晶格振动 (2.双原子模型)
位势的一维双原子链的晶格振动色散曲线

位势的一维双原子链的晶格振动色散曲线一维双原子链是研究晶格振动的常见模型之一,其可用于解释晶体的声学和光学性质。
在研究晶格振动的过程中,色散曲线是一个重要的参考内容,它描述了晶格振动的频率与波矢之间的关系。
本文将介绍一维双原子链的晶格振动色散曲线的相关内容。
一维双原子链是由两种原子按照ABAB...的周期性排列形成的周期性结构。
为了便于分析,我们假设这两种原子的质量分别为m1和m2,弹性常数分别为k1和k2。
通过应用牛顿定律和胡克定律,可以得到一维双原子链中晶格振动的运动方程。
在固体物理学中,将波的传播方向为x轴,位置为x的原子质点振动的位移为u(x, t),根据牛顿定律和胡克定律,可以得到一维双原子链的晶格振动的运动方程为:m1∂²u(x, t)/∂t² = k1[u(x+a, t) - u(x, t)] + k2[u(x-a, t) - u(x, t)]m2∂²u(x, t)/∂t² = k2[u(x+a, t) - u(x, t)] + k1[u(x-a, t) - u(x, t)]其中,a为晶格常数,表示相邻原子之间的距离。
通过将位移u(x, t)展开为平面波的形式,可以将上述两个方程变换为光学模式和声学模式的形式,从而得到晶格振动的色散关系。
对于光学模式,位移u(x, t)可以表示为:u(x, t) = A1exp[i(kx-ωt)] + A2exp[-i(kx-ωt)]其中,A1和A2为振幅,k为波矢,ω为角频率。
将该位移代入运动方程中,可以得到:m1ω² = 2k1 - 2k1cos(ka)m2ω² = 2k2 - 2k2cos(ka)并且,根据周期性边界条件,可以得到波矢k满足的条件为:exp(ika) + exp(-ika) = 2cos(ka) = -m2/m1通过解以上方程组,可以得到光学模式的色散关系,即角频率ω与波矢k之间的关系。
第三章 晶格的振动

i [ q ( 2 n2 ) at ]Be it Ae it
原胞内的不同原子以相同的振幅和位相做整体运动。
长声学波代表原胞质心的振动。
2)光频支 2 2 cos qaA ( 2 M ) B 0 两种原子的振幅比:
2 A 2 M2 ( )2 B 2 cos qa
玻恩—卡门边界条件: 晶格振动的波矢数等于晶体的原胞数。 晶格振动的频率数等于晶体的自由度数
(振动模式数)
2. 一维单原子链的波矢数
N M x N 1 x1 i q ( N 1) a t i qa t Ae Ae i qna t x Ae n ei qNa 1 Nqa 2l 2l q Na
光学波代表原胞中两个原子的相对运动。
三、玻恩—卡门边界条件 1. 玻恩—卡门假设和主要结果 a. 由N个原子构成的原子链为无限长的原子 链上的一段,这里N=mM m—每个原胞的原子数,M—原胞数。 b. 把这N个原子组成的一维原子链看成一个 闭合环,它包含有限数目的原子,但实际 上第N+1个原子就是第1个原子。 只要N足够大,圆环半径远远大于晶格常数就 局部看仍认为原子排列在一条直线上从而 得出结论。
0
U 1 2U 2 U ( x0 ) U ( x0 ) ( ) x0 x x0 ( 2 ) x0 x x0 ... x 2 x U 1 2U U ( x0 ) ( ) x0 ( 2 ) x0 2 ... x 2 x
2
mM
{(m M ) [m 2 M 2 2m M cos(2qa)] }
1 2
2. 振动方程及其试探解 类似于一维单原子链的讨论
固体物理学:第3章 晶格振动

2 2
21 2
cos
qa
1 2
光学支
2 o
1
m
2 1 m
1
2 1
2 2
21
2
cos
qa
2
声学支
2A
1
m
2 1 m
12 22 21 2 cos qa
1 2
三、色散关系
UESTC
ω
当 q=0
ωO
ωA = 0 ωo = 21 2
m
ωA
当
q=
a
a
o
q
a
A
21
m
o
2 2
m
四、格波数
q 2 m
Na
2
Na
m 0 , 1, 2
q
o
波矢q 的取值是分立的,相邻q的“距离”N2a
五、格波数
UESTC
此前研究的晶格原子集体的波动运动就是格波。
晶体中所有原子以相同的频率和振幅在 平衡位置附近作简谐振动,原子的运动状 态在晶体中以波的形式传播,这种简谐波 称为格波。
五、格波数
UESTC
3.1 一维单原子链的振动
一. 物理模型 二. 运动方程 三. 色散关系 四. 波恩-卡曼周期性边界条件 五. 格波数 六. 小结
UESTC
一、物理模型
UESTC
一维简单晶格的振动
平衡位置 振动时偏离 平衡位置
un :第n个原子偏离平衡位置的位移 m :原子质量
一、物理模型
UESTC
V (r) V (0) dV (r) r 1 d 2V (r) r2
UESTC
❖ 对于一维原子链,简约区中波数q的取值总
《固体物理基础》晶格振动与晶体的热学性质

一、三维简单格子
二、三维复式格子
三、第一布里渊区
四、周期性边界条件
◇一个原胞内有P
个不同原子,则
有3P个不同的振
动模式,其中3支 声学波。
◇具有N个原胞的 晶体中共有3PN个
振动模式,其中
3N个声学波, 3N(P-1)个光学波。
四、周期性边界条件 总结
§ 3.4 声子
声子:晶格振动中格波的能量量子
二、一维单原子链的振动
格波
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
周期性边界条件
玻恩—卡曼边界条件
二、一维单原子链的振动
周期性边界条件
即q有N个独立的取值—晶格中的原胞数第一布
◇非弹性X射线散射、非弹性中子散射、可见光 的非弹性散射。
§ 3.4 声子
§ 3.4 声子
90K下钠晶体沿三个方向的色散关系
§ 3.5 晶格热容
一、晶格振动的平均能量
热力学中,固体定容热容:
根据经典理论,每一个自由度的平均能量是kBT, kBT/2为平均动能,kBT/2为平均势能,若固体有
N个原子,总平均能量: 取N=1摩尔原子数,摩尔热容是:
二、一维单原子链的振动
一维单原子链的振动
二、一维单原子链的振动
简谐近似下的运动方程
二、一维单Hale Waihona Puke 子链的振动简谐近似下的运动方程
在简谐近似下,原子的相互作用像一个弹 簧振子。一维原子链是一个耦合谐振子,各原 子的振动相互关联传播,形成格波。
晶格振动模式密度

热力学
热容量
晶格振动模式密度可以影响固体 的热容量,通过分析晶格振动模 式密度,可以更准确地描述固体
热容量的变化规律。
热传导
晶格振动模式密度对热传导过程也 有重要影响,它决定了固体内部热 能传递的速率和方式。
相变
晶格振动模式密度在相变过程中扮 演着重要角色,可以影响相变温度 和相变过程中的能量变化。
根据晶体的结构和对称性,建立晶格模型 。
根据原子间的相互作用势,确定原子间的 相互作用。
3. 求解振动方程
4. 计算振动模式密度
根据晶格模型和原子间的相互作用,求解 晶体的振动方程。
根据求解得到的振动方程,计算晶体的振 动模式密度。
结果分析
振动模式密度的分布
振动模式的能量分布
分析计算得到的振动模式密度在晶格 中的分布情况,了解晶体的振动特性。
CHAPTER
材料科学
材料性质预测
晶格振动模式密度可用于预测材 料的物理性质,如热导率、弹性 常数等,有助于材料设计和优化 。
相变研究
通过研究晶格振动模式密度随温 度的变化,有助于理解材料的相 变行为,如金属向绝缘体的转变 等。
环境科学
污染物扩散
晶格振动模式密度可以影响气体在材料中的扩散系数,对于 理解污染物在环境中的传播和扩散具有重要意义。
光学
光的吸收和散射
晶格振动模式密度对光与物质相互作用过程中的吸收和散射有重 要影响,可以改变光的传播方向和强度。
光的折射和反射
晶格振动模式密度可以影响光的折射和反射,从而改变光在物质表 面的行为。
非线性光学效应
通过研究晶格振动模式密度,可以深入了解非线性光学效应的机制, 为新型光学材料和器件的开发提供理论支持。
§3-2 一维双原子链的晶格振动

允许的波矢数=晶体的初基原胞数 格波总数=晶体振动的总自由度数
以后可以看到,此结论对三维晶体也是适用的。
(二) .长波极限
当|q∣→0, λ→∞时, 相邻原胞间的振动相位差qa→0。 利用 cosqa ≈1 -(1/2)(qa)2 (1-x)1/2 ≈1-(x/2) (x为小量) 式(3-23)中 ωA2=(β1+β2)/m- (β12+β22+2β1β2cosqa)1/2 /m 可简化为
2 1 A= m
12
(3-33)
即在第一布里渊区边界上,存在格波频率“间隙” 在第一布里渊区边界上,由式(3-30)
A2 1e 2 iqd e iqa A 1e 2 1
iqa
可得 对光学支 A2=-A1 e iqd 当d<<a , A2≈-A1 对声学支 A2=A1 e iqd 当d<<a , A2≈A1 由于q→π/a,相邻原胞运动的相位差 qa→π。
(3-30)自推
正号对应声学支,负号对应光学支。当q→0时 A 2=A 1 声学支 A2=-A1 光学支 在长波极限情况下,
声学格波描写原胞内原子的同相运动, 光学格波描写原胞内原子的反相运动。
两支格波最重要的差别:
分别描述了原子不同的运动状态。
参见FD动画
45
(三). q趋近第一布里渊区边界
三维晶体:原胞的总自由度数为3S,则 晶体中原子振动可能存在的运动形式 就有3S种,用3S支格波来描述。其中 在三维空间定性地描述原胞质心运动 的格波应有3支,也就是说应有3支声 学格波,其余3(S-1)支则为光学格 波。例如硅晶体属于金刚石结构,每 个初基原胞含两个原子,即S=2 , 它有 3支声学格波和3支光学格波。
晶格震动与声子理论

晶格震动与声子理论晶格震动是在固体中传播的一种能量传递方式,它与固体的物理性质以及热学性质密切相关。
声子理论则是描述晶格震动的理论模型,通过声子理论可以深入理解固体的热导率、比热容等性质。
一、晶格震动的基本概念晶体是由多个离子或原子组成的周期性排列结构,通过共价键或者离子键相互连接。
在晶体结构中,原子相对位置是固定的,但是它们仍然能够发生小幅度的振动,也称为晶格震动。
晶格震动可以看作是晶体中原子粒子的一种集体运动,这种运动反映了晶体中粒子固有的势能曲线和受到的限制。
二、声子理论的基本原理声子是描述晶格振动的基本概念,也称为晶格振动子。
在声子理论中,晶体的振动被描述为一系列离散的模式,每个模式都有特定的频率和振幅。
声子理论可以用简谐振动模型来描述,即将晶体中的每个原子近似看作一个简谐振子。
根据经典力学,每个原子的振动可以用哈密顿量来描述,而哈密顿量由原子之间的相互作用势能确定。
声子的能量与频率之间存在关系,即E=hf,其中E为能量,h为普朗克常数,f为频率。
由此可见,声子的频率与晶体的化学成分、晶格结构及其形变等因素都有关系。
三、晶格震动对固体性质的影响晶格震动对固体性质的影响非常重要。
首先,声子的频率和波矢决定了固体的热导率。
声子在固体中的传播受到一些散射机制的影响,如声子-声子散射、声子-杂质散射、声子-晶格缺陷散射等。
这些散射过程会导致声子的传播速度减小,从而造成热阻力的增加。
其次,晶格震动对固体的比热容有着重要影响。
根据热力学理论,固体的比热容与其内部能量和自由度有关。
晶格震动可以激发固体中的原子或离子在空间中振动,增加了固体的自由度,从而增大了比热容。
另外,晶格震动还对固体的电子结构和光学性质等方面产生重要影响。
声子的振动会引起准粒子(如声子极化子)的激发,并且可以调控固体中的电子动量和波矢,从而影响固体的导电性和光学特性。
四、声子理论的应用声子理论在凝聚态物理、材料科学和固体电子学等领域都有广泛的应用。
晶格振动模式

2 (m M )
(q)
mM
2
m
2
q
M
2a
2a
0
2a
q
2a
称为一维复式晶格的 第一布里渊区
一维复式晶格的色散关系曲线
即一维复式晶格的倒格子原胞
如m<M,色散关系中存在频隙
周期性边界条件:一维双原子链由N个原胞组成,
每个原胞中含有两个不同的基,将若干个相同的
布拉菲晶格: xn Aei(qnat)
复式晶格:
x2n Aei(q2nat )
x Be 2n1
i[q(2n1)at ]
一组确定的q, 决定一种格波,或振动模式。
每一个简谐振动并不表示某一个原子的振动,而是
表示整个晶体所有原子都参与的频率 ,初相位
的振动,也称为一个振动模式。
有N个原子组成的晶体,一共有3N组特解,即有3N 种不同频率的间歇振动,也即有3N个振动模式。
晶体中原子的实际振动由运动方程的一般解表示
方程的一般解可表示为特解的线性叠加
3N
qk AklSin(lt l ) k 1,2,,3N l 1
模式,即代表一种格波。
例如:
q,
1 2
a
,
2
m
长波极限, ,q 0 整个晶格象刚体一样作整体运
动,因而恢复力为0,故 0 2a, q 邻近原子反向运动(位相相反),所以恢
a 复力和频率取极大值
二、周期性边界条件
考虑有限长的一维原子链,由N个原子组成,另有 无穷多个相同的一维原子链与之联结而形成无限长 的一维原子链,各段相应原子运动情况相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本征方程
( 2 M ) B 2 cos( qa ) A 0
2
2 cos( qa ) B ( 2 m ) A 0
2
本征方程
2 M
2
2 cos( qa ) 2 m
2
2 cos( 2
( M m ) M Mm
( 2 M ) B 2 cos( qa ) A 0
2
• 由
2 cos( qa ) B ( 2 m ) A 0
2
• 可得
A B
2 M
2
2 cos( qa )
0
• 因为对光学支 min ( q )
2 m
• 所以振幅之比小于零,这表示相邻不同原子的 振幅方向相反
a
qa
声学 ( q ) 光学 ( q )
2 M 2 m
光学 ( q )
常数 !
LO: 纵光学支 (lognitudinal optical ramus)
LA: 纵声学支 (lognitudinal acoustical ramus)
(二)
晶格振动,声子(II)
2、一维双原子链的晶格振动
2、一维双原子链的晶格振动 M
2n-2 平衡时 振动时偏离 平衡位置
d x2n dt
2 2 2
2n-1
2n
2n+1 2n+2
m
a
x2n-1 x2n
x2n+1 x2n+2
M
( x 2 n 1 x 2 n ) ( x 2 n 1 x 2 n ) ( x 2 n 2 x 2 n 1 ) ( x 2 n x 2 n 1 )
2
• 由
2 cos( qa ) B ( 2 m ) A 0
2
• 可得
A B
2 cos( qa ) 2 m
2
0
• 因为对声学支 max
(q )
2 M
• 所以振幅之比大于零,这表示相邻不同原子的 振幅都有相同的方向,代表质心的振动
振幅之比——光学支
2
m 2 Mm cos( qa )
2
1/ 2
2 (q ) (1
2 sin ( qa / 2 ) 1 4 Mm
1 2 2
Mm M m
约化质量 边界 q
1 2
长波近似
q 0
2 声学 ( q ) M m 2
纵振动
横振动
声学支 质心运动
光学支 原子的相对运动
LA
LO
TA TO
q =0 L: lognitudinal (纵向的) T: transverse (横向的)
一维三维:色散关系与振动自由度
• 一维单原子线性链的色散关系:一个声学支 • 一维双原子线性链的色散关系:一个声学、一 个光学支 • 三维?原胞内有s个原子? • 与原胞内原子的自由度有关:3个声学、3s-3个 光学支格波 • 对于q的N个取值(N:原胞个数),共有3N个 声学、(3s-3)N个光学振动模式
m
d x 2 n 1 dt
2
M
d x2n dt
2 2
2
( x 2 n 1 x 2 n 1 2 x 2 n ) ( x 2 n 2 x 2 n 2 x 2 n 1 )
x 2 n 1 Ae x 2 n Be
i r2 n 1 q t i r2 n q t
光学支
LO
LA
离子晶体中长光学波 有特别作用:相对振 动产生电偶极矩,与 电磁波相互作用,导 致强烈的红外光吸收
q
声学支
/a
0
/a
光学支 (2/1/2 M>m
LA LO
(2/m1/2 (2/M1/2
声学支
/a
q
振幅之比——声学支
( 2 M ) B 2 cos( qa ) A 0
m
d x 2 n 1 dt
2
M B (e
2
iqa
e e
iqa iqa
) A 2 B )B 2 A
m A (e
2
iqa
( 2 M ) B 2 cos( qa ) A 0
2
2 cos( qa ) B ( 2 m ) A 0