数列综合测试附答案
数列测试题及答案

数列测试题及答案一、选择题1. 已知数列\( a_n \)的通项公式为\( a_n = 3n - 1 \),那么第10项的值为:A. 29B. 28C. 27D. 26答案:A2. 若数列\( b_n \)的前n项和为\( S_n \),且\( S_n = n^2 \),求数列\( b_n \)的第3项:A. 5B. 6C. 7D. 8答案:B二、填空题1. 给定等差数列\( c_n \),首项\( c_1 = 5 \),公差\( d = 3 \),其第5项为________。
答案:202. 若数列\( d_n \)是等比数列,且\( d_1 = 2 \),公比\( q = 4 \),求第4项:________。
答案:64三、解答题1. 已知数列\( e_n \)的前n项和为\( S_n \),若\( S_3 = 21 \),\( S_5 = 45 \),求\( e_4 + e_5 \)。
解:由题意得\( e_4 + e_5 = S_5 - S_3 = 45 - 21 = 24 \)。
2. 某等差数列的前5项和为50,且第3项为15,求该数列的首项和公差。
解:设该等差数列的首项为\( a \),公差为\( d \),则有:\[ 5a + 10d = 50 \]\[ a + 2d = 15 \]解得:\( a = 5 \),\( d = 5 \)。
四、证明题1. 证明等差数列中,任意两项的等差中项等于它们的算术平均数。
证明:设等差数列\( f_n \)的首项为\( f_1 \),公差为\( d \),任取两项\( f_m \)和\( f_n \)(\( m < n \)),则它们的等差中项为\( f_{\frac{m+n}{2}} \)。
根据等差数列的性质,有:\[ f_{\frac{m+n}{2}} = f_1 + \left(\frac{m+n}{2} -1\right)d \]而算术平均数为:\[ \frac{f_m + f_n}{2} = \frac{f_1 + (m-1)d + f_1 + (n-1)d}{2} = f_1 + \frac{(m+n-2)d}{2} \]由于\( \frac{m+n}{2} - 1 = \frac{m+n-2}{2} \),所以两者相等,证明了等差中项等于算术平均数。
数列测试题及答案

数列测试题一.选择题1.假如等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=(A )14 (B )21 (C )28 (D )352.设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =(A )3 (B )4(C)5(D )63.设数列{}n a 的前n 项和2n S n =,则8a 的值为(A ) 15 (B) 16 (C) 49 (D )644.设n s 为等比数列{}n a 的前n 项和,2580a a +=则52S S = (A)-11 (B)-8 (C)5(D)115.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a = A.21 B.22 C. 2 D.26.已知等比数列{}n a 知足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=A. (21)n n -B. 2(1)n +C. 2nD. 2(1)n -7.公役不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项, 832S =,则10S 等于A. 18B. 24C. 60D. 90 8.设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则69S S = (A ) 2 (B ) 73 (C ) 83(D )39.已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99,以n S 暗示{}n a 的前n 项和,则使得n S 达到最大值的n 是(A )21 (B )20 (C )19 (D ) 1810.无限等比数列,42,21,22,1…各项的和等于() A .22-B .22+C .12+D .12-11.数列{}n a 的通项222(cos sin )33n n n a n ππ=-,其前n 项和为n S ,则30S 为 A .470B .490C .495D .510 12.设,R x ∈记不超出x 的最大整数为[x ],令{x }=x -[x ],则{215+},[215+],215+ 二.填空题13.设n S 为等差数列{}n a 的前n 项和,若36324S S ==,,则9a =.14.在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项公式n a =.15.设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a =. 16.已知数列{}n a 知足:434121,0,,N ,n n n n a a a a n *--===∈则2009a =________;2014a =_________.三.解答题17.已知等差数列{n a }中,,0,166473=+-=a a a a 求{n a }前n 项和n s .18.已知{}n a 是首项为19,公役为-2的等差数列,n S 为{}n a 的前n 项和.(Ⅰ)求通项n a 及n S ;(Ⅱ)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n 项和n T .19.已知等差数列{}n a 知足:37a =,5726a a +=,{}n a 的前n 项和为n S .(Ⅰ)求n a 及n S ; (Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T .20.设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+ (I )设12n n n b a a +=-,证实数列{}n b 是等比数列 (II )求数列{}n a 的通项公式. 21.数列{}n a 的通项222(cos sin )33n n n a n ππ=-,其前n 项和为n S .(1) 求n S ; (2) 3,4nn nS b n =⋅求数列{n b }的前n 项和n T .答案 1.【答案】C【解析】173454412747()312,4,7282a a a a a a a a a a a +++===∴+++=== 2.解析:选B. 两式相减得,3433a a a =-,44334,4a a a q a =∴==.3.答案:A【解析】887644915a S S =-=-=.5.【答案】B【解析】设公比为q ,由已知得()22841112a q a q a q⋅=,即22q=,又因为等比数列}{n a 的公比为正数,所以2q =,故211222a a q===,选B 6.【解析】由25252(3)n n a a n -⋅=≥得n n a 222=,0>n a ,则n n a 2=,+⋅⋅⋅++3212log log a a 2122)12(31log n n a n =-+⋅⋅⋅++=-,选C.答案:C7.【解析】由2437a a a =得2111(3)(2)(6)a d a d a d +=++得1230a d +=,再由81568322S a d =+=得 1278a d +=则12,3d a ==-,所以1019010602S a d =+=,.故选C8.【解析】设公比为q ,则36333(1)S q S S S +==1+q 3=3q 3=2于是63693112471123S q q S q ++++===++【答案】B9.[解析]:由1a +3a +5a =105得33105,a =即335a =,由246a a a ++=99得4399a =即433a = ,∴2d =-,4(4)(2)412n a a n n =+-⨯-=-,由10n n a a +≥⎧⎨<⎩得20n =,选B10.答案B 11.答案:A 【解析】因为22{cos sin }33n n ππ-以3 为周期,故 221010211(32)(31)591011[(3)][9]25470222k k k k k k ==-+-⨯⨯=-+=-=-=∑∑故选A12.【答案】B【解析】可分离求得515122⎧⎫+-⎪⎪=⎨⎬⎪⎪⎩⎭,51[]12+=.则等比数列性质易得三者组成等比数列. 13.解析:填15. 316132332656242S a d S a d ⨯⎧=+=⎪⎪⎨⨯⎪=+=⎪⎩,解得112a d =-⎧⎨=⎩,91815.a a d ∴=+=14.【答案】n-14【解析】由题意知11141621a a a ++=,解得11a =,所以通项n a =n-14. 15.答案:15【解析】对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--16.【答案】1,0【解析】本题重要考核周期数列等基本常识.属于创新题型. 依题意,得2009450331a a ⨯-==, 17.解:设{}n a 的公役为d ,则即22111812164a da d a d⎧++=-⎨=-⎩解得118,82,2a a d d =-=⎧⎧⎨⎨==-⎩⎩或是以()()()()819819n n S n n n n n S n n n n n =-+-=-=--=--,或18.19.【解析】(Ⅰ)设等差数列{}n a 的公役为d,因为37a =,5726a a +=,所以有112721026a d a d +=⎧⎨+=⎩,解得13,2a d ==, 所以321)=2n+1n a n =+-(;n S =n(n-1)3n+22⨯=2n +2n . (Ⅱ)由(Ⅰ)知2n+1n a =,所以b n =211n a -=21=2n+1)1-(114n(n+1)⋅=111(-)4n n+1⋅, 所以n T =111111(1-+++-)4223n n+1⋅-=11(1-)=4n+1⋅n 4(n+1), 即数列{}n b 的前n 项和n T =n4(n+1).20.解:(I)由11,a =及142n n S a +=+,有12142,a a a +=+21121325,23a a b a a =+=∴=-=由142n n S a +=+,...①则当2n ≥时,有142n n S a -=+.....②②-①得111144,22(2)n n n n n n n a a a a a a a +-+-=-∴-=-又12n n n b a a +=-,12n n b b -∴={}n b ∴是首项13b =,公比为2的等比数列.(II )由(I )可得11232n n n n b a a -+=-=⋅,113224n n n n a a ++∴-= ∴数列{}2n n a 是首项为12,公役为34的等比数列. ∴1331(1)22444n na n n =+-=-,2(31)2n n a n -=-⋅ : (1) 因为222cos sin cos 333n n n πππ-=,故1331185(94)2222k k k -+=+++=,故 1,3236(1)(13),316(34),36n n n k n n S n k n n n k ⎧--=-⎪⎪+-⎪==-⎨⎪+⎪=⎪⎩(*k N ∈) (2) 394,424n n n nS n b n +==⋅⋅ 两式相减得 故 2321813.3322n n n nT -+=--⋅。
高中数学--《数列》测试题(含答案)

高中数学--《数列》测试题(含答案)1.已知数列,它的第5项的值为()A. B. C. D.【答案解析】D2.若成等比数列,则下列三个数:①②③,必成等比数列的个数为()A、3B、2C、1D、0【答案解析】C3.在数列{}中,,则等于()。
A B 10 C 13 D 19【答案解析】解析:C。
由2得,∴{}是等差数列∵4.是成等比数列的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案解析】解析:不一定等比如若成等比数列则选D5.x=是a、x、b成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案解析】D6.已知为等差数列,且-2=-1, =0,则公差d=(A)-2 (B)-(C)(D)2【答案解析】B解析:a7-2a4=a3+4d-2(a3+d)=2d=-1 Þ d=-7.(2009福建卷理)等差数列的前n项和为,且 =6,=4,则公差d等于A.1 B C.- 2 D 3【试题来源】【答案解析】C解析∵且.故选C8.(2009广东卷理)已知等比数列满足,且,则当时,A. B. C. D.【答案解析】C解析:由得,,则,,选C.9.(2009年广东卷)已知等比数列的公比为正数,且·=2,=1,则=A. B. C. D.2【答案解析】B解析:设公比为,由已知得,即,又因为等比数列的公比为正数,所以,故,选B10.已知数列…,则是该数列的A.第项B.第项C.第项D.第项【答案解析】C11.等差数列中,,那么的值是A. 12 B. 24 C .16 D. 48【答案解析】B12.等差数列,,,则数列前9项的和等于A.66 B.99 C. 144 D. 297【答案解析】B13.等差数列中,,则A.8 B.12 C.24 D.25【答案解析】B14.等比数列{an}中,a4=4,则等于A.4 B.8 C.16 D.32【答案解析】C15.设等比数列的公比q=2,前n项和为Sn,则=A. B. C. D.【答案解析】C17若数列的前项和,则A.7B.8C.9D.17【答案解析】A18.等差数列的前项和为,若,则A.1004B.2008C.2009D.2010【答案解析】C19.若等差数列{an}的前5项和S5=25,且a2=3,则a4=() A.12 B.7C.9 D.15【答案解析】B20.()A. B. C. D.【答案解析】D。
数列测试题及答案

数列测试题及答案一、选择题1. 已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,那么a_5的值为:A. 15B. 31C. 63D. 127答案:B2. 数列{a_n}是等差数列,公差为3,且a_3=12,则a_1的值为:A. 3B. 6C. 9D. 12答案:B3. 已知数列{a_n}满足a_1=2,a_{n+1}=3a_n,那么数列的通项公式为:A. a_n = 2 * 3^{n-1}B. a_n = 2 * 3^nC. a_n = 3 * 2^{n-1}D. a_n = 3^n答案:B二、填空题4. 已知数列{a_n}的前n项和S_n=n^2,求a_3的值。
答案:65. 数列{a_n}是等比数列,首项为2,公比为4,求a_5的值。
答案:128三、解答题6. 已知数列{a_n}满足a_1=1,a_{n+1}=a_n+n,求数列的前5项。
答案:a_1 = 1a_2 = a_1 + 1 = 2a_3 = a_2 + 2 = 4a_4 = a_3 + 3 = 7a_5 = a_4 + 4 = 117. 已知数列{a_n}是等差数列,且a_1=5,a_4=14,求数列的通项公式。
答案:a_n = 5 + (n-1) * 3 = 3n + 28. 已知数列{a_n}满足a_1=2,a_{n+1}=2a_n+1,求数列的前5项。
答案:a_1 = 2a_2 = 2a_1 + 1 = 5a_3 = 2a_2 + 1 = 11a_4 = 2a_3 + 1 = 23a_5 = 2a_4 + 1 = 479. 已知数列{a_n}是等比数列,首项为3,公比为2,求数列的前5项。
答案:a_1 = 3a_2 = 3 * 2 = 6a_3 = 6 * 2 = 12a_4 = 12 * 2 = 24a_5 = 24 * 2 = 4810. 已知数列{a_n}满足a_1=1,a_{n+1}=3a_n-2,求数列的前5项。
数列综合测试题与答案

高一数学数列综合测试题1. { an }是首项 a1= 1,公差为 d =3 的等差数列,如果 an =2 005 ,则序号 n 等于 ().A .667B . 668C . 669D .6702.在各项都为正数的等比数列 { an }中,首项 a1 =3 ,前三项和为 21,则 a3+ a4+a5= ( ) .A .33B . 72C . 84D .1893.如果 a1, a 2, , a8 为各项都大于零的等差数列,公差d ≠0,则 () . A .a 1a8> a4a5 B . a1a 8< a4a 5 C . a1+ a8 < a4+ a5D .a1a8 =a4a 54.已知方程 (x 2- 2x + m)( x 2- 2x + n)= 0 的四个根组成一个首项为 1的等差数列,则|m - n |等于 ( ).4A .1 3 1D . 3 B . C .8 4 25.等比数列 {an} 中, a2 5 n }的前 4 项和为 (). = 9, a= 243,则{ aA .81B . 120 C . 168D . 1926. 若数列 { an }是等差数列,首项 a 1> 0, a2 003 + a2 004 > 0 ,a 2 003 ·a2 004 < 0,则使前 n 项和Sn > 0 成立的最大 自然数 n 是 ().A .4005B . 4006C . 4007D .40087.已知等差数列 { a }的公差为 2,若 a , a ,a成等比数列 , 则 a = () .n 1 3 4 2A .- 4B .-6C .- 8D . -108.设 Sn 是等差数列 {an}的前 n 项和,若 a 9 = ( ).5 = 5 ,则 S a 3 9 S 5A .1B .-1 C . 2D . 1 29.已知数列- 1, a1 , a2,- 4 成等差数列,- 1 ,b 1,b 2,b3,- 4 成等比数列,则 a 2a1的值是 ( ).b 2 A . 1 B .- 1 C .- 1或1 D . 12 2 2 2 4 10.在等差数列 {a n} 中, an ≠0, an -1- a n 2 + an +1= 0(n ≥ 2),若 S2n -1 =38,则 n = ( ). A .38B . 2C . 1D .9二、填空题..11.设 f (x)=1 n 项和公式的方法,可求得f (- 5) + f( - 4) ++ f (0) ++,利用课本中推导等差数列前2x 2f (5) + f(6) 的值为.12.已知等比数列 {an} 中,(1) 若 a3 ·a4·a5=8 ,则a2·a3·a4 ·a5·a6=.(2) 若a1+a 2=3 4 5 6=.324 ,a+ a=36,则 a + a(3) 若 S4= 2, S8= 6,则 a17+ a18+ a19+ a20=.13.在8和27之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.3 21 4.在等差数列 {a } 中,3(a3+ a)+2(a7+ a +a13)= 24,则此数列前13 项之和为.n 5 101 5.在等差数列 {a n} 中, a5= 3, a6 =-2 ,则 a4+ a5++a10=.1 6.设平面内有 n 条直线 ( n≥ 3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f ( n) 表示这n条直线交点的个数,则 f (4) =;当 n> 4 时, f (n)=.三、解答题1 7. (1) 已知数列{a2- 2n,求证数列{a} 成等差数列 .} 的前 n 项和 S =3nn n n(2) 已知1,1,1成等差数列,求证 b c , c a , a b也成等差数列 .a bc ab c18.设 { an}是公比为q 的等比数列,且a1, a3, a2 成等差数列.(1)求 q 的值;..(2)设 { bn }是以 2 为首项, q 为公差的等差数列,其前 n 项和为 Sn ,当 n ≥2时,比较 Sn 与 bn 的大小,并说明理由.19.数列 { an }的前 n 项和记为Sn,已知 a1= 1, an+1=n2 Sn( n= 1, 2, 3 ).n求证:数列 { Sn }是等比数列.n20.已知数列 {a n}是首项为 a 且公比不等于 1 的等比数列, Sn 为其前 n 项和, a1,2a 7,3a 4 成等差数列,求证: 12S3,S6, S12- S6 成等比数列 ...高一数学数列综合测试题参考答案一、选择题 1. C解析:由题设,代入通项公式 an = a1+( n - 1)d ,即 2 005= 1 +3( n - 1) ,∴n = 699 . 2. C解析:本题考查等比数列的相关概念,及其有关计算能力. 设等比数列 { an }的公比为q(q > 0) ,由题意得a1+ a2+a 3= 21,2 2 = 7.即 a1(1 + q + q )= 21,又 a1= 3,∴1+ q + q 解得 q =2 或 q =- 3( 不合题意,舍去 ) , 2 2 2 ∴a 3+ a4 +a5= a1 q (1 + q +q )= 3×2 ×7= 84. 3. B .解析:由 a 1+ a8 =a4+ a5,∴排除 C . 又 a1·a8= a1(a1+ 7d) = a12+ 7a1d ,∴a ·a =(a + 3d)(a + 4d)=a 2+7a d +12d 2 .1 > a ·a 4 5 1 1 1 1 84. C解析:..解法 1:设 a1= 1 , a2= 1 + d , a3= 1 + 2d , a4=1+ 3d ,而方程 x 2- 2x + m = 0 中两根之和为 2, x 2- 2x + n =4 4 4 4中两根之和也为 2,∴a + a +a + a =1 + 6d =4 ,1 2 3 4∴d = 1 , a1= 1 , a4= 7 是一个方程的两个根,a1= 3 , a3= 5 是另一个方程的两个根.24444∴ 7 , 15 分别为 m 或 n , 16 16 ∴|m - n |=1,故选 C .2解法 2:设方程的四个根为 x1, x2, x3, x4 ,且 x1+ x2= x3 + x4= 2, x1·x2= m ,x3·x4= n .由等差数列的性质:若 + s = p +q ,则 a +a = a +a ,若设x 为第一项, x 必为第四项,则 x = ,于是可得s pq 1 2 2 74 等差数列为 1 , 3 ,5 , 7 ,4 4 4 4∴m = 7 , n = 15 , 16 16 ∴|m - n |=1.2 5. B2 5 =243 a 5 3 243 ,解析:∵ a = 9, a , = q = = 27 a 2 9 ∴q = 3, a 1q =9 , a1= 3,∴S4 = 3-35 = 240 = 120.1-3 26. B解析:解法 1:由 a 2 003+ a 2 004 > 0,a2 003 ·a < 0,知 a 2 003和a 2 004 两项中有一正数一负数,又 a > 0,则公差为负数,2 004 1否则各项总为正数,故 a 2 003> a2 004 ,即 a2 003 >0 , a2 004< 0.4 006( a 1+ ) 4 +)a 006( a a4 006=4 006=2 0032004 >0,∴S2 24 007 =4 007 14007)=4 0072004<0 ,∴S2 ·(a +a ·2a2故 4006 为 Sn> 0 的最大自然数 . 选B...解法 2:由 a 1> 0, a2 003+ a2 004> 0, a2 003·a2 004< 0,同解法 1 的分析得a2 003 >0,a2 004 <0,∴S 为 S 中的最大值.2003 n∵Sn 是关于 n 的二次函数,如草图所示,∴2 003 到对称轴的距离比(第6题)2 004 到对称轴的距离小,∴4 007 在对称轴的右侧.2根据已知条件及图象的对称性可得 4 006 在图象中右侧零点B 的左侧, 4 007 , 4 008 都在其右侧,Sn> 0 的最大自然数是 4 006 .7. B解析:∵ {a n}是等差数列,∴ a3= a1+ 4, a4= a1+ 6,又由 a1,a 3, a4 成等比数列,∴( a1 + 4) 2= a1 (a 1+ 6) ,解得 a 1=- 8,∴a 2=- 8+ 2=- 6 .8. A9(a1a9 )S9=2 9 a59 5解析:∵5(a1==·= 1,∴选 A.S5a5 )5 a35 929. A解析:设 d 和 q 分别为公差和公比,则-4=- 1+ 3d 且- 4= (-1)q4,∴d =- 1, q2= 2,∴a2 a1 = d2=1.b2q 210.C解析:∵ {a n}为等差数列,∴ a n2= an-1+ a n+ 1,∴ a n2= 2an,又 an≠0,∴an= 2, {an}为常数数列,..而an=S2 n 1,即2n 1∴n = 10.二、填空题11.3 2.解析:∵ f( x)=x2∴f (1 - x)=1 1 x 2∴f (x)+ f (1 - x)=2n- 1=38= 19,21,21 x=2x=2 2,2 2x2x2 2 211 2 x 1 12x 1 ( 2 2x )2 +2=2=2=.2 2x 2 2 x 2 2 x 2 2x 2设S=f (- 5) + f( - 4) ++ f (0) ++ f (5) + f (6) ,则S=f (6) +f (5) ++ f(0) ++ f (- 4) + f (- 5) ,∴2S= [f (6) + f (-5)] + [f (5) + f (- 4)] ++ [f (- 5) + f (6)] = 62 ,∴S= f (- 5) +f (- 4) ++ f (0) ++ f(5) + f(6) = 3 2 .12.( 1)32;( 2) 4;( 3)32.解析:( 1)由 a3·a5= a42,得 a4= 2 ,∴a 2·a3 ·a4·a5·a6= a45= 32.( 2)a1a2324q2 1,1 2 29 ( a a )q 36∴a 5+ a6 =(a1+ a2) q4= 4.( 3)S4= a1+ a2+ a3+a 4=2q4=2 ,S8= a1+a 2++ a8= S4+ S4 q416.∴a + a + a + a = S q =3217 18 19 20 4 13. 216.解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与中间数为8 27=6,插入的三个3 2```8,27同号,由等比中项的3 2..14. 26.解析:∵ a3+ a 5= 2a4 , a7+ a13= 2a 10,∴6(a 4+ a10)= 24, a4 + a10= 4,13( a1+a13 )=13( a4+a10 )13 4 =26.∴S13==22 215.- 49.解析:∵ d= a6 - a5=- 5,∴a 4+ a5 ++ a10=7( a4+a10)2=7( a5-d+a5+5d)2=7(a5 + 2d)=- 49.116. 5,(n + 1)( n- 2) .解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f(k)=f (k-1) +(k- 1) .由f(3) = 2,f (4) = f(3) + 3= 2+ 3= 5,f(5) = f(4) + 4= 2+ 3+ 4= 9,f (n) = f( n- 1) + (n- 1) ,相加得 f (n)= 2+ 3+ 4++ (n - 1)=1 ( n+ 1)( n - 2) .2三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第 2 项开始每项与其前一项差为常数.证明:( 1)n = 1 时, a1= S1= 3- 2= 1,..当n ≥2 时, an = Sn - Sn- 1= 3n 2- 2n- [3( n- 1) 2- 2(n - 1)] = 6n- 5,n= 1 时,亦满足,∴ an= 6n- 5(n∈N*) .首项 a1=1, a n- an- 1= 6n - 5- [6( n - 1) - 5] =6( 常数 )(n ∈ N*) ,∴数列{an}成等差数列且 a1 =1 ,公差为 6.111( 2)∵,,成等差数列,∴2=1+1化简得 2ac= b( a+c). b a cb+ c a+ b bc+ c2+a2+ab b( a+ c)+ a2+ c2( a+c) 2( a+c)2a+ ca +c=ac=ac=ac=( + ) = 2 ·,b ac b2∴b+c,c+a,a+b也成等差数列.a b c18.解:( 1)由题设3 1 22a1 2 1 1 2a = a +a ,即q = a+ aq,∵a 1≠0,∴2q 2- q- 1= 0,1∴q = 1 或-.2( 2)若 q =1,则 Sn= 2n+n( n-1)=n+3n.2 2当n ≥2 时, Sn-bn= Sn-1=( n-1)( n+2)> 0,故 Sn>bn . 21 n=2n+n( n-1)1 - n2+ 9n若 q =-,则 S (-)=.2 2 2 4当n ≥2 时, Sn-bn= Sn-1=( n-1)( 10-n), 4故对于 n∈ N+,当 2≤n ≤9 时, Sn>b n;当 n= 10 时, Sn= b n;当 n≥11 时, Sn< b n.n+219.证明:∵ an+1= Sn+1 - Sn ,an+1=Sn,∴( n+ 2)Sn = n( Sn+ 1- Sn),整理得nSn + 1= 2(n+ 1) Sn,所以Sn+1 = 2 Sn .n+1 n故 { Sn }是以 2为公比的等比数列.n20.证明:由 a ,2a,3a成等差数列,得4a= a +3a,即 4 a6 3,747q =a + 3a q1 1 4 1 1 13 +3-1)= 0,变形得 (4q 1)(q∴q 3=-1或 q 3= 1( 舍 ).4..由S612S3S12S6S6a1 (1 q6 )=1 q 3= 1 q312a1(1q ) 121qa1 (1q12 )=S12- 1=1 qS6a1 (1q6 )1 q= 1 ;16- 1= 1+ q 6- 1=1;得 S6 =S12 S6.1612S3S6,S,S -S 成等比数列.∴12S3 6 12 6 单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。
数列测试题及答案

数列测试题及答案数列测试题及答案 数列测试题及答案: ⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分. 1.在等差数列{an}中,若a1+a2+a12+a13=24,则a7为( ) A.6 B.7 C.8 D.9 解析:∵a1+a2+a12+a13=4a7=24,∴a7=6. 答案:A 2.若等差数列{an}的前n项和为Sn,且满⾜S33-S22=1,则数列{an}的公差是( ) A.12 B.1 C.2 D.3 解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代⼊S33-S22=1,得d=2,故选C. 答案:C 3.已知数列a1=1,a2=5,an+2=an+1-an(n∈N*),则a2 011等于( ) A.1 B.-4 C.4 D.5 解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,… 故{an}是以6为周期的数列, ∴a2 011=a6×335+1=a1=1. 答案:A 4.设{an}是等差数列,Sn是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是( ) A.d<0 B.a7=0 C.S9>S5 D.S6与S7均为Sn的最⼤值 解析:∵S5<S6,∴a6>0.S6=S7,∴a7=0. ⼜S7>S8,∴a8<0. 假设S9>S5,则a6+a7+a8+a9>0,即2(a7+a8)>0. ∵a7=0,a8<0,∴a7+a8<0.假设不成⽴,故S9<S5.∴C错误. 答案:C 5.设数列{an}是等⽐数列,其前n项和为Sn,若S3=3a3,则公⽐q的值为( ) A.-12 B.12 C.1或-12 D.-2或12[ 解析:设⾸项为a1,公⽐为q, 则当q=1时,S3=3a1=3a3,适合题意. 当q≠1时,a1(1-q3)1-q=3a1q2, ∴1-q3=3q2-3q3,即1+q+q2=3q2,2q2-q-1=0, 解得q=1(舍去),或q=-12. 综上,q=1,或q=-12. 答案:C 6.若数列{an}的通项公式an=5 252n-2-425n-1,数列{an}的最⼤项为第x项,最⼩项为第y 项,则x+y等于( ) A.3 B.4 C.5 D.6 解析:an=5252n-2-425n-1=525n-1-252-45, ∴n=2时,an最⼩;n=1时,an最⼤. 此时x=1,y=2,∴x+y=3. 答案:A 7.数列{an}中,a1 =15,3an+1= 3an-2(n∈N *),则该数列中相邻两项的乘积是负数的是( ) A.a21a22 B.a22a23 C.a23a24 D.a24a25 解析:∵3an+1=3an-2, ∴an+1-an=-23,即公差d=-23. ∴an=a1+(n-1)d=15-23(n-1). 令an>0,即15-23(n-1)>0,解得n<23.5. ⼜n∈N*,∴n≤23,∴a23>0,⽽a24<0,∴a23a24<0. 答案:C 8.某⼯⼚去年产值为a,计划今后5年内每年⽐上年产值增加10%,则从今年起到第5年,这个⼚的总产值为( ) A.1.14a B.1.15a C.11×(1.15-1)a D.10×(1.16-1)a 解析:由已知,得每年产值构成等⽐数列a1=a,w an=a(1+10%)n-1(1≤n≤6). ∴总产值为S6-a1=11×(1.15-1)a. 答案:C 9.已知正数组成的等差数列{an}的前20项的和为100,那么a7a14的最⼤值为( ) A.25 B.50 C.1 00 D.不存在 解析:由S20=100,得a1+a20=10. ∴a7+a14=10. ⼜a7>0,a14>0,∴a7a14≤a7+a1422=25. 答案:A 10.设数列{an}是⾸项为m,公⽐为q(q≠0)的等⽐数列,Sn是它的前n项和,对任意的n∈N*,点an,S2nSn( ) A.在直线mx+qy-q=0上 B.在直线qx-my+m=0上 C.在直线qx+my-q=0上 D.不⼀定在⼀条直线上 解析:an=mqn-1=x,①S2nSn=m(1-q2n)1-qm(1-qn)1-q=1+qn=y,② 由②得qn=y-1,代⼊①得x=mq(y-1),即qx-my+m=0. 答案:B 11.将以2为⾸项的偶数数列,按下列⽅法分组:(2),(4,6),(8,10,12),…,第n组有n个数,则第n组的⾸项为( ) A.n2-n B.n2+n+2 C.n2+n D.n2-n+2 解析:因为前n-1组占⽤了数列2,4,6,…的前1+2+3+…+(n-1)=(n-1)n2项,所以第n组的⾸项为数列2,4,6,…的第(n-1)n2+1项,等于2+(n-1)n2+1-12=n2-n+2. 答案:D 12.设m∈N*,log2m的整数部分⽤F(m)表⽰,则F(1)+F(2)+…+F(1 024)的值是( ) A.8 204 B.8 192 C.9 218 D.以上都不对 解析:依题意,F(1)=0, F(2)=F(3)=1,有2 个 F(4)=F(5)=F(6)=F(7)=2,有22个. F(8)=…=F(15)=3,有23个. F(16)=…=F(31)=4,有24个. … F(512)=…=F(1 023)=9,有29个. F(1 024)=10,有1个. 故F(1)+F(2)+…+F(1 024)=0+1×2+2×22+3×23+…+9×29+10. 令T=1×2+2×22+3×23+…+9×29,① 则2T=1×22+2×23+…+8×29+9×210.② ①-②,得-T=2+22+23+…+29-9×210 = 2(1-29)1-2-9×210=210-2-9×210=-8×210-2, ∴T=8×210+2=8 194, m] ∴F(1)+F(2)+…+F(1 024)=8 194+10=8 204. 答案:A 第Ⅱ卷 (⾮选择共90分) ⼆、填空题:本⼤题共4个⼩题,每⼩题5分,共20分. 13.若数列{an} 满⾜关系a1=2,an+1=3an+2,该数列的通项公式为__________. 解析:∵an+1=3an+2两边加上1得,an+1+1=3(an+1), ∴{an+1}是以a1+1=3为⾸项,以3为公⽐的等⽐数列, ∴an+1=33n-1=3n,∴an=3n-1. 答案:an=3n-1 14.已知公差不为零的等差数列{an}中,M=anan+3,N=an+1an+2,则M与N的⼤⼩关系是__________. 解析:设{an}的公差为d,则d≠0. M-N=an(an+3d)-[(an+d)(an+2d)] =an2+3dan-an2-3dan-2d2=-2d2<0,∴M<N. 答案:M<N 15.在数列{an}中,a1=6,且对任意⼤于1的正整数n,点(an,an-1)在直线x-y=6上,则数列{ann3(n+1)}的前n项和Sn=__________. 解析:∵点(an,an-1)在直线x-y=6上, ∴an-an-1=6,即数列{an}为等差数列. ∴an=a1+6(n-1)=6+6(n-1)=6n, ∴an=6n2. ∴ann3(n+1)=6n2n3(n+1)=6n(n+1)=61n-1n+1 ∴Sn=61-12+12-13+…+1n-1n+1.=61-1n+1=6nn+1. 答案:6nn+1 16.观察下表: 1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 … 则第__________⾏的各数之和等于2 0092. 解析:设第n⾏的各数之和等于2 0092, 则此⾏是⼀个⾸项a1=n,项数为2n-1,公差为1的等差数列. 故S=n×(2n-1)+(2n-1)(2n-2)2=2 0092,解得n=1 005. 答案:1 005 三、解答题:本⼤题共6⼩题,共70分. 17.(10分)已知数列{an}中,a1=12,an+1=12an+1(n∈N*),令bn=an-2. (1)求证:{bn}是等⽐数列,并求bn; (2)求通项an并求{an}的前n项和Sn. 解析:(1)∵bn+1bn=an+1-2an-2=12an+1-2an-2=12an-1an-2=12, ∴{bn}是等⽐数列. ∵b1=a1-2=-32, ∴bn=b1qn-1=-32×12n-1=-32n. (2)an=bn+2=-32n+2, Sn=a1+a2+…+an =-32+2+-322+2+-323+2+…+-32n+2 =-3×12+122+…+12n+2n=-3×12×1-12n1-12+2n=32n+2n-3. 18.(12分)若数列{an}的`前n项和Sn=2n. (1)求{an}的通项公式; (2)若数列{bn}满⾜b1=-1,bn+1=bn+(2n-1),且cn=anbnn,求数列{cn}的通项公式及其前n 项和Tn. 解析:(1)由题意Sn=2n, 得Sn-1=2n-1(n≥2), 两式相减,得an=2n-2n-1=2n-1(n≥2). 当n=1时,21-1=1≠S1=a1=2. ∴an=2 (n=1),2n-1 (n≥2). (2)∵bn+1=bn+(2n-1), ∴b2-b1=1, b3-b2=3, b4-b3=5, … bn-bn-1=2n-3. 以上各式相加,得 bn-b1=1+3+5+…+(2n-3) =(n-1)(1+2n-3)2=(n-1)2. ∵b1=-1,∴bn=n2-2n, ∴cn=-2 (n=1),(n-2)×2n-1 (n≥2), ∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1, ∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n. ∴-Tn=2+22+23+…+2n-1-(n-2)×2n =2(1-2n-1)1-2-(n-2)×2n =2n-2-(n-2)×2n =-2-(n-3)×2n. ∴Tn=2+(n-3)×2n. 19.(12分)已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等⽐数列. (1)求数列{an}的通项公式; (2)若从数列{an}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成⼀个新数列{bn},记该数列的前n项和为Tn,求Tn的表达式. 解析:(1)依题意,得 3a1+3×22d+5a1+5×42d=50,(a1+3d)2=a1(a1+12d),解得a1=3,d=2. ∴an=a1+(n-1)d=3+2(n-1)=2n+1, 即an=2n+1. (2)由已知,得bn=a2n=2×2n+1=2n+1+1, ∴Tn=b1+b2+…+bn =(22+1)+(23+1)+…+(2n+1+1) =4(1-2n)1-2+n=2n+2-4+n. 20.(12分)设数列{an}的前n项和为Sn,且ban-2n=(b-1)Sn. (1)证明:当b=2时,{an-n2n-1}是等⽐数列; (2)求通项an. 新课标第⼀⽹ 解析:由题意知,a1=2,且ban-2n=(b-1)Sn, ban+1-2n+1=(b-1)Sn+1, 两式相减,得b(an+1-an)-2n=(b-1)an+1, 即an+1=ban+2n.① (1)当b=2时,由①知,an+1=2an+2n. 于是an+1-(n+1)2n=2an+2n-(n+1)2n =2an-n2n-1. ⼜a1- 120=1≠0, ∴{an-n2n-1}是⾸项为1,公⽐为2的等⽐数列. (2)当b=2时, 由(1)知,an-n2n-1=2n-1,即an=(n+1)2n-1 当b≠2时,由①得 an +1-12-b2n+1=ban+2n-12-b2n+1=ban-b2-b2n =ban-12-b2n, 因此an+1-12-b2n+1=ban-12-b2n=2(1-b)2-bbn. 得an=2, n=1,12-b[2n+(2-2b)bn-1], n≥2. 21.(12分)某地在抗洪抢险中接到预报,24⼩时后⼜⼀个超历史最⾼⽔位的洪峰到达,为保证万⽆⼀失,抗洪指挥部决定在24⼩时内另筑起⼀道堤作为第⼆道防线.经计算,如果有 20辆⼤型翻⽃车同时作业25⼩时,可以筑起第⼆道防线,但是除了现有的⼀辆车可以⽴即投⼊作业外,其余车辆需从各处紧急抽调,每隔20分钟就有⼀辆车到达并投⼊⼯作.问指挥部⾄少还需组织多少辆车这样陆续⼯作,才能保证24⼩时内完成第⼆道防线,请说明理由. 解析:设从现有这辆车投⼊⼯作算起,各车的⼯作时间依次组成数列{an},则an-an-1=-13. 所以各车的⼯作时间构成⾸项为24,公差为-13的等差数列,由题知,24⼩时内最多可抽调72辆车. 设还需组织(n-1)辆车,则 a1+a2+…+an=24n+n(n-1)2×-13≥20×25. 所以n2-145n+3 000≤0, 解得25≤n≤120,且n≤73. 所以nmin=25,n-1=24. 故⾄少还需组织24辆车陆续⼯作,才能保证在24⼩时内完成第⼆道防线. 22.(12分)已知点集L={(x,y)|y=mn},其中m=(2x-2b,1),n=(1,1+2b),点列Pn(an,bn)在点集L中,P1为L的轨迹与y轴的交点,已知数列{an}为等差数列,且公差为1,n∈N*. (1)求数列{an},{bn}的通项公式; (3)设cn=5nan|PnPn+1|(n≥2),求c2+c3+c4+…+cn的值. 解析:(1)由y=mn,m=(2x-2b,1),n=(1,1+2b), 得y=2x+1,即L:y=2x+1. ∵P1为L的轨迹与y轴的交点, ∴P1(0,1),则a1=0,b1=1. ∵数列{an}为等差数列,且公差为1, ∴an=n-1(n∈N*) . 代⼊y=2x+1,得bn=2n-1(n∈N*). (2)∵Pn(n-1,2n-1),∴Pn+1(n,2n+1). =5n2-n-1=5n-1102-2120. ∵n∈N*, (3)当n≥2时,Pn(n-1,2n-1), ∴c2+c3+…+cn =1-12+12-13+…+1n-1-1n=1-1n.。
高二数学数列综合测试题(解析版)

7.已知 分别是等差数列 与 的前 项和,且 ,则 ()
A. B. C. D.
【答案】B
【详解】因为数列 是等差数列,所以 ,
所以 ,
又因为 分别是等差数列 与 的前 项和,且 ,
所以 ,
故选: .
8.已知数列 满足 ,则满足 的 的最大取值为()
11.一个弹性小球从 高处自由落下,每次着地后又跳回原来高度的 再落下.设它第 次着地时,经过的总路程记为 ,则当 时,下面说法正确的是()
A. B. C. 的最小值为 D. 的最小值为250
【答案】BC
【详解】由题可知,第一次着地时, ;第二次着地时, ;
第三次着地时, ;……
第 次着地后,
则 ,显然 ,又 是关于 的增函数, ,故当 时, 的最小值为 ;
A.39B.45C.48D.51
【答案】D
【详解】设该塔群共有n阶,自上而下每一阶的塔数所构成的数列为 ,依题意可知 , ,…, 成等差数列,且公差为2, ,
则 ,解得 .
故最下面三价的塔数之和为 .故选:D
4.等比数列 的前 项和为 , , ,则 为()
A. B. C. D.28或-21
ห้องสมุดไป่ตู้【答案】A
数列复习训练题
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一个
1.等差数列 中,已知 ,则 ()
A.36B.27C.18D.9
【答案】B
【详解】解:由题得 .故选:B
2.若数列 满足 , , ,则 的值为()
A.-3B.-2C.-1D.2
【答案】C
【详解】由 得 ,故有
数列测试题及答案解析

数列测试题及答案解析一、选择题1. 已知数列{an}满足a1=2,an+1 = 2an,判断数列{an}是否为等比数列。
A. 是B. 不是C. 无法判断答案:A2. 若数列{bn}是等差数列,且b3=5,b5=9,求b7。
A. 11B. 13C. 无法确定答案:B二、填空题1. 给定数列{cn},其中c1=1,cn+1 = cn + n,求c5的值。
答案:152. 已知等差数列{dn}的首项d1=3,公差d=2,求d20的值。
答案:43三、解答题1. 求等比数列{en}的前n项和Sn,若e1=1,公比q=3。
解:根据等比数列前n项和公式Sn = e1 * (1 - q^n) / (1 - q),代入e1=1和q=3,得到Sn = (1 - 3^n) / (1 - 3)。
2. 已知等差数列{fn}的前n项和为Tn,若f1=2,d=3,求T10。
解:根据等差数列前n项和公式Tn = n/2 * (2a1 + (n - 1)d),代入f1=2和d=3,得到T10 = 10/2 * (2*2 + (10 - 1)*3) = 5 * (4 + 27) = 5 * 31 = 155。
四、证明题1. 证明数列{gn},其中gn = n^2,是一个单调递增数列。
证明:设n≥2,我们需要证明对于任意的n,有gn ≥ gn-1。
即证明n^2 ≥ (n-1)^2。
展开得n^2 - (n-1)^2 = 2n - 1 > 0,所以数列{gn}是单调递增的。
2. 证明等差数列{hn}的任意两项hn和hm(m > n)之和等于它们中间项的两倍。
证明:设等差数列{hn}的首项为h1,公差为d。
根据等差数列的定义,hn = h1 + (n - 1)d,hm = h1 + (m - 1)d。
将两项相加得hn + hm = 2h1 + (m + n - 2)d。
由于m > n,所以m + n - 2 = m - 1 + n - 1,即hn + hm = h1 + (m - 1)d + h1 + (n - 1)d = 2h1 + (m + n - 2)d = 2h((m + n - 1)/2),这正是它们中间项的两倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习综合测试一.选择题(60分)1.在等差数列{}n a 中,有()()35710133224a a a a a ++++=,则此数列的前13项之和为( )A .52B .26C .13D .156 2.等差数列}{n a 的前n 项和为n S ,若==--=1815183,18,6S S S S 则 ( )A .36B .18C .72D .93.已知等差数列}a {n 的公差0d <, 若24a a 64=⋅, 10a a 82=+, 则该数列的前n 项和n S 的最大值为( ).A. 50B. 45C. 40D. 35 4.已知等比数列{a n },a 2>a 3=1,则使不等式(a 1-11a )+(a 2-21a )+…+(a n -1na )≥0成立的最大自然数n 是A .4 B.5 C.6 D.75.已知等差数列{}n a 的前n 项和为n S ,且满足2:1:,4811311872==+++a a a a a a ,则nnn S na 2lim∞→等于A.41 B.21C.1D.2 6.等差数列}{n a 中,12324a a a ++=-,18192078a a a ++=,则此数列前20项和等于 A .160 B .180 C .200 D .220 7.在等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于A .-1221 B.-21.5 C.-20.5 D.-20 8.在正项等比数列{a n }中,a 1、a 99是方程x 2-10x + 16 = 0的两个根,则a 40·a 50·a 60的值为( )A .32B .64C .±64D .2569.等比数列}{n a 的前n 项和为S n ,已知S 4=1,S 8=3,则20191817a a a a +++的值为A. 32B. 16C. 8D. 410.等差数列{}n a 的前n 项和记为S n ,若a 2+a 4+a 15=p (常数),则数列{}n S 中也是常数的项是( )(A )S 7 (B )S 8 (C )S 13 (D )S 15 11.已知数列{log 3(a n +1)}(n ∈N *)为等差数列,且a 1=2,a 2=8,则213243111lim(x a a a a a a →∞+++---…+11)n na a +=-A .14 B.34 C.12 D.1 12、已知{}n a 是等比数列,对任意*N n ∈都有0>n a ,如果25)()(644533=+++a a a a a a ,则=+53a aA.5B.10C.15D.20 二.填空题(16分)13.若四个正数a ,b ,c ,d 成等差数列,x 是a 和d 的等差中项,y 是b 和c 的等比中项,则x 和y 的大小关系是 .14.在等比数列{a n }中,a 3+a 5=18,a 9+a 11=144,则a 5+a 8=_____________. 15.把49个数排成如图4所示的数表,若表中每行的7个数自左至右依次都成等差数列,每列的7个数自上而下依次也都成等差数列,且正中间的数a44=1,则表中所有数的和为___________________.16.已知等差数列{}n a 的前n 项和为n S ,若1,,m m N >∈且2110m m m a a a -++-=,2138m S -=,则m = 。
三.解答题(74分)17.已知数列{a }n 的前n 项和为S n ,满足S n =2a n -2n(n ∈N +) (1)求数列{a }n 的通项公式a n ;(2)若数列{b n }满足b n =log 2(a n +2),T n 为数列{2+n n a b }的前n 项和,求证T n ≥21; 18.(12分)已知数列.12}{2n n S n a n n -=项和的前求:(1)数列}{n a 的通项公式; (2)数列.|}{|n n T n a 项和的前19. (12分)数列{}*23(N )n n n n a n S S a n n =-∈的前项和为,且.(1)若数列{}n a c +成等比数列,求常数c 值; (2)求数列{}na 的通项公式n a .20.(12分)已知数列{}n a 的前n 项和为n S ,且满足()111,222n n n a a S S n -==-≥,(1) 数列n S ⎨⎬⎩⎭是否为等差数列?请证明你的结论; (2) 求n S 和n a .★21. (12分)已知正数列}{n a 的前n 项和为21,(1)4n n n S S a =+且,数列123121,,,,----n n b b b b b b b 是首项为1,公比为21的等比数列. (1)求证:数列}{n a 是等差数列;(2)若}{),2(n n n n c b a c 求数列-⋅=的前n 项和T n . ★22.(12分)已知214)(x x f +-=,点)1,(1+-n n n a a P ()n ∈*N 在曲线(),y f x =上 11,0n a a =>且.(1)求数列}{n a 的通项公式; (2)数列}{n b 的前n 项和为T n ,且满足381622121--+=++n n a T a T n n n n ,设定1b 的值,使得数列}{n b 是等差数列.答案一.选择题13.x ≥y ;14. ±362;15. 49;16.10。
三.解答题17. (1)当n ∈N +时,S n a n n 22-=, ①则当n ≥2,n ∈N +时,S 1-n =2a 1-n -2(n-1).② ①-②,得a n =2a n -2a 1-n -2 即a n =2a 1-n +2, ∴a n +2=2(a 1-n +2),∴21+-n n a =2当n=1时,S 1=2a 1-2,则a 1=2,∴| a n +2|是以a 1+2为首项,以2为公比的等比数列。
∴a n +2=4·21-n , ∴a n =21+n -2(Ⅱ)b n =log 2( a n +2)= log 221+n =n+1,2+n n a b =121++n n , 则T n =222+323+…+121++n n ,③ 21T n =322+…+12+n n +221++n n ④ ③-④,得21T n =222+321+421+…+121+n -221++n n =41+211]211[41--n -221++n n =41+21-121+n -221++n n=43-223++n n ,∴T n =23-123++n n .当n ≥2时,T n -T 1-n =-1112123422223++++=--+=+++n n n n n n n n n >0, ∴{T n }为递增数列,∴T n ≥T 1=21. 18. 解:(1)当111112,1211=-⨯===S a n 时;当.213])1()1(12[)12(,2221n n n n n S S a n n n n -=-----=-=≥-时(2)令.6,,0213*≤∈≥-=n n n a n 解得又N当2212112||||||,6n n S a a a a a a T n n n n n -==+++=+++=≤ 时;当||||||||||,67621n n a a a a a T n ++++++=> 时综上,⎪⎩⎪⎨⎧>+-≤-=.6,7212,6,1222n n n n n n T n19.解:(1)由1112323(1)23n n n n n n S a n S a n a a +++=-=-+=+及得 ∴132,33n n a c a ++=∴=+;(2)11111123,3,3(3)2n n a S a a a a -==-∴=+=+⋅20. 解:(1)当2n ≥时,1,n n n a S S -=- ∴112,n n n n S S S S ---=-()1112n n n S S S --+=, 显见,若10n S -≠,则0n S ≠. ∵1110,2S a ==≠ ∴由递推关系知0()n S n ≠∈*N . ∴()1111112,22n n n n n S S S S ---=--=≥. ∴1n S ⎧⎫⎨⎬⎩⎭是等差数列. (2)由(1)知,11111(1)2222.n n n n S S a =+-=+-=,∴12n S n=. 当2n ≥时,112(1)n n n a S S n n -=-=--,∴1(1),21(2).2(1)n nn n n a =-≥-⎧⎪=⎨⎪⎩21.(1)证明:由2)1(41+=n n a S , 当n =1时,211)1(41+=a a当211)1(41,2+=≥--n n a S n 时, )22(4112121----+-=-=∴n n n n n n n a a a a S S a , 即,0)2)((11=--+-+n n n n a a a a 即.21=--n n a a2,1}{1==∴d a a n 是数列的等差数列,(2)依题意,)21(,2,1111--=-≥=n n n b b n b 时当)212252321(232n n -++++= ①)212252321(2211432+-++++=n n n T ,② ①—②得),21222222221(221132+--++++=n n n n T22. 解:(1)由于11()(,)()n n f x P a y f x a +=-=点在曲线上, 2121141,0,14)(1nn n n n n a a a a a f a +=∴>+-==-∴++并且. 221114()N n nn a a ++∴-=∈. ∴ 数列}1{2n a 是等差数列,首项1121=a ,公差d 为4.221114(1),.0,)43n n n n n a a a n a n ∴=+-=>∴=∈-*N . (2)由3816,34122121--+=-=++n n a T a T n a n n n n n ,令34-=n T C n n ,∵n T =(43)n -(11T n +-)= 42117433n n nT T -+-+∴133T -+= 0,∴1T =0,∴C 1=1,此时111==T b .87,()N n b n n +∴=-∈ , 此时数列}{n b 是等差数列.。