数列综合测试卷
数列单元测试卷

数列单元测试卷1.已知等比数列{,384,3,}103==a a a n 中则该数列的通项n a = .2.设等比数列}{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 .3. 等比数列{a n }的前n 项和S n =________;设a =a 11-q (q ≠1),则S n =________.4. 在等比数列{}a n 中,若S 4=1,S 8=3,则a 17+a 18+a 19+a 20的值为________.5. 已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=________.6.已知n S 为等比数列{}n a 的前n 项和,364,243,362===n S a a ,则=n .7. 已知等比数列{a n }的公比q =2,a n =96,前n 项和S n =189,则这个数列共有________项,首项a 1=________. 8. 已知等比数列{a n }的首项为8,S n 是其前n 项的和,某同学经计算得S 2=20,S 3=36,S 4=65,后来该同学发现其中一个数算错了,则该数为________.9.等差数列}{n a 中,a 1=2,公差不为零,且a 1,a 3,a 11 恰好是某等比数列的前三项,那么该等比数列公比的值等于_______________________.10. 设等比数列{}a n 的前n 项和为S n ,已知S 4=1,S 8=17,则数列{}a n 的通项公式为________.11 . 已知等比数列{a n },a 2>a 3=1,则使不等式(a 1-1a 1)+(a 2-1a 2)+…+(a n -1a n)≥0成立的最大自然数n 为________.12. 如果lg x +lg x 2+…+lg x 10=110,那么lg x +lg 2x +…+lg 10x =________. 13.若数列{}n a 满足:1.2,111===+n a a a n n ,2,3….则=+++n a a a 21 .14.若互不相等的实数,,a b c 成等差数列,,,c a b 成等比数列,且310a b c ++=,则a = . 15. 已知nS 为等比数列{}n a 前n 项和,0>n a ,80=nS ,65602=n S ,前n 项中的数值最大的项为54,求100S .16.{a n }为等差数列,{b n }为等比数列,a 1=b 1 =1, a 2+a 4 =b 3,b 2b 4=a 3.分别求出{a n }及{b n }的前10项的和S 10及T 10.17.已知S n 是等比数列{a n }的前n 项和,S 3,S 9,S 6成等差数列,求证:a 2,a 8,a 5成等差数列.18.在等比数列{}n a 中,,400,60,364231>=+=n S a a a a 求n 的范围.19. 在等比数列{a n }中,S n 为前n 项和,a 1+a n =66,a 2a n -1=128,S n =126,求n 和公比q 的值.20.已知{a n }是首项为a 1,公比q (q ≠1)为正数的等比数列,其前n 项和为S n ,且有5S 2=4S 4,设b n =q +S n .(1)求q 的值;(2)数列{b n }能否为等比数列?若是,请求出a 1的值;若不是,请说明理由.21.(本小题满分16分)已知数列{a n }满足2122111()2222n n n na a a n N ++++⋅⋅⋅+=∈. (1) 求数列{a n }的通项公式;(2) 求数列{a n }的前n 项和S n .22.设数列{a n }是公差大于零的等差数列,已知a 1=2,a 3=a 22-10.(1)求数列{a n }的通项公式.(2)设数列{b n }是以函数y =4sin 2πx 的最小正周期为首项,以3为公比的等比数列,求数列{a n -b n }的前n 项和S n .数列单元测试卷参考答案: 1.3n 23-⨯; 2.2-;3. ⎩⎪⎨⎪⎧a 11-q n1-q q ≠1,na 1q =1.a -aq n4. 16 [提示] 由a 1⎝ ⎛⎭⎪⎫1-q 41-q =1,a 1⎝ ⎛⎭⎪⎫1-q 81-q =3,得1+q 4=3,q 4=2,所以a 17+a 18+a 19+a 20=a 1q 16+a 2q 16+a 3q 16+a 4q 16=q 16=24=16.5. 323⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n [提示] 由⎩⎪⎨⎪⎧a 1q =2,a 1q 4=14,解得⎩⎪⎨⎪⎧a 1=4,q =12.所以{a n a n +1}是首项为a 1a 2=8,公比为q 2=14的等比数列.6. 6[提示]3,12433151612==⎩⎨⎧⇒====q a q a a q a a 或3,11-=-=q a , 当3,11==q a 时,636431)31(1=⇒=--=n S n n ; 当3,11-=-=q a 时,[]n S nn ⇒=+---=36431)3(11无整数解. 7. 6 3 [提示] 由189=S n =a 1(2n-1),96=a 1·2n -1,得a 1=3,n =6.8. S 3 9.4 10.-1n·2n -15或2n -115 [提示] 设公比为q ,易知q ≠1.由S 4=1,S 8=17,得a 11-q 41-q =1,a 11-q 81-q=17,相除,得q 4+1=17,q =±2.当q =2时,a 1=115,a n =2n -115;当q =-2时,a 1=-15,a n =-1n·2n -15. 11. n =5 [提示] 由a 1+a 2+…+a n ≥1a 1+1a 2+…+1a n ,得a 11-q n 1-q ≥1a 1⎝ ⎛⎭⎪⎫1-1q n 1-1q.又由a 2>a 3=1,得0<q <1且a 1=1q2.代入可得q5-n≤1.又 0<q <1, ∴ n ≤5.12. 2046 [提示] 由题意,得lg x +lg 2x +…+lg 10x =2×1-2101-2=211-2=2046.13.12n - 14.-415. 由0>n a ,80=n S ,65602=n S ,知1≠q ,∴.65601)1(,801)1(2121=--==--=qq a S q q a S n n n n ∴81821122=⇒=--=nn n n n q q q S S , ∴1>q .又 前n 项中的数值最大的项为5411==-n n q a a ,∴321=q a . ∴ .133,21001001-=⇒==S q a16.∵ {a n }为等差数列,{b n }为等比数列, ∴ a 2+a 4=2a 3,b 3b 4=b 32. 而已知a 2+a 4=b 3,b 3b 4=a 3, ∴ b 3=2a 3,a 3=b 32. ∵ b 3≠0, ∴ b 3=12,a 3=14.由 a 1=1,a 3= 14 知{a n }的公差d =-38.∴ S 10=10a 1+10×92d =-558.由b 1=1,b 3= 12 知{b n }的公比为q =22或q =-22. 当q =22时,T 10=b 1(1-q 10)1-q =3132(2+2);当q =-22时,T 10=b 1(1-q 10)1-q =3132(2-2)17. 显然q ≠1,由S 3+S 6=2S 9,得a 11-q (1-q 3)+a 11-q (1-q 6)=2a 11-q (1-q 9), ∴ 1+1+q 3=2(1+q 3+q 6),2q 6+q 3=0. ∴ q 3=-12.∴ a 2+a 5=a 2+a 2q 3=a 2(1+q 3)=a 2⎝ ⎛⎭⎪⎫1-12=12a 2.a 8=a 2q 6=a 2⎝ ⎛⎭⎪⎫-122=14a 2.∴ a 2+a 5=2a 8.∴ a 2,a 8,a 5成等差数列.18. 22213222236,(1)60,0,6,110,3,a a a a q a a q q ==+=>=+==±当3q =时,12(13)2,400,3401,6,13nn n a S n n N -==>>≥∈-;当3q =-时,12[1(3)]2,400,(3)801,8,1(3)nn na S n n ---=-=>->≥--为偶数;∴为偶数且n n ,8≥.19. 在等比数列{a n }中,a 1·a n =a 2·a n -1=128.又a 1+a n =66,解得⎩⎪⎨⎪⎧a 1=2,a n =64或⎩⎪⎨⎪⎧a 1=64,a n =2.若a 1=2,a n =64,S n =126,则qn -1=32,1-q n=63(1-q ).将q n=32q 代入1-q n=63(1-q ),得q =2,n =6. 若a 1=64,a n =2,S n =126,则qn -1=132,32(1-q n)=63(1-q ). 将q n =q 32代入32(1-q n)=63(1-q ),得q =12,n =6.20. (1)由5S 2=4S 4,得 5a 11-q 21-q =4a 11-q 41-q,∴ 5(1-q 2)=4(1-q 4). ∴ q 2=14.又 q >0, ∴ q =12.(2)S n =a 11-q n 1-q =2a 1-a 1⎝ ⎛⎭⎪⎫12n -1,b n =q +S n =12+2a 1-a 1⎝ ⎛⎭⎪⎫12n -1.若{b n }成等比数列,则12+2a 1=0,∴ a 1=-14.此时b n =⎝ ⎛⎭⎪⎫12n +1,b n +1b n =⎝ ⎛⎭⎪⎫12n +2⎝ ⎛⎭⎪⎫12n +1=12. ∴ {b n }成等比数列.故存在实数a 1=-14,使{b n }成等比数列.21.解:(1)n=1时,2111122a +=,得12a =;………………………2分n ≥2时,21221112222n n n na a a +++⋅⋅⋅+=,①2212121111(1)(1)22222n n n n n na a a ---+--++⋅⋅⋅+==,② ①-②得12nn a n =,2nn a n =⋅, 故2,12,2n nn a n n =⎧=⎨⋅≥⎩,即2n n a n =⋅(n N *∈)………………………8分 (2)1212222nn S n =⨯+⨯++⋅ ③23121222(1)22n n n S n n +=⨯+⨯++-⋅+⋅ ④③-④得1231121212122nn n S n +-=⨯+⨯+⨯++⋅-⋅ ……………12分112(12)2(1)2212n n n n n ++-=-⋅=-⋅--……………14分故1(1)22n n S n +=-⋅+……………16分22.【解】 (1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1=2,a 1+2d =(a 1+d )2-10,解得d =2或d =-4(舍), 所以a n =2+(n -1)×2=2n . (2)因为y =4sin 2πx =4×1-cos 2πx 2=-2cos 2πx +2,其最小正周期为2π2π=1,故首项为1,因为公比为3,从而b n =3n -1,所以a n -b n =2n -3n -1,故S n =(2-30)+(4-31)+…+(2n -3n -1)=(2+2n )n 2-1-3n 1-3=n 2+n +12-3n 2.。
成都四川师范大学附属中学必修五第一章《数列》测试卷(含答案解析)

一、选择题1.记无穷数列{}n a 的前n 项12,,,n a a a …的最大项为n A ,第n 项之后的各项12,n n a a ++,···的最小项为n B ,令n n n b A B =-,若数列{}n a 的通项公式为2276n a n n =-+,则数列{}n b 的前10项和为( )A .169-B .134-C .103-D .78-2.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( )A .20192020B .20202021C .20212022D .101010113.某大楼共有12层,有11人在第一层上了电梯,他们分别要去第2至12层,每层1人,因特殊原因,电梯只能停在某一层,其余10人都要步行到所要去的楼层,假设初始的“不满意度”为0,每位乘客每向下步行一层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,要使得10人“不满意度”之和最小,电梯应该停在第几层( ) A .7B .8C .9D .104.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40425.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51016.设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( ) A .5B .6C .7D .87.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .5B .6C .7D .88.等差数列{}n a 的前n 项和为n S ,1000S >,1010S <,则满足10n n a a +<的n =( )A .50B .51C .100D .1019.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A .1B .1-或2C .3D .1-10.若n S 是等比数列{}n a 的前项和,3S ,9S ,6S 成等差数列,且82a =,则25a a +=( ) A .12-B .4-C .4D .1211.设{}n a 为等比数列,给出四个数列:①{}2n a ,②{}2n a ,③{}2na ,④{}2log ||n a .其中一定为等比数列的是( ) A .①③B .②④C .②③D .①②12.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为( )A .153B .190C .231D .276二、填空题13.设S n 是数列{}n a 的前n 项和,且*1111,20,3n n n a a S S n N ++=+=∈,则1223910S S S S S S ++⋅⋅⋅⋅⋅+=___________.14.已知首项为1的数列{}n a 的前n 项和为n S ,若()21n n S n a =+,则数列()2121*1n n a n N a -+⎧⎫⎨⎬⎭∈⋅⎩的前n 项和n T =______. 15.已知等差数列{}n a 中,48a =,84a =,则其通项公式n a =__________16.已知函数()f x 在()1,∞-+上单调,且函数()2y f x =-的图象关于1x =对称,若数列{}n a 是公差不为0的等差数列,且()()5051f a f a =,则1100a a +等于________.17.已知数列{}n a 的前n 项和为n S ,点()()*,,2n n S a n N n ∈≥在2441xy x =-的图像上,11a =,数列{}n a 通项为__________.18.在数列{}n a 中,121a a ==,32a =,且数列1n n a a +⎧⎫⎨⎬⎩⎭为等比数列,则n a =__________.19.已知数列{}n a 的前n 项和是n S ,若111,n n a a a n +=+=,则1916S S -的值为________. 20.已知数列{}n a 的首项为2,且满足1231+=+n n n a a a ,则1n a =__________. 三、解答题21.设数列{}n a 的前n 项和为n S ,点(,)()nS n n N n*∈均在函数32y x =-的图像上. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设13n n n b a a +=,求数列{}n b 的前n 项和n T . 22.已知等差数列{}n a 中,n S 为数列{}n a 的前n 项和,519a =,321S =. (1)求数列{}n a 的通项公式n a ; (2)令1n n b S n=+,求数列{}n b 的前n 项和n T . 23.已知正项等比数列{}n a ,首项13a =,且13213,,22a a a 成等差数列. (1)求数列{}n a 的通项公式; (2)若数列{}nb 满足3321log log n n n b a a +=⋅,求数列{}n b 的前n 项和n S .24.在①246a a +=,945S =②222n n n S =+③()121n n a n n a n -=≥-,11a =这三个条件中任选一个补充在下面的问题中,并加以解答.设等差数列{}n a 的前n 项和为n S ,________,数列{}n b 为等比数列,112b a =,222a b =,求数列{}n n a b 的前n 项和n T .25.已知数列{}n a 满足11a =,1nn n a pa q +=+,(其中p 、q 为常数,*n N ∈).(1)若1p =,1q =-,求数列{}n a 的通项公式;(2)若2p =,1q =,数列1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T .证明:22n T n <+,*n N ∈.26.已知等比数列{}n a 的公比3q =,并且满足2a ,318a +,4a 成等差数列. (1)求数列{}n a 的通项公式; (2)设数列{}n b 满足31log n n nb a a =+,记n S 为数列{}n b 的前n 项和,求使2220n S n ->成立的正整数n 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先利用单调性依次写出前几项,再根据规律求和即可. 【详解】数列{}n a 的通项公式为2276n a n n =-+,故从2a 起单调递增,且1231,0,3a a a ===, 所以11112101b A B a a =-=-=-=,22213b A B a a =-=-,33334b A B a a =-=-,44445b A B a a =-=-,…,1010101011b A B a a =-=-,又2112117116171a =⨯-⨯+=,所以数列{}n b 的前10项和为()()()()12101334451011...1...b b b a a a a a a a a +++=+-+-+-++-111111171169a a =+-=+-=-.故选:A. 【点睛】 关键点点睛:本题的解题关键在于发现数列从2a 起单调递增,才能依次确定{}n b 的项,找到规律,突破难点.2.C解析:C 【分析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】 数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=. 故选:C 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.3.C解析:C 【分析】根据题意,假设电梯所停的楼层,表达出“不满意度”之和,利用等差数列的求和公式即可求得结论. 【详解】解:设电梯所停的楼层是(212)n n ,则12(2)2[12(12)]S n n =++⋯+-+++⋯+- (2)(1)(12)(13)222n n n n ----=+⨯ 22235335353()157()157232624n n n =-+=--+ 开口向上,对称轴为5396x =≈, 故S 在9n =时取最小值239539314402min S ⨯-⨯+==.故选:C . 【点睛】本题考查数列知识,考查函数思想的运用,考查计算能力,求得“不满意度”之和是关键.4.B解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.5.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.6.A解析:A 【分析】由等差数列的前n 和公式,求得1710a a +=,再结合等差数列的性质,即可求解. 【详解】由题意,根据等差数列的前n 和公式,可得1777()352a a S +==,解得1710a a +=, 又由等差数列的性质,可得17452a a a +==. 故选:A.熟记等差数列的性质,以及合理应用等差数列的前n 和公式求解是解答的关键7.C解析:C 【分析】首先分析题目已知3a n+1+a n =4(n ∈N*)且a 1=9,其前n 项和为S n ,求满足不等式|S n ﹣n ﹣6|<1125的最小整数n .故可以考虑把等式3a n+1+a n =4变形得到111-13n n a a +-=-,然后根据数列b n =a n ﹣1为等比数列,求出S n 代入绝对值不等式求解即可得到答案. 【详解】对3a n+1+a n =4 变形得:3(a n+1﹣1)=﹣(a n ﹣1) 即:111-13n n a a +-=- 故可以分析得到数列b n =a n ﹣1为首项为8公比为13-的等比数列. 所以b n =a n ﹣1=8×11-3n -⎛⎫ ⎪⎝⎭a n =8×11-3n -⎛⎫ ⎪⎝⎭+1所以181********n nnS n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+=-⨯-+ ⎪⎛⎫⎝⎭-- ⎪⎝⎭|S n ﹣n ﹣6|=n11-6-3125⎛⎫⨯< ⎪⎝⎭解得最小的正整数n=7 故选C . 【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列a n ﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.8.A解析:A 【分析】由题意和等差数列求和公式与性质可得50510a a +>;510a <,进而可得500a >,据此分析可得答案. 【详解】根据题意,等差数列{}n a 中,1000S >,1010S <, 则有110010*********()10050()50()02a a S a a a a +⨯==+=+>,则有50510a a +>;又由110110151()10110102a a S a +⨯==<,则有510a <;则有500a >,若10n n a a +<,必有50n =; 故选:A . 【点睛】本题考查等差数列的前n 项和公式的应用,涉及等差数列的性质,属于基础题.9.B解析:B 【分析】用等比数列的通项公式和等差中项公式求解. 【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q .故选B. 【点睛】本题考查等比数列与等差数列的综合运用.10.C解析:C 【分析】当公比q=1时,易推断不符合题意,故q 1≠,然后利用等比数列的前n 项和的公式和等差数列的性质得方程,再利用等比数列的性质求解. 【详解】设数列{}n a 的公比为q ,当1q =时,2n a =,则36S =,612S =,918S =,此时396,,S S S 不成等差数列,不符合题意,舍去;当1q ≠时,∵396,,S S S 成等差数列,∴3692S S S +=, 即()()()3691111112?111a q a q a q qq q---+=---,即96320q q q --=,解得312q =-或31q =(舍去)或30q =(舍去),∴8268a a q ==,8534a a q ==-,∴254a a +=,故选C. 【点睛】本题综合考查了等比数列与等差数列;在应用等比数列的前n 项和公式时,公比不能为1,故在解题过程中,应注意公比为1的这种特殊的等比数列,以防造成漏解.11.D解析:D 【分析】 设11n n a a q -=,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【详解】 设11n n a a q-=,①,112=2n n a a q-,所以数列{}2n a 是等比数列;②,222222111=()n n n a a q a q --=,所以数列{}2n a 是等比数列;③,11112111211222=2,222n n n n n n n n a a q a a qa q a q a a q -------==不是一个常数,所以数列{}2n a不是等比数列; ④,122122121log ||log |q |log ||log |q |n n n n a a a a ---=不是一个常数,所以数列{}2log ||n a 不是等比数列. 故选D 【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.12.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果. 【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=, 故选:C.【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.二、填空题13.【分析】由代入化简求得再结合求和方法计算可得结果【详解】因为所以所以所以又所以数列是以为首项为公差的等差数列所以所以所以所以故答案为:【点晴】由代入化简求得数列是等差数列是解题的关键解析:17【分析】由11n n n a S S ++=-代入化简求得n S ,再结合求和方法计算可得结果. 【详解】因为1120n n n a S S +++= 所以1120n n n n S S S S ++-+= 所以112n n n n S S S S ++-=所以1112n nS S +-= 又11113S a == 所以数列1n S ⎧⎫⎨⎬⎩⎭是以3为首项,2为公差的等差数列, 所以()131221nn n S =+-⨯=+ 所以121n S n =+ 所以111111212322123n n S S n n n n +⎛⎫=⋅=- ⎪++++⎝⎭所以12239101111111111123557192123217S S S S S S ⎛⎫⎛⎫++⋅⋅⋅⋅⋅⋅+=-+-+⋅⋅⋅+-=-=⎪ ⎪⎝⎭⎝⎭ 故答案为:17【点晴】由11n n n a S S ++=-代入化简求得数列1n S ⎧⎫⎨⎬⎩⎭是等差数列是解题的关键.14.【分析】根据求数列通项分析时求解数列通项得到整理可得即可求出通项公式代入数列的通项中进行列项整理最后利用裂项相消法即可求出数列的前项和【详解】∵∴∴∴即∴即故则故故答案为:【点睛】本题主要考查了利用 解析:21nn + 【分析】根据n S 求数列通项,分析2n ≥时求解数列通项得到()121n n n a n a na -=+-,整理可得()121n n a a n n n -=≥-,即可求出通项公式,代入数列21211n n a a -+⎧⎫⎨⎬⋅⎩⎭的通项中进行列项整理,最后利用裂项相消法即可求出数列21211n n a a -+⎧⎫⎨⎬⋅⎩⎭的前n 项和.【详解】∵()21n n S n a =+,∴()1122n n S na n --=≥, ∴()()112212n n n n S S n a na n ---=+-≥, ∴()121n n n a n a na -=+-,即()11n n n a na --=, ∴()121n n a a n n n -=≥-, 即11111n n a a a n n -====-,故n a n =, 则()()212111111212122121n n a a n n n n -+⎛⎫==- ⎪⋅-+-+⎝⎭,故11111111112335212122121n nT n n n n ⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 故答案为:21nn +. 【点睛】本题主要考查了利用递推公式求解通项公式,考查了裂项相消法求和问题,属于中档题.15.【解析】∵等差数列{an}中a4=8a8=4∴解得a1=11d=−1∴通项公式an=11+(n−1)×(−1)=12−n 解析:12n -【解析】∵等差数列{a n }中,a 4=8,a 8=4,∴41813874a a d a a d =+=⎧⎨=+=⎩,解得a 1=11,d =−1,∴通项公式a n =11+(n −1)×(−1)=12−n .16.【分析】根据的图象的对称性利用平移变换的知识得到的图象的对称性结合函数的单调性根据得到的值最后利用等差数列的性质求得所求答案【详解】由函数的图象关于对称则函数的图象关于对称又在上单调且所以因为数列是 解析:2-【分析】根据()2y f x =-的图象的对称性,利用平移变换的知识得到()f x 的图象的对称性,结合函数的单调性,根据()()5051f a f a =得到5051a a +的值,最后利用等差数列的性质求得所求答案. 【详解】由函数()2y f x =-的图象关于1x =对称,则函数()f x 的图象关于1x =-对称, 又()f x 在()1,∞-+上单调,且()()5051f a f a =,所以5051a a 2+=-,因为数列{}n a 是公差不为0的等差数列,所以11005051a a 2a a +=+=-, 故答案为:2-. 【点睛】本题考查函数的对称性和单调性,等差数列的性质,涉及函数的图象的平移变换,属中档题,小综合题,难度一般.17.【分析】把数列递推式中换为整理得到是等差数列公差然后由等差数列的通项公式得答案【详解】由题意可得:∴∴两边除以并移向得出是等差数列公差故当时当时不符合上式故答案为:【点睛】本题考查了数列递推式考查了解析:()()()()*1,14,,24347n n a n N n n n ⎧=⎪=-⎨∈≥⎪--⎩【分析】把数列递推式中n a 换为1n n s s --,整理得到1{}nS 是等差数列,公差2d =,然后由等差数列的通项公式得答案. 【详解】由题意可得:()24,241nn n S a n S =≥- ∴()214,241nn n n S S S n S --=≥-, ∴1140n n n n s s s s ---+=.两边除以1n n s s -,并移向得出1114,(2)n n n S S --=, 1{}nS ∴是等差数列,公差4d =,11111S a ==. ∴114(1)43nn n S =+-=-, 故143n S n =-. ∴当2n 时,()()111443474347n n n a S S n n n n --=-=-=----. 当1n =时,11a =不符合上式.()()()()*1,14,,24347n n a n N n n n ⎧=⎪∴=-⎨∈≥⎪--⎩. 故答案为:()()()()*1,14,,24347n n a n N n n n ⎧=⎪=-⎨∈≥⎪--⎩. 【点睛】本题考查了数列递推式,考查了等差关系的确定,考查了运算求解能力,属于中档题.18.【分析】由等比数列通项公式求出然后由累乘法求得【详解】∵为等比数列由已知∴∴时也适合此式∴故答案为:【点睛】本题考查等比数列的通项公式考查累乘法求数列通项公式如果已知则用累加法求通项公式如果已知则用 解析:()()2122n n --【分析】由等比数列通项公式求出1n na a +,然后由累乘法求得n a .【详解】∵1n n a a +⎧⎫⎨⎬⎩⎭为等比数列,由已知211a a =,322a a =,32212a aq a a ==, ∴112n n na a -+=,∴2n ≥时, (2)(1)2212(2)3242112311122222n n n n n n n a aa aa a a a a a ---+++--=⨯⨯⨯⨯⨯=⨯⨯⨯⨯==,1n =也适合此式, ∴(2)(1)22n n na --=.故答案为:(2)(1)22n n --.【点睛】本题考查等比数列的通项公式,考查累乘法求数列通项公式.如果已知1()n n a a f n --=,则用累加法求通项公式,如果已知1()nn a f n a -=,则用连乘法求通项公式. 19.27【分析】由得相减后得数列的奇数项与偶数项分别成等差数列由此可得通项从而求得结论【详解】∵∴相减得又所以数列的奇数项与偶数项分别成等差数列公差为1故答案为:27【点睛】易错点睛:本题考查等差数列的解析:27 【分析】由1n n a a n ++=得121n n a a n +++=+相减后得数列的奇数项与偶数项分别成等差数列,由此可得通项,从而求得结论. 【详解】∵1n n a a n ++=,∴121n n a a n +++=+,相减得21n na a +-=,又1121,1a a a =+=,20a =,211a a -=-,所以数列{}n a 的奇数项与偶数项分别成等差数列,公差为1,21n a n -=,21n a n =-,1916171819981027S S a a a -=++=++=.故答案为:27. 【点睛】易错点睛:本题考查等差数列的通项公式,解题时由已知等式中n 改写为1n +,两相减后得21n na a +-=,这里再计算21a a -,如果2211()22n na a a a +--==,则可说明{}n a 是等差数列,象本题只能说明奇数项与偶数项分别成等差数列.不能混淆,误以为{}n a 是等差数列.这是易错的地方.20.【分析】由已知整理得可得答案【详解】由题知则所以因为所以数列是以为首项为公比的等比数列所以则故答案为:【点睛】本题考查了由递推数列求通项公式的问题关键点是构造数列为等比数列定义形式考查了学生的推理能 解析:532-n【分析】 由已知整理得1111332+⎫⎛-=-⎪ ⎝⎭n n a a 可得答案. 【详解】由题知,113131222++==+n n n n a a a a ,则1111332+⎫⎛-=-⎪ ⎝⎭n n a a , 所以1131123+-=-n na a ,因为11532-=-a , 所以数列13⎧⎫-⎨⎬⎩⎭n a 是以52-为首项,12为公比的等比数列,所以1151135222-⎫⎫⎛⎛-=-⨯=-⨯ ⎪ ⎪⎝⎝⎭⎭n n n a ,则1532=-n n a .故答案为:532-n. 【点睛】本题考查了由递推数列求通项公式的问题,关键点是构造数列为等比数列定义形式,考查了学生的推理能力、计算能力.三、解答题21.(Ⅰ)*65()n a n n N =-∈;(Ⅱ)11(1)261n T n =-+. 【分析】 (Ⅰ)根据点(,)()nS n n N n*∈均在函数32y x =-的图像上,得到232n S n n =-,再利用数列通项与前n 项和的关系求解. (Ⅱ)由(I )得111()26561n b n n =--+,再利用裂项相消法求解. 【详解】 (Ⅰ)因为点(,)()nS n n N n*∈均在函数32y x =-的图像上, 所以3 2.nS n n=-即232n S n n =-. 当n ≥2时,221(32)3(1)2(1)65n n n a S S n n n n n -⎡⎤=-=-----=-⎣⎦;当1n =时,113121a S ==⨯-= 所以*65()n a n n N =-∈. (Ⅱ)由(I )得[]131111()(65)6(1)526561n n n b a a n n n n +===--+--+, 所以1111111(1)()()277136561nn n l T b n n =⎡⎤==-+-+⋯+-⎢⎥-+⎣⎦∑,11(1)261n =-+. 【点睛】方法点睛:求数列的前n 项和的方法(1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11nn na q S a q q q=⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 22.(1)41n a n =-;(2)2(1)n nT n =+.【分析】(1)由已知列方程求出首项和公差,可得答案; (2)求出n S 及n b 的通项公式,由裂项相消求和可得答案. 【详解】(1)∵313321S a d =+=①,51419a a d =+=② 由①②得13a =,4d =. ∴1(1)41n a a n d n =+-=-; (2)由(1)知41n a n =-,13a =,()234122n n n S n n +-∴==+;∴111112(1)21n n b S n n n n n ⎛⎫===- ⎪+++⎝⎭, ∴11111111122233412(1)n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-= ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 【点睛】本题考查了等差数列的通项公式、数列求和,解题关键点是求出数列的首项和公差以及裂项相消求和,考查了学生的基础知识、基本运算.23.(1)3nn a =;(2)13112212n n ⎛⎫-- ⎪++⎝⎭. 【分析】(1)由已知13213,,22a a a 成等差数列求出公比q 后可得通项公式; (2)用裂项相消法求和n S . 【详解】(1)解:设等比数列{}n a 的公比为q , 由题意得:31212322a a a ⨯=+, 即211132a q a a q =+,即232q q =+, 所以3q =或1q =-(舍), 所以1333n n n a -=⋅=.(2)由(1)知233233111log log log 3log 3(2)n n n n n b a a n n ++===⋅⋅+,则11122n b n n ⎛⎫- ⎪+⎝⎭=, 所以1111111112324112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111112212n n ⎛⎫=+-- ⎪++⎝⎭13112212n n ⎛⎫=-- ⎪++⎝⎭【点睛】本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.24.选①或②或③,()1122n n T n +=-⨯+.【分析】选①,设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,根据已知条件建立有关1a 、d 的方程组,求出这两个量,并求出q 的值,可得出数列{}n a 、{}n b 的通项公式,进而利用错位相减法可求得n T ;选②,设等比数列{}n b 的公比为q ,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,并求出q ,可求得数列{}n b 的通项公式,再利用错位相减法可求得n T ;选③,设等比数列{}n b 的公比为q ,利用累乘法可求出数列{}n a 的通项公式,并求出q ,可求得数列{}n b 的通项公式,再利用错位相减法可求得n T . 【详解】选①,设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q , 由已知条件可得2419124693645a a a d S a d +=+=⎧⎨=+=⎩,解得11a d ==,()11n a a n d n ∴=+-=,22122222a q a ∴===,111222n n n nb b q --∴==⨯=,2n n n a b n ∴=⋅,1231222322n n T n =⨯+⨯+⨯++⨯,()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式可得()()2311121222222212212n n n n n n T n n n +++--=++++-⨯=-⨯=-⨯--,因此,()1122n n T n +=-⨯+;选②,当1n =时,111a S ==;当2n ≥时,()()2211122n n n n n n n a S S n --+-+=-=-=. 11a =也满足n a n =,所以,对任意的n *∈N ,n a n =.22122222a q a ∴===,111222n n n nb b q --∴==⨯=,2n n n a b n ∴=⋅,1231222322n n T n =⨯+⨯+⨯++⨯,()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式可得()()2311121222222212212n n n n n n T n n n +++--=++++-⨯=-⨯=-⨯--,因此,()1122n n T n +=-⨯+;选③,()121n n a n n a n -=≥-,且11a =, 由累乘法可得321121231121n n n a a a na a n a a a n -=⋅⋅⋅⋅=⨯⨯⨯⨯=-. 22122222a q a ∴===,111222n n n nb b q --∴==⨯=,2n n n a b n ∴=⋅,1231222322n n T n =⨯+⨯+⨯++⨯,()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式可得()()2311121222222212212n n n n n n T n n n +++--=++++-⨯=-⨯=-⨯--,因此,()1122n n T n +=-⨯+.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.25.(1)()*1(1)2nn a n N --=∈;(2)证明见解析. 【分析】(1)1p =,1q =-,已知条件可得1(1)nn n a a +-=-,利用累加法及等比数列的求和公式,计算可求数列{}n a 的通项公式;(2)2p =,1q =,121n n a a +=+,化简可得1121n n a a ++=+,通过等比数列的通项公式求得()*21n n a n N =-∈,化简可得11212222n n n n a a +=+≤+-,放缩后,通过分组求和可证得结果.【详解】(1)∵1p =,1q =-,∴1(1)n n n a a ++-=,即1(1)nn n a a +-=-,∴当2n ≥:12111221(1)(1)(1)n n n n n n a a a a a a ------+-++-=-+-++-,得1(1)12n n a a -+-=,∴11a =,∴1(1)2nn a --=,当1n =:11a =也符合上式,故()*1(1)2n n a n N --=∈(或1,0,n n a n ⎧=⎨⎩为奇数为偶数). (2)∵2p =,1q =,∴121n n a a +=+,∴()1121n n a a ++=+,即1121n n a a ++=+,∴{}1n a +是以2为首项,2为公比的等比数列, ∴12nn a +=,即()*21n n a n N =-∈.又1112122122221112122n n n n n n n n a a +++--+===+≤+---, ∴11122221221212n n n T n n n -⎛⎫≤+=+-<+ ⎪⎝⎭-, 综上说述:()*22n T n n N <+∈.【点睛】方法点睛:数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和 (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.26.(1)()*3n n a n N =∈;(2)所求的正整数n 的最小值为20.【分析】(1)由公比3q =,并且满足2a ,318a +,4a 成等差数列直接用基本量代换求数列{}n a 的通项公式; (2)先求出311+log ,3n n n n b a n a ==+,用分组求和法求出n S ,解不等式即可. 【详解】(1)因为数列{}n a 是公比为3的等比数列, 又由234,18,a a a +成等差数列,∴243236a a a +=+, 所以1113271836a a a +=+,解得13a =,从而数列{}n a 的通项公式为()*3n n a n N =∈. (2)311+log ,3n n n n b a n a ==+ ∴()()21111111111331211333222313n n n n n n n n S n ⎛⎫- ⎪++⎛⎫⎝⎭=+++++++=+=+- ⎪⎝⎭-, ∴21213n n S n n -=+-, 又113n n ⎧⎫+-⎨⎬⎩⎭是递增的, 当19n =时, 219122020,3n S n -=-<当20n =时, 220122120,3n S n -=-> 所以所求的正整数n 的最小值为20. 【点睛】(1)等差(比)数列问题解决的基本方法:基本量代换;(2)分组求和法进行数列求和适用于{}n n a b +,分组后对{}n a 和{}n b 分别求和.。
等差数列综合测试题

等差数列综合测试题(满分 100分)班级 姓名 分数一、选择题(本大题共10小题,每题4分,共40分)1.已知数列{}n a 的通项公式为22,(1),(2)n n a n n =⎧=⎨≥⎩,则这个数列的前三项为( )A .1、4、9B .2、4、9C .2、1、4D .2、6、112.已知等差数列{}n a 的首项为3,公差为2,则7a 的值等于( )A .1B .14C .15D .163.已知等差数列{}n a 的通项公式为32n a n =-, 则它的公差为 ( )A .2B .3C . 2-D .3-4.等差数列的相邻四项是1,3,,a a b a b +++,那么a ,b 的值分别是( )A .92B .47C .46D .455.已知等差数列{}中,14739a a a ++=,25633a a a ++=,则369a a a ++等于( )A .30B .27C .24D .216.等差数列{}n a 中,12010=S ,那么101a a +的值是( )A .12B .24C .36D .487.如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=A .14B .21C .28D .358.已知等差数列{}n a 中,288a a +=,则该数列前9项和9S 等于( )A.18B.27C.36D.459.一个等差数列的前10项和是48,前20项和是60,那么它的前30项和是( )A.72B.84C.36D. 2410.设n S 是等差数列{}n a 的前n 项和,若3613S S =,则612S S =( )二、填空题(本大题共4小题,每小题3分,共12分)11.若n a =1n a --3,则{}n a 是单调递数列12.在-1与7之间顺次插入三个数a 、b 、c,使这五个数成等差数列,则b 的值是 .13.三角形中三个角A 、B 、C ,成等差数列,则cos B =14.数列7,77,777,7777的一个通项公式是 .三、解答题(本大题共4小题,每小题12分,共48分)15.在等差数列{}n a 中(1) 已知69121520a a a a +++=,求120a a +(2)已知31110a a +=,求678a a a ++16.根据下列各题中的条件,求相应的等差数列{}n a 的前n 项和n S(1)15,95,10n a a n ===(2)11,120,1;n a a d ===17.已知等差数列{}中,a 10=3020=50.(1)求通项公式;(2)若242,求项数n 。
数列试卷(附答案)

数列测试卷(B 卷) 第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知数列3,3,15,…,)12(3-n , …,那么这个数列的第14项是( ) A.7 B.8 C.9 D.102.将棱长相等的正方体按右图所示的形状摆放,从上往下依次为第1层,第2层,第3 层,…,则第6层正方体的个数是( ) A .28 B .21 C .15 D .113.若a,b,c 成等比数列,则函数c bx ax x f ++=2)(的图象与x 轴的交点的个数是( )A .0B .1C .2D .与c b a ,,的值有关 4.一个等差数列共10项,偶数项的和为15,则此数列的第6项为( ) A.3 B.4 C.5 D.65.如果等比数列}{n a 的首项是正数,公比大于1,那么数列}{log 31n a 是( )A .递增的等比数列B .递减的等比数列C .递增的等差数列D .递减的等差数列6.一机器狗每秒钟前进或后退一步,程度设计师让机器狗先前进3步,然后再后退2步的规律移动. 如果将此机器狗放在数轴的原点,面向数轴的正方向,每步的距离为1单位长,令)(n P 表示第n 秒时机器狗所在位置的坐标,那么下列结论中不正确的是( ) A .P (3)=3 B .P (5)=1C .P (10)=3D .P (103)=237.设数列{}n a 的通项公式为2n a n pn =-,若数列{}n a 为单调递增数列,则实数p 的取值范围为( )A.(,2)-∞ B.(,3)-∞ C.](,2-∞ D.](,3-∞8.设数列}{n a 的前n 项和为n S ,令nS S S T nn +++=21,称n T 为数列n a a a ,,,21 的“理想数”,若数列200621,,,a a a 的“理想数”为 2007,那么数列200621,,,,1a a a 的“理想数”为( ) A .2006B .2007C .2008D .20099.在等差数列||,0,0}{10111110a a a a a n >><且中,则使0<n S 成立的n 的最大值为( )A .17B .18C .19D .2010.数列}{n a 中,已知11=S ,22=S ,且)(,023*11N n S S S n n n ∈=+--+,则此数列为( )A .等差数列B .等比数列C .从第二项起为等差数列D .从第二项起为等比数列第Ⅱ卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分。
(完整版)数列单元测试卷含答案

数列单元测试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.答题前,考生务必将自己的姓名、准考证号等信息填涂在答卷相应位置.第Ⅰ卷(选择题)一.选择题:本大题共12小题,每小题5分,共60分。
每小题给出的四个选项中,只有一项是符合题目要求的.1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+12.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n3..记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.74.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.525.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.1906.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=( )A.1 B.2 C.4 D.87.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根 D .不能确定有无实根8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-19.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 05811.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.212.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答).14.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.15.已知数列{a n }的前n 项和S n =-2n 2+n +2.则{a n }的通项公式a n =________16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号)三.解答题(共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和.20.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a na n +2n(n ∈N *).(1)证明:数列{2na n}是等差数列;(2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n .数列单元测试卷(解答)一、选择题(共12小题,每小题5分,共60分)1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+1解析:选B 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n=2n+1,故选B. 2.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n解析:选C A为递减数列,B为摆动数列,D为有穷数列.3.记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.7解析:选B S4-S2=a3+a4=20-4=16,∴a3+a4-S2=(a3-a1)+(a4-a2)=4d=16-4=12,∴d=3.4.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.52解析:选D ∵2a n+1-2a n=1,∴a n+1-a n=12,∴数列{a n}是首项a1=2,公差d=12的等差数列,∴a101=2+12(101-1)=52.5.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.190解析:选B 设公差为d , ∴(1+d )2=1×(1+4d ), ∵d ≠0,∴d =2,从而S 10=100.6.公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=( ) A .1 B.2 C .4 D .8解析:选A 因为a 3a 11=a 27,又数列{a n }的各项都是正数,所以解得a 7=4,由a 7=a 5·22=4a 5,求得a 5=1.7.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根D .不能确定有无实根解析:选A 由于a 4+a 6=a 2+a 8=2a 5,即3a 5=9, ∴a 5=3,方程为x 2+6x +10=0,无实数解.8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-1解析:选B 设数列{b n }的通项b n =11+a n ,因{b n }为等差数列,b 3=11+a 3=13,b 7=11+a 7=12,公差d =b 7-b 34=124, ∴b 11=b 3+(11-3)d =13+8×124=23,即得1+a 11=32,a 11=12.9.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项解析:选C 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 058 解析:选A 由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1, 因此(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10 =1-2101-2+10=1 033.11.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.2解析:设{}n a 的公差为d ,据已知有1×72128d +=, 解得 1.d =所以{}n a 的通项公式为.n a n = b 11=[lg11 ]=112.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30解析:选 B 法一:∵a 1=1,a 2=3,a 3=6,a 4=10,a 5=15,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,∴a 6-a 5=6,a 6=21,a 7-a 6=7,a 7=28. 法二:由图可知第n 个三角形数为n n +12,∴a 7=7×82=28.二、填空题(共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答). 解析:由a 1=1,a n +1=2a n (n ∈N *)知{a n }是以1为首项,以2为公比的等比数列,由通项公式及前n 项和公式知S 8=a 11-q 81-q =1·1-281-2=255.答案: 25514.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.解析:由a n =a n -1+n (n ≥2),得a n -a n -1=n .则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,把各式相加,得a 5-a 1=2+3+4+5=14,∴a 5=14+a 1=14+1=15. 答案:1515.已知数列{a n }的前n 项和S n =-2n 2+n +2. 则{a n }的通项公式a n =________ [解] ∵S n =-2n 2+n +2,当n ≥2时,S n -1=-2(n -1)2+(n -1)+2 =-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3, ∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号) 解析:∵S 7>S 6,即S 6<S 6+a 7, ∴a 7>0.同理可知a 8<0. ∴d =a 8-a 7<0.又∵S 9-S 6=a 7+a 8+a 9=3a 8<0, ∴S 9<S 6.∵数列{a n }为递减数列,且a 7>0,a 8<0, ∴可知S 7为S n 中的最大项. 答案:①②④三、解答题(共4小题,共50分)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.解: (1)设等差数列首项为a 1,公差为d, 则a 4+a 5=2a 1+7d=24,① S 6=6a 1+d=6a 1+15d=48,②由①②得d=4.a 1=-2S N =-2n+n(n-1) ×4/2=2n 2-4n(2)由题意可设公比为q ,则q >0,由b 1=1,且b 2,12b 3,2b 1成等差数列得b 3=b 2+2b 1,∴q 2=2+q ,解得q =2或q =-1(舍去), 故数列{b n }的通项公式为b n =1×2n -1=2n -1.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2, ∴a n =2n.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32. 设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8, b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从b n =-16+12(n -1)=12n -28, 所以数列{b n }的前n 项和S n =n -16+12n -282=6n 2-22n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和. 解:(1)设等差数列{a n }的公差为d, 则a 2=a 1+d,a 3=a 1+2d, 由题意得解得或所以由等差数列通项公式可得a n =2-3(n-1)=-3n+5,或a n =-4+3(n-1)=3n-7. 故a n =-3n+5,或a n =3n-7.(2)当a n =-3n+5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n-7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n-7|=记数列{|a n |}的前n 项和为S n . S 10=|a 1|+|a 2|+|a 3|+|a 4|+……+|a 10|=4+1+(3×3-7)+(3×4-7)+……+(3×10-7) =5+[2×8+8×7×3/2] =10520.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.解:(1)证明:∵a 1=S 1,a n +S n =n ①,∴a 1+S 1=1,得a 1=12. 又a n +1+S n +1=n +1②,①②两式相减得2(a n +1-1)=a n -1,即a n +1-1a n -1=12,也即c n +1c n =12, 故数列{c n }是等比数列. (2)∵c 1=a 1-1=-12, ∴c n =-12n ,a n =c n +1=1-12n , a n -1=1-12n -1.故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n . 又b 1=a 1=12, 所以b n =12n . 21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,. (1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 解:(1)因为+3+…+(2n -1)=2n ,故当n ≥2时, +3+…+(-3) =2(n -1) 两式相减得(2n -1)=2所以= (n≥2)又因题设可得 =2.从而{} 的通项公式为 =.(2)记 {}的前n 项和为 ,由(1)知 = = - . 则 = - + - +…+ - = .22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a n a n +2n (n ∈N *). (1)证明:数列{2n a n}是等差数列; (2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n . 解:(1)证明:由已知可得a n +12n +1=a na n +2n , 即2n +1a n +1=2n a n+1,即2n +1a n +1-2na n =1. ∴数列{2n a n}是公差为1的等差数列. (2)由(1)知2na n =2a 1+(n -1)×1=n +1, ∴a n =2nn +1. (3)由(2)知b n =n ·2n . S n =1·2+2·22+3·23+…+n ·2n , 2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1, 相减得-S n =2+22+23+…+2n -n ·2n +1 =21-2n 1-2-n ·2n +1 =2n +1-2-n ·2n +1,∴S n =(n -1)·2n +1+2.。
《数列》测试卷及答案解析(基础卷)

2019-2020学年高中数学必修五《数列》考试卷姓名: 成绩:一、本卷共12个小题,每题5分,共60分.在每个小题给出的四个选项中,只有一项是最符合题目要求的,请把正确答案填涂在答题卡上.1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 020,则序号n 等于( ).A .672B .673C .674D .675【答案】C解析:由题设,代入通项公式a n =a 1+(n -1)d ,即2 020=1+3(n -1),∴n =674. 2. 已知数列{a n }的通项公式a n =12[1+(-1)n +1],则该数列的前4项依次是( )A .1,0,1,0B .0,1,0,1 C.12,0,12,0 D .2,0,2,0【答案】A3. 若{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是 ( )A .39B .20C .19.5D .33 【答案】D4.数列23,45,67,89,…的第10项是( )A.1617B.1819C.2021D.2223【答案】 C.由题意知数列的通项公式是an =2n 2n +1,∴a10=2×102×10+1=2021.故选C.5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ).A .81B .120C .168D .192 【答案】B解析:∵a 2=9,a 5=243,25a a =q 3=9243=27, ∴q =3,a 1q =9,a 1=3,∴S 4=3-13-35=2240=120.6.若数列{a n }是等差数列,首项a 1>0,a 2019+a 2020>0,a 2019·a 2020<0,则使前n 项和S n >0成立的最大自然数n 是( ).A .4 005B .4038C .4039D .4 008【答案】B解析:由a 2019+a 2020>0,a 2019·a 2020<0,知a 2019和a 2020两项中有一正数一负数,又a 1>0,则公差为负数,否则各项总为正数,故a 2019>a 2020,即a 2019>0,a 2020<0.∴S 4038=2+006400641)(a a >0,∴S 4039=20074·(a 1+a 4039)=20074·2a 2020<0, 故4038为S n >0的最大自然数. 选B .7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ).A .-4B .-6C .-8D . -10【答案】B解析:∵{a n }是等差数列,∴a 3=a 1+4,a 4=a 1+6, 又由a 1,a 3,a 4成等比数列, ∴(a 1+4)2=a 1(a 1+6),解得a 1=-8, ∴a 2=-8+2=-6.8.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S =( ). A .1 B .-1 C .2 D .21。
第二章数列单元综合测试(人教A版必修5)

第二章数列单元综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.数列{2n +1}的第40项a 40等于( ) A .9 B .10 C .40D .41解析:a 40=2×40+1=81=9.答案:A2.等差数列{2-3n }中,公差d 等于( ) A .2 B .3 C .-1D .-3解析:设a n =2-3n ,则an +1-a n =[2-3(n +1)]-(2-3n )=-3. 答案:D3.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等于( )A .10B .210C .210-2D .211-2解析:∴数列{a n }是公比为2的等比数列且a 1=2.答案:D4.在等差数列{a n }中,前n 项和为S n ,若a 7=5,S 7=21,那么S 10等于( ) A .55 B .40 C .35D .70解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+6d =5,7a 1+21d =21,解得d =23,a 1=1,则S 10=10a 1+45d =40. 答案:B5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15D .16解析:设公比为q ,由于4a 1,2a 2,a 3成等差数列, 则4a 2=4a 1+a 3,所以4q =4+q 2,解得q =2. 所以S 4=a 1(1-q 4)1-q =1-241-2=15.答案:C6.等差数列{a n }的前n 项和为S n, 若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .不确定解析:a 3+a 17=a 1+a 19,∴S 19=19(a 1+a 19)2=192×10=95.答案:B7.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .120B .105C .90D .75解析:{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,即3a 2=15,则a 2=5. 又a 1a 2a 3=80,∴a 1a 3=(5-d )(5+d )=16,∴d =3.答案:B8.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18解析:设该数列有n 项,且首项为a 1,末项为a n, 公差为d .则依题意有⎩⎪⎨⎪⎧5a 1+10d =34,①5a n -10d =146,②a 1+an2·n =234,③①+②可得a 1+a n =36.代入③得n =13.从而有a 1+a 13=36. 又所求项a 7恰为该数列的中间项,∴a 7=a 1+a 132=362=18.故选D.答案:D9.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则ab 等于( )A .-2B .2C .-4D .4解析:∵2b =a +c ,∴c =2b -a .∵c 2=ab ,∴a 2-5ab +4b 2=0,∴a =b (舍去)或a =4b ,∴a b=4. 答案:D10.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:设公比为q ,答案:C11.在一直线上共插有13面小旗,相邻两面小旗之间距离为10 m ,在第一面小旗处有一个人,把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路程最短,应集中到哪一面小旗的位置上( )A .7B .6C .5D .4解析:图1如图1所示,设将旗集中到第x 面小旗处,则从第一面旗到第x 面旗共走路程为10(x-1)m ,然后回到第二面旗处再到第x 面处的路程是20(x -2)m ,…,从第x -1面到第x 面来回共20 m ,从第x 面处到第x +1面处路程为20 m ,从第x 面到第x +2面处的路程为20×2 m ,….总共的路程为s =10(x -1)+20(x -2)+20(x -3)+…+20×1+20×1+20×2+…+20×(13-x )=10(x -1)+20·(x -2)(x -1)2+20·(13-x )(14-x )2=10[(x -1)+(x -2)(x -1)+(13-x )(14-x )]=10(2x 2-29x +183)=20(x -294)2+31154.∵x ∈N *,∴当x =7时,s 有最小值为780 m , 即将旗集中到第7面小旗处,所走的路程最短. 答案:A12.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4013B .4014C .4015D .4016解析:由已知a 1>0,a 2007·a 2008<0,可得数列{a n }为递减数列,即d <0,a 2007>0,a 2008<0.利用等差数列的性质及前n 项和公式可得所以使前n 项和S n >0成立的最大自然数n 是4014,选B. 答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.数列{a n }中的前n 项和S n =n 2-2n +2,则通项公式a n =________. 解析:当n =1时,a 1=S 1=1;当n >1时,a n =S n -S n -1=(n 2-2n +2)-[(n -1)2-2(n -1)+2]=2n -3. 又n =1时,2n -3≠a 1,所以有a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >1.答案:a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >114.设{a n }为公比q >1的等比数列,若a 2006和a 2007是方程4x 2-8x +3=0的两根,则a 2008+a 2009=________.解析:方程4x 2-8x +3=0的两根是12和32,答案:1815.等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于________.解析:∵S 12=12a 1+66d ,S 4=4a 1+6d ,又S 12=8S 4,∴12a 1+66d =32a 1+48d .∴20a 1=18d ,∴a 1d =1820=910.答案:91016.用[x ]表示不超过x 的最大整数,如[0.78]=0,[3.01]=3,如果定义数列{x n }的通项公式为x n =[n5](n ∈N *),则x 1+x 2+…+x 5n =________.解析:x 5n =[5n5]=[n ]=n ,则x 1+x 2+…+x 5n =5[x 5+x 10+x 15+…+x 5(n -1)]+x 5n =5(1+2+…+n -1)+n =52n 2-32n .答案:52n 2-32n三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题10分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数.解:设三数为aq,a ,aq .由题意,得⎩⎪⎨⎪⎧a 3=512,(a q -2)+(aq -2)=2a , 解得⎩⎪⎨⎪⎧a =8,q =2或⎩⎪⎨⎪⎧a =8,q =12.所以这三个数为4,8,16或16,8,4.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0. 解:原式=(a +a 2+…+a n )-(1+2+…+n )=(a +a 2+…+a n )-n (n +1)2=⎩⎪⎨⎪⎧a (1-a n )1-a-n (n +1)2(a ≠1),n -n 22(a =1).19.(本小题12分)已知数列{a n }是等差数列,a 2=6,a 5=18;数列{b n }的前n 项和是T n ,且T n +12b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列. 解:(1)设{a n }的公差为d ,∴⎩⎪⎨⎪⎧a 1+d =6,a 1+4d =18,解得a 1=2,d =4. ∴a n =2+4(n -1)=4n -2.(2)证明:当n =1时,b 1=T 1,由T 1+12b 1=1,得b 1=23.当n ≥2时,∵T n =1-12b n ,Tn -1=1-12b n -1,∴T n -T n -1=12(bn -1-b n ).∴b n =12(b n -1-b n ).∴b n =13b n -1. ∴{b n }是以23为首项,13为公比的等比数列.20.(本小题12分)假设某市2007年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,该市历年所建中低价房的累计面积(以2007年为累计的第一年)等于4750万平方米?解:设n 年后该市每年所建中低价房的面积为a n , 由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n (n -1)2×50=25n 2+225n .令25n 2+225n =4750,即n 2+9n -190=0, 解得n =-19或n =10. 又n 是正整数,∴n =10.到2016年底,该市历年所建中低价房的累计面积等于4750万平方米. 21.(本小题12分)设a 1=1,a 2=53,an +2=53an +1-23a n (n ∈N *).(1)令b n =an +1-a n (n ∈N *),求数列{b n }的通项公式;(2)求数列{na n }的前n 项和S n .解:(1)因为b n +1=a n +2-a n +1=53a n +1-23a n -a n +1=23(a n +1-a n )=23b n ,所以数列{b n }是首项为b 1=a 2-a 1=23,公比为23的等比数列,所以b n =(23)n (n =1,2,…).22.(本小题12分)将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1.S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n ≥2).(1)证明数列{1S n}成等差数列,并求数列{b n }的通项公式;(2)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当a 81=-491时,求上表中第k (k ≥3)行所有项的和.解:(1)证明:由已知,当n ≥2时,2b nb n S n -S 2n=1,又因为S n =b 1+b 2+…+b n ,又因为S 1=b 1=a 1=1,所以数列{1S n }是首项为1,公差为12的等差数列.由上可知1S n =1+12(n -1)=n +12,即S n =2n +1.所以当n ≥2时,b n =S n -S n -1=2n +1-2n =-2n (n +1). 因此b n =⎩⎪⎨⎪⎧1,n =1,-2n (n +1),n ≥2. (2)设题表中从第三行起,每行的公比都为q ,且q >0.因为1+2+…+12=12×132=78,所以表中第1行至第12行共含有数列{a n }的前78项.故a 81在表中第13行第三列,因此a 81=b 13·q 2=-491.又b 13=-213×14,所以q =2.记表中第k (k ≥3)行所有项的和为S ,即S =b k (1-q k )1-q =-2k (k +1)·1-2k 1-2=2k (k +1)(1-2k )(k ≥3).。
高二数学摸底测试--函数、不等式、三角、数列综合测试卷

函数、不等式、三角、数列综合测试试卷班级_____________ 学号____________ 姓名_____________ 成绩____________一.填空题(每小题4分,共48分)1.已知函数()1a x f x x a -=--的反函数()1f x -的对称中心是()1,3-,则实数a =____________ 2.对于实数a 和b ,定义:22,,a ab a b a b b ab a b⎧-≤⎪*=⎨->⎪⎩.设()()()211f x x x =-*-,且关于x 的方程()()f x m m R =∈恰有三个互不相等的实根123,,x x x ,则123x x x =__________(用含m 的表达式)3.如果()*3223123......,.. (111)n n n n S S S S n n N T S S S =++++∈=⨯⨯⨯---()*2,n n N ≥∈, 则2013T =____________ 4.已知函数()()()()210110x x f x f x x -≤⎧⎪=⎨-+>⎪⎩,把函数()()1g x f x x =-+的零点按从小到大的顺序排列成一个数列,该数列的前n 项和为n S ,则2lim n n S n →∞=____________ 5.若集合12,,......,n A A A 满足12......n A A A A ⋃⋃⋃=则称12,,......,n A A A 为集合A 的 一种拆分.已知:①当{}12133,,A A a a a ⋃=时,A 有33种拆分;②当{}1231234,,,A A A a a a a ⋃⋃=时,A 有47种拆分;……由以上结论,推出一般结论:当{}12121......,,......,n n A A A a a a +⋃⋃⋃=时,A 有__________种拆分6.数列{}n a 的通项222cos sin 33n n n a n ππ⎛⎫=- ⎪⎝⎭,其前n 项和为n S ,则30S =____________ 7.定义在R 上的函数()f x 满足()()()2(,)f x y f x f y xy x y R +=++∈和()12f =, 则()3f -=____________8.已知函数()sin cos 21544x x f x x ππ-+⎫=≤≤⎪⎭,则()f x 的最小值为____________ 9.在ABC ∆中,,,A B C ∠∠∠所对的边长分别为,,a b c ,其外接圆的半径为1,则()222222111sin sin sin a b c A B C ⎛⎫++++ ⎪⎝⎭的最小值为____________ 10.已知()2xf x =可以表示成一个奇函数()g x 和一个偶函数()h x 之和,若关于x 的不等式()()20ag x h x +≥对于[]1,2x ∈恒成立,则实数a 的最小值是____________11.设数列{}n a 的前n 项和n S 满足()1,1,2,...1n n n S a n n n -+==+,则通项n a =____________ 12. 下图展示了一个由区间)1,0(到实数集R 的映射过程:区间中的实数m 对应数轴上的点M ,如图①;将线段围成一个圆,使两端点A 、B 恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y 轴上,点A 的坐标为,如图③.图③中直线与x 轴交于点,则m 的象就是n ,记作.下列说法:①102f ⎛⎫= ⎪⎝⎭;②;③是奇函数; ④在定义域上单调递增;⑤的图象关于点 对称.其中正确命题的序号是.(写出所有正确命题的序号)二.选择题(每小题5分,共20分)1.ABC ∆的内角,,A B C 所对的边分别为,,a b c ,已知()cos cos 1,2A C B a c -+==,则C =() A.6π或56πB.6πC.3π或23π D.3π ()0,1AB ()0,1AM (),0N n ()f m n =114f ⎛⎫= ⎪⎝⎭()f x ()f x ()f x 1,02⎛⎫ ⎪⎝⎭2.已知()()12...201212...2012f x x x x x x x x R =+++++++-+-++-∈,且()()2321f a a f a -+=-,则a 的值的个数为()A.2B.3C.3D.无数3.已知α为锐角,则“1sin 3α>且1cos 3α>”是“sin 2α>”的(). (A)充要条件(B) 必要非充分条件 (C)充分非必要条件(D) 既不充分又不必要条件 4.已知数列{}n a 满足123,7a a ==,且2n a +总等于1n n a a +的个位数字,则2013a 的值为(). (A) 1 (B) 3 (C) 7 (D) 9三.解答题(各题分值依次为10分,12分,14分,16分)1.在ABC ∆中,设内角,,A B C 所对边长分别为,,a b c ,已知()()tan 1tan 12A B ++=.(1)求C ;(2)22cos 2sin 1sin ,2B C A a +=+=,求边长b 和ABC ∆的面积.2.解关于实数x 的不等式: (1)225815x x x x --->-+;(2)()2log 121a x a ->-,其中0,1a a >≠3.定义()[)2211,,,,,,A x b f x x A A a b a b a b a x ⎛⎫⎛⎫=-+-∈=< ⎪ ⎪⎝⎭⎝⎭为正实数. (1)求()A f x 的最小值;(2)确定()A f x 的单调区间,并对单调增区间加以证明;(3)若())()())2222*121,1,1,2,K k x I k k x I k k k N +⎡⎡∈=+∈=++∈⎣⎣. 求证:()()()11241k k I I f x f x k k ++>+.4.设数列{}n a 满足211,1,2,3,...n n n a a na n +=-+=(1)当12a =时,求234,,a a a ,并由此猜想出n a 的一个通项公式;(2)当13a ≥时,证明对所有的1n ≥,有①2n a n ≥+;②121111...1112n a a a +++≤+++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号14-数列综合测试卷
编写 牛松 审核 李志强
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)
1.下列各组数成等比数列的是( )
①1,-2,4,-8;②-2,2,-22,4;③x ,x 2,x 3,x 4;④a -1,a -2,a -3,a -4.
A .①②
B .①②③
C .①②④
D .①②③④
2.数列1,-3,5,-7,…的一个通项公式为( )
A .a n =2n -1
B .a n =(-1)n +1(2n -1)
C .a n =(-1)n (2n -1)
D .a n =(-1)n (2n +1)
3.等差数列{a n }中,若a 2+a 8=16,a 4=6,则公差d 的值是( )
A .1
B .2
C .-1
D .-2
4.在等比数列{a n }中,已知a 3=2,a 15=8,则a 9等于( )
A .±4
B .4
C .-4
D .16
5.已知数列{a n }为等差数列,S n 是它的前n 项和.若1a =2,S 3=12,则S 4=( )
A .10
B .16
C .20
D .24
6.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )
A .1
B .2
C .3
D .4
7.在等比数列中,已知a 1a 83a 15=243,则113
9a a 的值为( ) A .3 B .9 C .27 D .81
8.如果数列{a n }的前n 项和S n =32
a n -3,那么这个数列的通项公式是( ) A .a n =2(n 2+n +1) B .a n =3·2n C .a n =3n +1 D .a n =2·3n
9.数列1,1+2,1+2+22,…,1+2+22+…+2n -1,…的前n 项和为( )
A .2n +1-n
B .2n +1-n -2
C .2n -n
D .2n
10.设S n 为等差数列{a n }的前n 项和,且a 1=-2 018,22016
201820162018=-S S ,则a 2=( ) A .-2 016 B .-2 018 C .2 018 D .2 016
11.(2017·安徽安庆二模,5)数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于( )
A .1
B .-1 C.12
D .2 12.(2017·黄冈质检)设等比数列{a n }的各项均为正数,公比为q ,前n 项和为S n .若对任意的n ∈N *,有S 2n <3S n ,则q 的取值范围是( )
A .(0,1]
B .(0,2)
C .[1,2)
D .(0,2) 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)
13.2+1与2-1的等比中项是________.
14.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.
15.在等差数列{a n }中,a 3=-12,a 3,a 7,a 10成等比数列,则公差d 等于________.
16.某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初时含杂质2%,且每过滤一次可使杂质含
量减少13
,则要使产品达到市场要求,至少应过滤________次.(取lg 2=0.301 0,lg 3=0.477 1) 三、解答题(本大题共6小题,共70分.解答题应先出文字说明,证明过程或演算步骤)
17.(本小题满分10分)在等比数列{a n }中,a 2=3,a 5=81.
(1)求a n ;
(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .
18.(本小题满分12分)已知等差数列{a n }的前n 项和为S n ,且a 3=10,S 6=72,b n =12
a n -30, (1)求通项公式a n ;
(2)求数列{b n }的前n 项和T n 的最小值.
19.(本小题满分12分)购买一件售价为5 000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月付款一次,过1个月再付款一次,如此下去,到第12次付款后全部付清.如果月利率为0.8%,每月利息按复利计算(上月利息计入下月本金),那么每期应付款多少元?(精确到1元)
20.(本小题满分12分)已知数列{a n }各项均为正数,其前n 项和为S n ,且满足4S n =(a n +1)2.
(1)求{a n}的通项公式;
(2)设b n=1
a n·a n+1
,数列{b n}的前n项和为T n,求T n.
21.(本小题满分12分)设数列{a n}的前n项和为S,且S n=4a n-p,其中p是不为零的常数.
(1)证明:数列{a n}是等比数列;
(2)当p=3时,数列{b n}满足b n+1=b n+a n(n∈N*),b1=2,求数列{b n}的通项公式.
22.(本小题满分12分)已知正项数列{a n}的前n项和为S n,且a1=1,a2n+1=S n+1+S n.
(1)求{a n}的通项公式;
(2)设n
a n n a
b 212⋅=-,求数列{b n }的前n 项和T n .
【参考答案】。