-21(舍去). 6.每次用相同体积的清水洗一件衣物,且每次能洗去污垢的43,若洗n 次后,存在的污垢在1%以下,则n 的最小值为_________.6.4.提示:每次能洗去污垢的43,确实是存留了41,故洗n 次后,还有原先的(41)n ,由题意,有:(41)n<1%,∴4n >100得n 的最小值为4. 7.设a n =-n 2+10n +11,则数列{a n }从首项到第几项的和最大是第 项。
高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。
试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。
2021年高中数学 第二章 数列单元测试(含解析)新人教版必修5

一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 2011是等差数列:1,4,7,10,…的第几项( )(A)669 (B)670 (C)671 (D)6722.数列{an }满足an=4an-1+3,a1=0,则此数列的第5项是()(A)15 (B)255 (C)20 (D)83.等比数列{an }中,如果a6=6,a9=9,那么a3为()(A)4 (B)(C)(D)24.在等差数列{an }中,a1+a3+a5=105,a2+a4+a6=99,则a20=( )(A)-1 (B)1(C)3 (D)75.在等差数列{an }中,已知a1=2,a2+a3=13,则a4+a5+a6=( )(A)40 (B)42(C)43 (D)456.记等差数列的前n项和为Sn ,若S2=4,S4=20,则该数列的公差d=()(A)2 (B)3 (C)6 (D)77.等差数列{an }的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是()(A)90 (B)100 (C)145 (D)1908.在数列{an }中,a1=2,2an+1-2an=1,则a101的值为()(A)49 (B)50 (C)51 (D)529.计算机是将信息转化成二进制数进行处理的,二进制即“逢二进一”,如(1101)2表示二进制的数,将它转化成十进制的形式是1×23+1×22+0×21+1×20=13,那么将二进制数转换成十进制数的形式是()(A)217-2 (B)216-1(C)216-2 (D)215-110.在等差数列{an }中,若a1+a2+a3=32,a11+a12+a13=118,则a4+a10=()(A)45 (B)50 (C)75 (D)60二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填在题中的横线上)11.(2011·江西高考)已知数列{an }的前n项和Sn满足:Sn+Sm=Sn+m,且a1=1,那么a10=_______12.等比数列{an }满足an>0,n=1,2,…,且a5·a2n-5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n-1=____13.等差数列{an}前m项的和为30,前2m项的和为100,则它的前3m项的和为______.14.(2011·广东高考)已知{an }是递增等比数列,a2=2,a4-a3=4,则此数列的公比q=______.15.两个等差数列{an }, {bn}, ,则______.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)16. (12分)已知等差数列{a n}的公差d=1,前n项和为S n.(1)若1,a1,a3成等比数列,求a1;(2)若S5>a1a9,求a1的取值范围.17.(10分)已知数列{an }是等差数列,a2=3,a5=6,求数列{an}的通项公式与前n项的和Mn.18.(12分)等比数列{an }的前n项和为Sn,已知S1,S3,S2成等差数列.(1)求{an}的公比q;(2)若a1-a3=3,求Sn.19.(12分)数列{an }的前n项和为Sn,数列{bn}中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n,cn=an-1.(1)求证:数列{cn}是等比数列;(2)求数列{bn}的通项公式.20.(12分)如果有穷数列a1,a2,a3,…,am(m为正整数)满足条件a1=am, a2=am-1,…,am=a1,即ai =am-i+1(i=1,2,…,m),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.(1)设{bn }是7项的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11.依次写出{bn}的每一项;(2)设{cn }是49项的“对称数列”,其中c25,c26,…,c49是首项为1,公比为2的等比数列,求{cn}各项的和S.21.(12分)已知数列{an }的前n项和为(),等差数列{bn}中,bn>0(),且b1+b2+b3=15,又a1+b1,a2+b2,a3+b3成等比数列.(1)求数列{an },{bn}的通项公式;(2)求数列{an +bn}的前n项和Tn.(选做题)22.(12分)某商店为了促进商品销售,特定优惠方式,即购买某种家用电器有两种付款方式可供顾客选择,家用电器价格为2 150元.第一种付款方式:购买当天先付150元,以后每月这一天都交付200元,并加付欠款利息,每月利息按复利计算,月利率为1%;第二种付款方式:购买当天先付150元,以后每个月付款一次,10个月付清,每月付款金额相同,每月利息按复利计算,月利率1%.试比较两种付款方法,计算每月所付金额及购买这件家用电器总共所付金额.答案解析1.【解析】选C.∵2011=1+(n-1)×(4-1),∴n=671.2.【解析】选B.由an =4an-1+3,a1=0,依次求得a2=3,a3=15,a4=63,a5=255.3.【解析】选A.等比数列{an }中,a3,a6,a9也成等比数列,∴a62=a3a9,∴a3=4.4.【解析】选B.a1+a3+a5=105,∴a3=35,同理a4=33,∴d=-2,a1=39,∴a20=a1+19d=1.5.【解析】选B.设公差为d,由a1=2,a2+a3=13,得d=3,则a4+a5+a6= (a1+3d)+(a2+3d)+(a3+3d)=(a1+a2+a3)+9d=15+27=42.6.【解析】选B.S4-S2=a3+a4=20-4=16,∴a3+a4-S2=(a3-a1)+(a4-a2)=4d=16-4=12,∴d=3.7.【解析】选B.设公差为d,∴(1+d)2=1×(1+4d),∵d≠0,∴d=2,从而S10=100.8.【解题提示】利用等差数列的定义.【解析】选D.∵2an+1-2an=1,∴,∴数列{an }是首项a1=2,公差的等差数列,∴.9.【解析】选B.形式为:1×215+1×214+1×213+…+1×21+1×20=216-1.10.【解析】选B.由已知a1+a2+a3+a11+a12+a13=150,∴3(a1+a13)=150,∴a1+a13=50,∴a4+a10=a1+a13=50.11.【解题提示】结合Sn +Sm=Sn+m,对m,n赋值,令n=9,m=1,即得S9+S1=S10,即得a10=1.【解析】选A.∵Sn +Sm=Sn+m,∴令n=9,m=1,即得S9+S1=S10,即S1=S10-S9=a10,又∵S1=a1,∴a10=1.12.【解题提示】由已知可先求得通项公式,再由对数的性质进行运算.【解析】选C.a5·a2n-5=22n(n≥3),∴an 2=22n,an>0,∴an =2n,log2a1+log2a3+…+log2a2n-1=1+3+…+(2n-1)=n2.13.【解题提示】利用等差数列前n项和的性质【解析】由题意可知Sm ,S2m-Sm,S3m-S2m成等差数列,2(S2m-Sm)=Sm+S3m-S2m∴S3m =3(S2m-Sm)=3×(100-30)=210.答案:21014.【解题提示】由等比数列的通项公式,可得关于公比q的方程,从而求出q.【解析】由a4-a3=4得a2q2-a2q=4,即2q2-2q=4,解得q=2或q=-1(由数列是递增数列,舍去).答案:215.【解题提示】利用等差数列的前n项和的有关性质进行运算.【解析】设两个等差数列{an },{bn}的前n项和分别为An,Bn.则.答案:三、解答题:16.【解析(1)因为数列{a n}的公差d=1,且1,a1,a3成等比数列,所以a21=1×(a1+2),即a21-a1-2=0,解得a1=-1或a1=2.(2)因为数列{a n}的公差d=1,且S5>a1a9,所以5a1+10>a21+8a1,即a21+3a1-10<0,解得-5<a1<2.故a1的取值范围为(-5,2).17.【解析】设{an}的公差为d,∵a2=3,a5=6,∴,∴a1=2,d=1,∴an=2+(n-1)=n+1.18.【解析】(1)依题意有a1+(a1+a1q)=2(a1+a1q+a1q2)由于a1≠0,故2q2+q=0,又q≠0,从而.(2)由已知得a1-a1()2=3,故a1=4从而.19.【解析】(1)∵a1=S1,an+Sn=n,①∴a1+S1=1,得.又an+1+Sn+1=n+1 ②①②两式相减得2(an+1-1)=an-1,即,也即,故数列{cn}是等比数列.(2)∵,∴,.故当n≥2时,.又,即.20.【解题提示】利用等比数列的前n项和公式进行计算.【解析】(1)设数列{bn }的公差为d,则b4=b1+3d=2+3d=11,解得d=3,∴数列{bn}为2,5,8,11,8,5,2.(2)S=c1+c2+…+c49=2(c25+c26+…+c49)-c25=2(1+2+22+…+224)-1 =2(225-1)-1=226-3.21.【解析】(1)a1=1,an=Sn-Sn-1=3n-1,n>1,∴an =3n-1(),∴数列{an}是以1为首项,3为公比的等比数列,∴a1=1,a2=3,a3=9,在等差数列{bn}中,∵b1+b2+b3=15,∴b2=5.又因a1+b1,a2+b2,a3+b3成等比数列,设等差数列{bn}的公差为d,∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,∵bn>0(),∴舍去d=-10,取d=2,∴b1=3.∴bn=2n+1().(2)由(1)知∴Tn =a1+b1+a2+b2+…+an+bn=(a1+a2+…+an)+(b1+b2+…+bn).22.【解题提示】第一种付款方式是等差数列模型,第二种付款方式是等比数列模型,分别计算出实际共付金额,再比较得出结论.【解析】第一种方式:购买时先付150元,欠2 000元,按要求知10次付清,则第1次付款金额为a1=200+2 000×0.01=220(元);第2次付款金额为a2=200+(2 000-200)×0.01=218(元)……第n次付款金额为an=200+[2 000-(n-1)×200]×0.01=220-(n-1)×2(元).不难看出每次所付款金额顺次构成以220为首项,-2为公差的等差数列,所以10次付款总金额为 (元),实际共付2 260元.第二种方式:购买时先付150元,欠2 000元,则10个月后增值为2 000×(1+0.01)10=2 000×(1.01)10(元).设每月付款x元,则各月所付的款额连同最后一次付款时生成的利息之和分别是(1.01)9x,(1.01)8x,…,x,其构成等比数列,和为.应有,精品文档实用文档 所以x ≈211.2,每月应付211.2元,10次付款总金额为2 112元,实际共付2 262元,所以第一种方式更省钱.【方法技巧】分清类型解数列应用题解数列应用题要明确问题是属于哪一种类型,即明确是等差数列问题还是等比数列问题,是求a n 还是求S n ,特别要弄清项数为多少,试题中常见的数列类型有:(1)构造等差、等比数列模型,然后再应用数列的通项公式及求和公式求解;(2)先求出连续的几项,再归纳出a n ,然后用数列知识求解.B\31329 7A61 穡_ 37134 910E 鄎35625 8B29 謩24994 61A2 憢39366 99C6 駆34817 8801 蠁34370 8642 虂30352 7690 皐-133115 815B 腛。
第二章 数列测试题

第二章 数列测试题一、选择题:1、设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为( )A.128B.80C.64D.562、记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( )A 、2B 、3C 、6D 、7 3、设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( ) A .2B .4C .215D .217 4、设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( )A .63B .45C .36D .275、在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 6、若等差数列{}n a 的前5项和525S =,且23a =,则7a =( )(A )12 (B )13 (C )14 (D )157、已知{}n a 是等比数列,41252==a a ,,则12231n n a a a a a a ++++ =( )(A )16(n --41) (B )16(n --21) (C )332(n --41) (D )332(n--21)8、非常数数列}{n a 是等差数列,且}{n a 的第5、10、20项成等比数列,则此等比数列的公比为 ( ) A .51 B .5 C .2 D .219、已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =( )A .0B .3-C .3D .23 10、数列{a n }为等比数列,若a 1+ a 8=387,a4 a 5=1152,则此数列的通项a n 的表达式为 ( )(A) a n =3×2n -1 (B) a n =384×(21)n -1 (C) a n =3×2n -1或a n =384×(21)n -1 (D) a n =3×(21)n -1 二、填空题 11.已知{}n a 为等差数列,3822a a +=,67a =,则5a =____________ 12.设数列{}n a 中,112,1n n a a a n +==++,则通项n a = ___________。
七年级数学上册第二章单元测试题及答案

七年级数学上册第二章单元测试题及答案一、填空题:1、|-222|=222,-(-222)=222,-1/(-2)=1/22、+1.2米表示水位上升1.2米3、距离为|-3.5-4.5|=84、a=-b+45、p点向左移动3个单位后为-7,再向右移动1个单位长度为-6,所以p点表示的数为-66、最大的负整数为-1,最小的正整数为1,它们的和为7、-1(2003+2004)=-20078、|x||y|=xy9、a的取值范围为a≤-1/210、a=±,b=±二、选择题:1、B。
2、C。
3、D。
4、C。
5、D。
6、A。
7、A。
8、D。
9、C。
10、D三、计算题:1、(-16)+(-6)+(-16)+8=-302、(-5.3)+(-3.2)-(-2.5)-4.8=-1.23、(-8)×(-25)×(-0.02)=44、|-1|÷|-10|2=1/205、(-1)÷(-10)=1/10四则运算题目:1、(-36+1557-)/(-3+1/2)2、(-3)*(-2)/(6+8-4/3)3、-2/(-4)-33/74、100/(-2)-(-2)/(-8/3)解答:1、(-36+1557-)/(-3+1/2) = (-.5)/(-5/2) = .62、(-3)*(-2)/(6+8-4/3) = 6/433、-2/(-4)-33/7 = 25/284、100/(-2)-(-2)/(-8/3) = -50-3/2 = -101/2改写后的解答:1、计算(-36+1557-)/(-3+1/2)的值。
首先将分母化为通分数,即(-3+1/2) = (-6/2+1/2) = -5/2,然后进行除法运算,得到(-36+1557-)/(-5/2) = (-.5)/(-5/2) = .6.2、计算(-3)*(-2)/(6+8-4/3)的值。
先将加减法运算进行化简,即6+8-4/3 = 18/3+24/3-4/3 = 38/3,然后进行乘除法运算,得到(-3)*(-2)/(38/3) = 6/43.3、计算-2/(-4)-33/7的值。
苏教版数学高二-必修5第2章《数列》单元测试(A)

第2章 数 列(A)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.{a n }是首项为1,公差为3的等差数列,如果a n =2 011,则序号n 等于________. 2.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12=________. 3.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为________.4.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于________.5.已知在等差数列{a n }中,首项为23,公差是整数,从第七项开始为负项,则公差为______.6.等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4=________. 7.若{a n }是等比数列,其公比是q ,且-a 5,a 4,a 6成等差数列,则q =________. 8.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5=________. 9.在如下数表中,已知每行、每列中的数都成等差数列,10.“嫦娥奔月,举国欢庆”,据科学计算,运载“神六”的“长征二号”系列火箭,在点火第一秒钟通过的路程为2 km ,以后每秒钟通过的路程都增加2 km ,在达到离地面240 km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是______秒. 11.已知等差数列{a n }的公差d ≠0且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10=________.12.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 取到最大值的n 是________.13.已知数列1,12,21,13,22,31,14,23,32,41,…,则56是数列中的第________项.14.等比数列{a n }的公比为q ,其前n 项的积为T n ,并且满足条件a 1>1,a 99a 100-1>0,a 99-1a 100-1<0.给出下列结论:①0<q <1;②a 99·a 101-1<0;③T 100的值是T n 中最大的;④使T n >1成立的最大自然数n 等于198.其中正确的结论是______.(填写所有正确的序号)二、解答题(本大题共6小题,共90分)15.(14分)已知{a n}为等差数列,且a3=-6,a6=0.(1)求{a n}的通项公式;(2)若等比数列{b n}满足b1=-8,b2=a1+a2+a3,求{b n}的前n项和公式.16.(14分)已知等差数列{a n}中,a3a7=-16,a4+a6=0,求{a n}的前n项和S n.17.(14分)已知数列{log2(a n-1)} (n∈N*)为等差数列,且a1=3,a3=9.(1)求数列{a n}的通项公式;(2)证明:1a2-a1+1a3-a2+…+1a n+1-a n<1.18.(16分)在数列{a n }中,a 1=1,a n +1=2a n +2n . (1)设b n =a n2n -1.证明:数列{b n }是等差数列;(2)求数列{a n }的前n 项和.19.(16分)已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…).(1)求数列{a n }的通项公式;(2)当b n =log 32(3a n +1)时,求证:数列{1b n b n +1}的前n 项和T n =n1+n .20.(16分)已知数列{a n }的各项均为正数,对任意n ∈N *,它的前n 项和S n 满足S n =16(a n+1)(a n +2),并且a 2,a 4,a 9成等比数列. (1)求数列{a n }的通项公式;(2)设b n =(-1)n +1a n a n +1,T n 为数列{b n }的前n 项和,求T 2n .第2章 数 列(A)答案1.671解析 由2 011=1+3(n -1)解得n =671. 2.15解析 在等差数列{a n }中,a 7+a 9=a 4+a 12,∴a 12=16-1=15. 3.120解析 由a 5=a 2q 3得q =3.∴a 1=a 2q =3,S 4=a 1(1-q 4)1-q =3(1-34)1-3=120.4.180解析 ∵(a 1+a 2+a 3)+(a 18+a 19+a 20) =(a 1+a 20)+(a 2+a 19)+(a 3+a 18) =3(a 1+a 20)=-24+78=54, ∴a 1+a 20=18.∴S 20=20(a 1+a 20)2=180.5.-4解析 由⎩⎪⎨⎪⎧a 6=23+5d ≥0a 7=23+6d <0,解得-235≤d <-236,∵d ∈Z ,∴d =-4. 6.8解析 ∵a 2+a 6=34,a 2·a 6=64,∴a 24=64, ∵a 2>0,a 6>0,∴a 4=a 2q 2>0,∴a 4=8. 7.-1或2解析 依题意有2a 4=a 6-a 5,即2a 4=a 4q 2-a 4q ,而a 4≠0, ∴q 2-q -2=0,(q -2)(q +1)=0.∴q =-1或q =2. 8.3∶4解析 显然等比数列{a n }的公比q ≠1,则由S 10S 5=1-q 101-q 5=1+q 5=12⇒q 5=-12,故S 15S 5=1-q151-q 5=1-(q 5)31-q 5=1-⎝⎛⎭⎫-1231-⎝⎛⎭⎫-12=34. 9.n 2+n解析 由题中数表知:第n 行中的项分别为n,2n,3n ,…,组成一等差数列,所以第n 行第n +1列的数是:n 2+n . 10.15解析 设每一秒钟通过的路程依次为a 1,a 2,a 3,…,a n ,则数列{a n }是首项a 1=2,公差d =2的等差数列,由求和公式得na 1+n (n -1)d 2=240,即2n +n (n -1)=240,解得n=15. 11.1316解析 因为a 23=a 1·a 9,所以(a 1+2d )2=a 1·(a 1+8d ).所以a 1=d . 所以a 1+a 3+a 9a 2+a 4+a 10=3a 1+10d 3a 1+13d =1316.12.20解析 ∵(a 2-a 1)+(a 4-a 3)+(a 6-a 5)=3d ,∴99-105=3d .∴d =-2. 又∵a 1+a 3+a 5=3a 1+6d =105,∴a 1=39. ∴S n =na 1+n (n -1)2d =-n 2+40n =-(n -20)2+400.∴当n =20时,S n 有最大值. 13.50解析 将数列分为第1组一个,第2组二个,…,第n 组n 个, 即⎝⎛⎭⎫11,⎝⎛⎭⎫12,21,⎝⎛⎭⎫13,22,31,…,⎝ ⎛⎭⎪⎫1n ,2n -1,…,n 1,则第n 组中每个数分子分母的和为n +1,则56为第10组中的第5个,其项数为(1+2+3+…+9)+5=50. 14.①②④解析 ①中,⎩⎪⎨⎪⎧(a 99-1)(a 100-1)<0a 99a 100>1a 1>1⇒⎩⎨⎧a 99>10<a 100<1⇒q =a 100a 99∈(0,1),∴①正确.②中,⎩⎨⎧a 99a 101=a 21000<a 100<1⇒a 99·a 101<1,∴②正确.③中,⎩⎨⎧T 100=T 99·a 1000<a 100<1⇒T 100<T 99,∴③错误.④中,T 198=a 1a 2…a 198 =(a 1·a 198)(a 2·a 197)…(a 99·a 100) =(a 99·a 100)99>1,T 199=a 1a 2…a 198·a 199=(a 1a 199)…(a 99·a 101)·a 100=a 199100<1,∴④正确. 15.解 (1)设等差数列{a n }的公差为d . 因为a 3=-6,a 6=0,所以⎩⎪⎨⎪⎧a 1+2d =-6,a 1+5d =0.解得a 1=-10,d =2.所以a n =-10+(n -1)×2=2n -12. (2)设等比数列{b n }的公比为q . 因为b 2=a 1+a 2+a 3=-24,b 1=-8, 所以-8q =-24,q =3. 所以数列{b n }的前n 项和公式为 S n =b 1(1-q n )1-q =4(1-3n ).16.解 设{a n }的公差为d ,则⎩⎪⎨⎪⎧(a 1+2d )(a 1+6d )=-16,a 1+3d +a 1+5d =0, 即⎩⎪⎨⎪⎧a 21+8da 1+12d 2=-16,a 1=-4d .解得⎩⎪⎨⎪⎧a 1=-8,d =2,或⎩⎪⎨⎪⎧a 1=8,d =-2.因此S n =-8n +n (n -1)=n (n -9), 或S n =8n -n (n -1)=-n (n -9).17.(1)解 设等差数列{log 2(a n -1)}的公差为d . 由a 1=3,a 3=9,得log 2(9-1)=log 2(3-1)+2d ,则d =1. 所以log 2(a n -1)=1+(n -1)×1=n , 即a n =2n +1.(2)证明 因为1a n +1-a n =12n +1-2n =12n ,所以1a 2-a 1+1a 3-a 2+…+1a n +1-a n =121+122+123+…+12n =12-12n ×121-12=1-12n <1.18.(1)证明 由已知a n +1=2a n +2n , 得b n +1=a n +12n =2a n +2n 2n =a n2n -1+1=b n +1.∴b n +1-b n =1,又b 1=a 1=1.∴{b n }是首项为1,公差为1的等差数列. (2)解 由(1)知,b n =n ,a n2n -1=b n =n .∴a n =n ·2n -1.∴S n =1+2·21+3·22+…+n ·2n -1两边乘以2得:2S n =1·21+2·22+…+(n -1)·2n -1+n ·2n ,两式相减得:-S n =1+21+22+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )2n -1, ∴S n =(n -1)·2n +1.19.(1)解 由已知⎩⎨⎧a n +1=12S n ,a n=12Sn -1(n ≥2),得a n +1=32a n (n ≥2).∴数列{a n }是以a 2为首项,以32为公比的等比数列.又a 2=12S 1=12a 1=12,∴a n =a 2×(32)n -2(n ≥2).∴a n =⎩⎪⎨⎪⎧1, n =1,12×(32)n -2, n ≥2.(2)证明 b n =log 32(3a n +1)=log 32[32×(32)n -1]=n .∴1b n b n +1=1n (1+n )=1n -11+n .∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=(11-12)+(12-13)+(13-14)+…+(1n -11+n ) =1-11+n =n 1+n.20.解 (1)∵对任意n ∈N *,有S n =16(a n +1)(a n +2),①∴当n =1时,有S 1=a 1=16(a 1+1)(a 1+2),解得a 1=1或2.当n ≥2时,有S n -1=16(a n -1+1)(a n -1+2).②①-②并整理得(a n +a n -1)(a n -a n -1-3)=0. 而数列{a n }的各项均为正数,∴a n -a n -1=3. 当a 1=1时,a n =1+3(n -1)=3n -2, 此时a 24=a 2a 9成立;当a 1=2时,a n =2+3(n -1)=3n -1, 此时a 24=a 2a 9不成立,舍去. ∴a n =3n -2,n ∈N *. (2)T 2n =b 1+b 2+…+b 2n=a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1 =a 2(a 1-a 3)+a 4(a 3-a 5)+…+a 2n (a 2n -1-a 2n +1) =-6a 2-6a 4-…-6a 2n=-6(a 2+a 4+…+a 2n )=-6×n (4+6n -2)2=-18n 2-6n .。
高中数学第二章数列测试题新人教A版必修5

数列 单元测试一:选择题(共 12 小题,第小题 5 分,共 60 分。
)1.已知等差数列 a n知足 a 2 a 44 , a 3a 5 10 ,则它的前 10 项的和S 10 ()A .138B .135C .95D .23若等差数列 { a n } 的前 5 项和 S 5 25,且 a 2 3 ,则 a 7()2.A .12B.133. 已知等差数列{ a n }中, a 2=6,a 5=15.若 b n =a 2n ,则数列{ b n }的前 5 项和等于()A30 B45 C90 D186设 a (n N ) 是等差数列, S n 是其前 n 项的和 S 5 6 6 78,则以下结论 4. n<S ,S =S >S 错误的选项是( )Ad<0Ba 7=0 CS 9>S 5? DS 6 和 S 7 均为 S n 的最大值 . 5.在数列{ an} 中,an4n5a 2a n an2bn , nN * ,, a 12此中 a 、 b 为常数,则 ab ()A -1B 0C -2?D 16. 已知 {a n } 是等比数列,a22,a 514 ,则公比 q=()11A 2B-2C2D 27. 记等差数列 { a n } 的前 n 项和为 S n ,若 S 24,S 420 ,则该数列的公差d()A .2B .3C .6D .78. 设等比数列 { a n } 的公比 q2,前 n 项和为 S n,则S4()a 2A.2B.49. 若数列 { a n } 的前 n 项的和( )1517C. 2D. 2S 3n 2 ,那么这个数列的通项公式为nA.an( 3) n 1B.an3 ( 1) n 122C.an3n2D.an1,n12 3 n 1 , n 210. 等差数列 { a n } 的前 n 项和记为 S n ,若 a 3 a 7a 11 为一个确立的常数,则以下各数中也是常数的是( )11=p n.已知S n 是数列 {an}的前n 项和,-2(p∈ , ∈N*) ,11S nR n那么数列 {a n }( )A .是等比数列B .当 p ≠0 时是等比数列C .当 p ≠0,p ≠1 时是等比数列D .不是等比数列12. 已知等差数列{ a n }的公差为 2,若 a 1,a 3,a 4 成等比数列,则 a 2等于 () A -4B -6C -8D - 10二:填空题(共 12 小题,第小题 5 分,共 60 分)13. 设{ a n } 是公比为 q 的等比数列, S n 是{ a n } 的前 n 项和 ,若{ S n } 是等差数列,则 q=__14. 在等比数列 a n 中,已知 a 1 a 2 a 31, a 4a 5 a 62, 则该数列前 15 项的和 S 15=.15. 设 数 列 a n 中 , a 1 2, a n 1a nn1 , 则 通 项 a n__________。
【数学】2020高中数学人教A版必修5第二章数列章末测试题A

【关键字】数学【高考调研】2015年高中数学第二章数列章末测试题(A)新人教版必修5一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知an=cosnπ,则数列{an}是( )A.递增数列B.递减数列C.常数列D.摆动数列答案 D2.在数列2,9,23,44,72,…中,第6项是( )A.82 B.107C.100 D.83答案 B3.等差数列{an}的前n项和为Sn,若S2=2,S4=10,则S6等于( )A.12 B.18C.24 D.42答案 C解析思路一:设公差为d,由题意得解得a1=,d=.则S6=1+15d=24.思路二:S2,S4-S2,S6-S4也成等差数列,则2(S4-S2)=S6-S4+S2,所以S6=3S4-3S2=24.4.数列{an}中,a1=1,对所有n≥2,都有a3…an=n2,则a3+a5=( )A. B.C. D.答案 A5.已知{an}为等差数列,a2+a8=12,则a5等于( )A.4 B.5C.6 D.7答案 C解析由等差数列的性质可知a2、a5、a8也成等差数列,故a5==6,故选C.6.在数列{an}中,a1=2,an+1=an+ln(1+),则an=( )A.2+ln n B.2+(n-1)ln nC.2+n ln n D.1+n+ln n答案 A解析依题意得an+1-an=ln,则有a2-a1=ln,a3-a2=ln,a4-a3=ln ,…,an-an-1=ln ,叠加得an-a1=ln(···…·)=ln n,故an=2+ln n,选A.7.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99.以Sn表示{an}的前n 项和,则使得Sn达到最大值的n是( )A.21 B.20C.19 D.18答案 B解析∵a1+a3+a5=105,a2+a4+a6=99,∴3=105,4=99,即a3=35,a4=33.∴a1=39,d=-2,得an=41-2n.令an=0且an+1<0,n∈N*,则有n=20.故选B.8.设等差数列{an}的前n项和为Sn.若a1=-11,a4+a6=-6,则当Sn取最小值时,n等于( )A.6 B.7C.8 D.9答案 A解析设等差数列{an}的公差为d,∵a4+a6=-6,∴a5=-3,∴d==2,∴a6=-1<0,a7=1>0,故当等差数列{an}的前n项和Sn取得最小值时,n等于6.9.等比数列{an}的前n项和为Sn,且1,2,a3成等差数列.若a1=1,则S4等于( ) A.7 B.8C.15 D.16答案 C解析由1+a3=2⇒4+q2=4q⇒q=2,则S4=a1+a2+a3+a4=1+2+4+8=15.故选C.10.如果数列{an}满足a1,a2-a1,a3-a2,…,an-an-1,…是首项为1,公比为2的等比数列,那么an=( )A.2n+1-1 B.2n-1C.2n-1 D.2n+1答案 B11.含2n+1个项的等差数列,其奇数项的和与偶数项的和之比为( )A.2n+1nB.n+1nC.n-1nD.n+12n答案 B12.如果数列{a n }满足a 1=2,a 2=1,且a n ·a n -1a n -1-a n =a n ·a n +1a n -a n +1,那么此数列的第10项为( )A.1210 B.129 C.110D.15答案 D 解析 ∵a n ·a n -1a n -1-a n =a n ·a n +1a n -a n +1,∴{a n ·a n -1a n -1-a n}为常数列.∴a n ·a n -1a n -1-a n =a 2·a 1a 1-a 2=2,∴a n ·a n -1=2a n -1-2a n .∴1a n -1a n -1=12,∴{1a n }为等差数列,1a 1=12,d =12. ∴1a n =12+(n -1)·12=n 2.∴a n =2n ,∴a 10=15. 二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上) 13.已知等差数列{a n }的公差为3,若a 1,a 3,a 4成等比数列,则a 2=________. 答案 -9解析 由题意得a 23=a 1a 4,所以(a 1+6)2=a 1(a 1+9),解得a 1=-12.所以a 2=-12+3=-9.14.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … … … … … …根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是________. 答案n 22-n2+3(n ≥3)解析 该数阵的第1行有1个数,第2行有2个数,…,第n 行有n 个数,则第n -1(n ≥3)行的最后一个数n -11+n -12=n 22-n 2,则第n 行从左至右的第3个数为n 22-n2+3(n ≥3).15.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =________. 答案 4解析 ⎩⎪⎨⎪⎧3S 3=a 4-2, ①3S 2=a 3-2, ②,①-②,得3a 3=a 4-a 3,4a 3=a 4,q =a 4a 3=4.16.已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p +q ,若a 1=19,则a 36=________.答案 4 解析 ∵a 1=19,∴a 2=a 1+a 1=29,a 4=a 2+a 2=49,a 8=a 4+a 4=89.∴a 36=a 18+a 18=2a 18=2(a 9+a 9)=4a 9=4(a 1+a 8)=4(19+89)=4.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)在公差不为零的等差数列{a n }中,a 1,a 2为方程x 2-a 3x +a 4=0的两实数根,求此数列的通项公式.答案 a n =2+(n -1)×2=2n18.(12分)等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列,求数列{a n }前20项的和S 20.解析 设数列{a n }的公差为d ,则a 3=a 4-d =10-d ,a 6=a 4+2d =10+2d .a 10=a 4+6d =10+6d .由a 3,a 6,a 10成等比数列,得a 3a 10=a 26. 即(10-d )(10+6d )=(10+2d )2, 整理得10d 2-10d =0,解得d =0或d =1. 当d =0时,S 20=20a 4=200;当d =1时,a 1=a 4-3d =10-3×1=7. 于是S 20=20a 1+20×192d =20×7+190=330.19.(12分)某市共有1万辆燃油型公交车,有关部门计划于2004年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%.试问:(1)该市在2010年应该投入多少辆电力型公交车? (2)到哪一年底,电力型公交车的数量开始超过公交车总量的13?答案 (1)1 458辆 (2)2011年底20.(12分)设{a n }为等比数列,{b n }为等差数列,且b 1=0,c n =a n +b n ,若{c n }是1,1,2,…,求数列{c n }的前10项的和.解析 ∵c 1=a 1+b 1,即1=a 1+0,∴a 1=1.又⎩⎪⎨⎪⎧a 2+b 2=c 2,a 3+b 3=c 3,即⎩⎪⎨⎪⎧q +d =1, ①q 2+2d =2. ②②-2×①,得q 2-2q =0. 又∵q ≠0,∴q =2,d =-1.c 1+c 2+c 3+…+c 10=(a 1+a 2+a 3+…+a 10)+(b 1+b 2+b 3+…+b 10)=a 11-q 101-q +10b 1+10×92d=210-1+45·(-1)=978.21.(12分)已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 解析 (1)b 1=a 2-a 1=1, 当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1,∴{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =(-12)n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+1+(-12)+…+(-12)n -2=1+1--12n -11--12=1+23[1-(-12)n -1]=53-23(-12)n -1,当n =1时,53-23(-12)1-1=1=a 1.∴a n =53-23(-12)n -1(n ∈N *).22.(12分)设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0.(1)求{a n }的通项; (2)求{nS n }的前n 项和T n . 解析 (1)a n =12n ,n =1,2,…(2)∵{a n }是首项a 1=12,公比q =12的等比数列,∴S n =121-12n1-12=1-12n ,nS n =n -n2n . 则数列{nS n }的前n 项和T n =(1+2+…+n )-(12+222+…+n2n ), ①T n 2=12(1+2+…+n )-(122+223+…+n -12n +n2n +1),② ①-②,得T n 2=12(1+2+…+n )-(12+122+…+12n )+n 2n +1 =nn +14-121-12n 1-12+n2n +1,即T n =n n +12+12n -1+n2n -2.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章数列单元综合测试一、选择题(每小题5分,共60分) 1.数列{2n +1}的第40项a 40等于( ) A .9B .10C .40D .412.等差数列{2-3n }中,公差d 等于( ) A .2B .3C .-1D .-33.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等于( ) A .10B .210C .210-2D .211-24.在等差数列{a n }中,前n 项和为S n ,若a 7=5,S 7=21,那么S 10等于( ) A .55B .40C .35D .705.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7B .8C .15D .166.等差数列{a n }的前n 项和为S n, 若a 3+a 17=10,则S 19的值是( ) A .55B .95C .100D .不确定7.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .120B .105C .90D .758.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .189.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则ab 等于( )A .-2B .2C .-4D .410.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)211.在一直线上共插有13面小旗,相邻两面小旗之间距离为10 m ,在第一面小旗处有一个人,把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路程最短,应集中到哪一面小旗的位置上( )A .7B .6C .5D .412.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4013B .4014C .4015D .4016二、填空题(每小题5分,共20分)13.数列{a n }中的前n 项和S n =n 2-2n +2,则通项公式a n =________.14.设{a n }为公比q >1的等比数列,若a 2006和a 2007是方程4x 2-8x +3=0的两根,则a 2008+a 2009=________.15.等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于________.16.用[x ]表示不超过x 的最大整数,如[0.78]=0,[3.01]=3,如果定义数列{x n }的通项公式为x n =[n5](n ∈N *),则x 1+x 2+…+x 5n =________.三、解答题17.(本小题10分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0.19.(本小题12分)已知数列{a n }是等差数列,a 2=6,a 5=18;数列{b n }的前n 项和是T n ,且T n +12b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.一、选择题(每小题5分,共60分)第二章数列单元综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.数列{2n +1}的第40项a 40等于( ) A .9 B .10 C .40D .41解析:a 40=2×40+1=81=9.答案:A2.等差数列{2-3n }中,公差d 等于( ) A .2 B .3 C .-1D .-3解析:设a n =2-3n ,则an +1-a n =[2-3(n +1)]-(2-3n )=-3. 答案:D3.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等于( )A .10B .210C .210-2D .211-2解析:∴数列{a n }是公比为2的等比数列且a 1=2.答案:D4.在等差数列{a n }中,前n 项和为S n ,若a 7=5,S 7=21,那么S 10等于( ) A .55 B .40 C .35D .70解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+6d =5,7a 1+21d =21,解得d =23,a 1=1,则S 10=10a 1+45d =40. 答案:B5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15D .16解析:设公比为q ,由于4a 1,2a 2,a 3成等差数列, 则4a 2=4a 1+a 3,所以4q =4+q 2,解得q =2. 所以S 4=a 1(1-q 4)1-q =1-241-2=15.答案:C6.等差数列{a n }的前n 项和为S n, 若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .不确定解析:a 3+a 17=a 1+a 19,∴S 19=19(a 1+a 19)2=192×10=95.答案:B7.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .120B .105C .90D .75解析:{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,即3a 2=15,则a 2=5. 又a 1a 2a 3=80,∴a 1a 3=(5-d )(5+d )=16,∴d =3.答案:B8.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18解析:设该数列有n 项,且首项为a 1,末项为a n, 公差为d .则依题意有⎩⎪⎨⎪⎧5a 1+10d =34,①5a n -10d =146,②a 1+an2·n =234,③①+②可得a 1+a n =36.代入③得n =13.从而有a 1+a 13=36. 又所求项a 7恰为该数列的中间项,∴a 7=a 1+a 132=362=18.故选D.答案:D9.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则ab 等于( )A .-2B .2C .-4D .4解析:∵2b =a +c ,∴c =2b -a .∵c 2=ab ,∴a 2-5ab +4b 2=0,∴a =b (舍去)或a =4b ,∴a b=4. 答案:D10.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:设公比为q ,答案:C11.在一直线上共插有13面小旗,相邻两面小旗之间距离为10 m ,在第一面小旗处有一个人,把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路程最短,应集中到哪一面小旗的位置上( )A .7B .6C .5D .4解析:图1如图1所示,设将旗集中到第x 面小旗处,则从第一面旗到第x 面旗共走路程为10(x-1)m ,然后回到第二面旗处再到第x 面处的路程是20(x -2)m ,…,从第x -1面到第x 面来回共20 m ,从第x 面处到第x +1面处路程为20 m ,从第x 面到第x +2面处的路程为20×2 m ,….总共的路程为s =10(x -1)+20(x -2)+20(x -3)+…+20×1+20×1+20×2+…+20×(13-x )=10(x -1)+20·(x -2)(x -1)2+20·(13-x )(14-x )2=10[(x -1)+(x -2)(x -1)+(13-x )(14-x )]=10(2x 2-29x +183)=20(x -294)2+31154.∵x ∈N *,∴当x =7时,s 有最小值为780 m , 即将旗集中到第7面小旗处,所走的路程最短. 答案:A12.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4013B .4014C .4015D .4016解析:由已知a 1>0,a 2007·a 2008<0,可得数列{a n }为递减数列,即d <0,a 2007>0,a 2008<0.利用等差数列的性质及前n 项和公式可得所以使前n 项和S n >0成立的最大自然数n 是4014,选B. 答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.数列{a n }中的前n 项和S n =n 2-2n +2,则通项公式a n =________. 解析:当n =1时,a 1=S 1=1;当n >1时,a n =S n -S n -1=(n 2-2n +2)-[(n -1)2-2(n -1)+2]=2n -3. 又n =1时,2n -3≠a 1,所以有a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >1.答案:a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >114.设{a n }为公比q >1的等比数列,若a 2006和a 2007是方程4x 2-8x +3=0的两根,则a 2008+a 2009=________.解析:方程4x 2-8x +3=0的两根是12和32,答案:1815.等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于________.解析:∵S 12=12a 1+66d ,S 4=4a 1+6d ,又S 12=8S 4,∴12a 1+66d =32a 1+48d .∴20a 1=18d ,∴a 1d =1820=910.答案:91016.用[x ]表示不超过x 的最大整数,如[0.78]=0,[3.01]=3,如果定义数列{x n }的通项公式为x n =[n5](n ∈N *),则x 1+x 2+…+x 5n =________.解析:x 5n =[5n5]=[n ]=n ,则x 1+x 2+…+x 5n =5[x 5+x 10+x 15+…+x 5(n -1)]+x 5n =5(1+2+…+n -1)+n =52n 2-32n .答案:52n 2-32n三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题10分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数.解:设三数为aq,a ,aq .由题意,得⎩⎪⎨⎪⎧a 3=512,(a q -2)+(aq -2)=2a , 解得⎩⎪⎨⎪⎧a =8,q =2或⎩⎪⎨⎪⎧a =8,q =12.所以这三个数为4,8,16或16,8,4.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0. 解:原式=(a +a 2+…+a n )-(1+2+…+n )=(a +a 2+…+a n )-n (n +1)2=⎩⎪⎨⎪⎧a (1-a n )1-a-n (n +1)2(a ≠1),n -n 22(a =1).19.(本小题12分)已知数列{a n }是等差数列,a 2=6,a 5=18;数列{b n }的前n 项和是T n ,且T n +12b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列. 解:(1)设{a n }的公差为d ,∴⎩⎪⎨⎪⎧a 1+d =6,a 1+4d =18,解得a 1=2,d =4. ∴a n =2+4(n -1)=4n -2.(2)证明:当n =1时,b 1=T 1,由T 1+12b 1=1,得b 1=23.当n ≥2时,∵T n =1-12b n ,Tn -1=1-12b n -1,∴T n -T n -1=12(bn -1-b n ).∴b n =12(b n -1-b n ).∴b n =13b n -1. ∴{b n }是以23为首项,13为公比的等比数列.20.(本小题12分)假设某市2007年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,该市历年所建中低价房的累计面积(以2007年为累计的第一年)等于4750万平方米?解:设n 年后该市每年所建中低价房的面积为a n , 由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n (n -1)2×50=25n 2+225n .令25n 2+225n =4750,即n 2+9n -190=0, 解得n =-19或n =10. 又n 是正整数,∴n =10.到2016年底,该市历年所建中低价房的累计面积等于4750万平方米. 21.(本小题12分)设a 1=1,a 2=53,an +2=53an +1-23a n (n ∈N *).(1)令b n =an +1-a n (n ∈N *),求数列{b n }的通项公式;(2)求数列{na n }的前n 项和S n .解:(1)因为b n +1=a n +2-a n +1=53a n +1-23a n -a n +1=23(a n +1-a n )=23b n ,所以数列{b n }是首项为b 1=a 2-a 1=23,公比为23的等比数列,所以b n =(23)n (n =1,2,…).22.(本小题12分)将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1.S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n ≥2).(1)证明数列{1S n}成等差数列,并求数列{b n }的通项公式;(2)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当a 81=-491时,求上表中第k (k ≥3)行所有项的和.解:(1)证明:由已知,当n ≥2时,2b nb n S n -S 2n=1,又因为S n =b 1+b 2+…+b n ,又因为S 1=b 1=a 1=1,所以数列{1S n }是首项为1,公差为12的等差数列.由上可知1S n =1+12(n -1)=n +12,即S n =2n +1.所以当n ≥2时,b n =S n -S n -1=2n +1-2n =-2n (n +1). 因此b n =⎩⎪⎨⎪⎧1,n =1,-2n (n +1),n ≥2. (2)设题表中从第三行起,每行的公比都为q ,且q >0.因为1+2+…+12=12×132=78,所以表中第1行至第12行共含有数列{a n }的前78项.故a 81在表中第13行第三列,因此a 81=b 13·q 2=-491.又b 13=-213×14,所以q =2. 记表中第k (k ≥3)行所有项的和为S ,即S =b k (1-q k )1-q =-2k (k +1)·1-2k 1-2=2k (k +1)(1-2k )(k ≥3).。