广东省广州市海珠区2014届九年级(上)期末数学试题(含答案)

合集下载

广东省广州市海珠区2014年中考一模数学试题

广东省广州市海珠区2014年中考一模数学试题

2013-2014学年下学期海珠区九年级综合练习(一模)数学卷本试卷分为选择题和非选择题两部分,共三大题25小题,满分150分. 考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 4的算术平方根是( )A. 2B. -2C. ±2D. 42. 众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50, 20,50,30,50,30,120.这组数据的众数和中位数分别是( ) A.120,50 B. 50,50C.50,30D. 50,203. 在平面直角坐标系中,将点P (-2,3)沿x 轴方向向右平移3个单位得到点Q ,则点Q 的坐标是( ) A.(-2,6) B.(-2,0) C. (1,3) D. (-5,3)4.已知ABC ∆与'''A B C ∆关于直线l 对称,则∠B 的度数( )A. 30°B. 50°C. 100°D. 90°5. 下列命题中,是真命题的为( )A.等边三角形都相似B.直角三角形都相似C.等腰三角形都相似D.锐角三角形都相似 6.下列计算正确的是( )A. 222()m n m n -=-B. 221(0)m m m -=≠ C.22(2)(2)2m n m n m n +-=- D. 224()m n mn =g7. 长方体的主视图与俯视图如图所示,则这个长方体的体积是( )30°50°lB'C'A'BA .52B .32C .24D .9主视图 俯视图8.已知二次函数()20y ax bx c a =++≠的图象如图所示,下列说法错误的是:( )A .图象关于直线x =1对称B .函数()20y ax bx c a =++≠的最小值是-4C .-1和3是方程()200ax bx c a ++=≠的两个根D .当x <1时,y 随x 的增大而增大 9. 如图,1∠的正切值等于( ) A. 2 B. 1 C. 12 D. 1310.反比例函数a by x+=图像上一点(1,1)P m m -+ ,且有21415a b a b +=-++-,则关于x 的方程210x mx ++= 的根的情况为( )A. 有两个不等的实数根B. 有两个相等的实数根C. 无实数根D. 无法判断二、填空题(本大题共6小题,每小题3分,共18分)11. 为了考察甲、乙两种小麦的长势,分别从中抽出20株测得其高度,并求得它们的方差分别为2s 甲=3.6,2s 乙=15.8,则 种小麦的长势比较整齐.12. 计算:sin30︒= ,(-3a 2)2= ,()25-=4234-41-1Oyx13. 方程121x x=-的解是 . 14. 已知扇形的半径为6cm ,圆心角的度数为120°,则此扇形的弧长为 cm.15. 如图在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴,y 轴的正半轴上,034A OB D ==,,为OB 的中点,若E 为边OA 上的一个动点,当CDE ∆的周长最小时,则点E 的坐标为 .16. 王宇用火柴棒摆成如图所示的三个“中”字形图案,依次规律,第n 个“中”字形图案需要 根火柴棒.三、解答题102分,解答应写出文字说明、证明过程或演算步骤.)17. 解不等式组:312(1)312x x x ->+⎧⎪⎨-≤⎪⎩,并在数轴上表示出其解集.18. 如图,四边形ABCD中,//,AB CD ABC CDA ∠=∠ ,求证:四边形ABCD 为平行四边形.19. 已知,a b 是方程2530x x -+=的两根,(1)求a b +和ab 的值. (2)求()()a bb a b a a b ---的值. 20. 端午节前,爸爸先去超市买了大小,质量都相同的咸肉粽和碱水粽若干,碱水粽是咸肉粽的2倍;妈妈发现咸肉粽偏少,于是妈妈又去买了同样的3只咸肉粽和1只碱水粽,此时碱水粽和咸肉粽的数量相等。

广东省广州市海珠区中学山大附属中学2024届九年级数学第一学期期末学业水平测试模拟试题含解析

广东省广州市海珠区中学山大附属中学2024届九年级数学第一学期期末学业水平测试模拟试题含解析

广东省广州市海珠区中学山大附属中学2024届九年级数学第一学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题4分,共48分)1.在平面直角坐标系中,点(2,-1)关于原点对称的点的坐标为( )A .()2,1-B .(2,1)C .(2,1)--D .(2,1)-2.如图// //,,AB CD EF AF BE 相交于点G ,下列比例式错误的是( )A .AC BD CF DE =B .AG BG GF GE =C .GC CD GF EF = D .AB AC EF CF= 3.如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,1DE =,将ADE ∆绕着点A 顺时针旋转到与ABF ∆重合,则EF =( )A .41B .42C .52D .2134.如图,△ABC 中,D 为AC 中点,AF ∥DE ,S △ABF :S 梯形AFED =1:3,则S △ABF :S △CDE =( )A.1:2 B.2:3 C.3:4 D.1:15.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=()A.34B.45C.56D.676.如图,在△ABC中,AB=18,BC=15,cos B=35,DE∥AB,EF⊥AB,若DEAF=12,则BE长为()A.7.5 B.9 C.10 D.57.如图,在平面直角坐标系中,点P在函数y=2x(x>0)的图象上从左向右运动,PA∥y轴,交函数y=﹣6x(x>0)的图象于点A,AB∥x轴交PO的延长线于点B,则△PAB的面积()A.逐渐变大B.逐渐变小C.等于定值16 D.等于定值248.抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A.y=(x+1)2+3 B.y=(x+1)2﹣3C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+39.根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴().… …… …A .只有一个交点B .有两个交点,且它们分别在轴两侧C .有两个交点,且它们均在轴同侧D .无交点 10.2020-的绝对值是( )A .2020-B .2020C .12020-D .12020 11.反比例函数2y x =的图象分布的象限是( ) A .第一、三象限 B .第二、四象限 C .第一象限 D .第二象限12.如图,PA ,PB 是⊙O 的切线,A ,B 为切点,AC 是⊙O 的直径,∠BAC =28º,则∠P 的度数是( )A .50ºB .58ºC .56ºD .55º二、填空题(每题4分,共24分) 13.若方程x 2+2x -11=0的两根分别为m 、n ,则mn (m +n )=______.14.如果线段a 、b 、c 、d 满足25a c b d ==,则2323a c b d++ =_________. 15.已知点P 是线段AB 的一个黄金分割点,且6AB cm =,AP BP >,那么AP =__________cm .16.己知圆锥的母线长为4,底面半径为2,则它的侧面积为__________(结果保留π).17.如图,在直角△OAB 中,∠AOB=30°,将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,则∠A 1OB= °.18.四边形ABCD 与四边形A B C D ''''位似,点O 为位似中心.若:1:3OA OA =',则:AB A B ''=________.三、解答题(共78分)19.(8分)如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=,且DM 交AC 于F ,ME交BC 于G .(1)证明:∽AMF BGM .(2)连结FG ,如果45α=︒,42AB =,3AF =,求FG 的长.20.(8分)已知二次函数22y x 2mx m 1=-+-.(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P ,使得PC+PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.21.(8分)在面积都相等的一组三角形中,当其中一个三角形的一边长x 为1时,这条边上的高y 为1.(1)①求y 关于x 的函数解析式;②当3x ≥时,求y 的取值范围;(2)小明说其中有一个三角形的一边与这边上的高之和为4,你认为小明的说法正确吗?为什么?22.(10分)如图,PA ,PB 是圆O 的切线,A,B 是切点,AC 是圆O 的直径,∠BAC=25°,求∠P 的度数.23.(10分)如图,海中有一个小岛A ,它的周围15海里内有暗礁,今有货船由西向东航行,开始在A 岛南偏西60︒的B 处,往东航行20海里后到达该岛南偏西30的C 处后,货船继续向东航行,你认为货船在航行途中有没有触礁的危险.24.(10分) [问题发现]如图①,在ABC 中,点E 是AC 的中点,点D 在边BC 上,AD 与BE 相交于点P ,若:1:2CD CB =,则:AP AD =_____ ;[拓展提高]如图②,在等边三角形ABC 中,点E 是AC 的中点,点D 在边BC 上,直线AD 与BE 相交于点P ,若:2:3BP BE =,求:CD CB 的值.[解决问题]如图③,在Rt ABC 中, 90ACB ∠=,点E 是AC 的中点,点D 在直线CB 上,直线AD 与直线BE 相交于点P ,4,3,8CD CB AC ===.请直接写出BP 的长.25.(12分)我们可以把一个假分数写成一个整数加上一个真分数的形式,如113=3+23.同样的,我们也可以把某些分式写成类似的形式,如33-333(1)3-1-1-1+-+==x x x x x x =3+3-1x .这种方法我们称为“分离常数法”. (1)如果-31x x +=1+1a x +,求常数a 的值; (2)利用分离常数法,解决下面的问题:当m 取哪些整数时,分式-3-1m m 的值是整数? (3)我们知道一次函数y=x-1的图象可以看成是由正比例函数y=x 的图象向下平移1个单位长度得到,函数y=21x +的图象可以看成是由反比例函数y=2x的图象向左平移1个单位长度得到.那么请你分析说明函数y=3-2-2x x 的图象是由哪个反比例函数的图象经过怎样的变换得到?26.如图,一次函数的图象与反比例函数的图象交于A (﹣2,1),B (1,n )两点.根据以往所学的函数知识以及本题的条件,你能提出求解什么问题?并解决这些问题(至少三个问题).参考答案一、选择题(每题4分,共48分)1、D【分析】根据关于原点的对称点,横、纵坐标都互为相反数”解答即可得答案.【题目详解】∵关于原点的对称点,横、纵坐标都互为相反数,∴点(2,-1)关于原点对称的点的坐标为(-2,1),故选:D.【题目点拨】本题主要考查了关于原点对称的点的坐标的特点,熟记关于原点的对称点,横、纵坐标都互为相反数是解题关键.2、D【分析】根据相似三角形的性质和平行线分线段成比例定理,对每个选项进行判断,即可得到答案.【题目详解】解:∵// //AB CD EF,∴AC BDCF DE=,AG BGGF GE=,故A、B正确;∴△CDG∽△FEG,∴GC CDGF EF=,故C正确;不能得到AB ACEF CF=,故D错误;故选:D. 【题目点拨】本题考查了相似三角形的判定和性质,平行线分线段成比例定理,解题的关键是熟练掌握平行线分线段成比例定理. 3、D【分析】根据旋转变换的性质求出FC 、CE ,根据勾股定理计算即可.【题目详解】解:由旋转变换的性质可知,ADE ABF ∆∆≌,∴正方形ABCD 的面积=四边形AECF 的面积25=,∴5BC =,1BF DE ==,∴6FC =,4CE =,∴EF ===故选D .【题目点拨】本题考查的是旋转变换的性质、勾股定理的应用,掌握性质的概念、旋转变换的性质是解题的关键.4、D【分析】本题考查了平行四边形性质,相似三角形的性质和判定的应用,注意:相似三角形的面积比等于相似比的平方.【题目详解】△ABC 中,∵AF ∥DE ,∴△CDE ∽△CAF ,∵D 为AC 中点,∴CD :CA=1:2,∴S △CDE :S △CAF =(CD :CA )2=1:4,∴S △CDE :S 梯形AFED =1:3,又∵S △ABF :S 梯形AFED =1:3,∴S △ABF :S △CDE =1:1.故选D .【题目点拨】本题考查了中点的定义,相似三角形的判定与性质,根据相似三角形的性质得出S △CDE :S △CAF =1:4是解题的关键. 5、B【题目详解】解:由折叠的性质可得,∠EDF=∠C=60º,CE=DE,CF=DF 再由∠BDF+∠ADE=∠BDF+∠BFD=120º可得∠ADE=∠BFD ,又因∠A=∠B=60º,根据两角对应相等的两三角形相似可得△AED ∽△BDF所以DE AD AE DF BF BD==,设AD=a,BD=2a,AB=BC=CA=3a,再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,所以332x a a x y a y a-==-整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,4455x ay a==,即45 CE CF故选B.【题目点拨】本题考查相似三角形的判定及性质.6、C【分析】先设DE=x,然后根据已知条件分别用x表示AF、BF、BE的长,由DE∥AB可知DE CEAB CB=,进而可求出x的值和BE的长.【题目详解】解:设DE=x,则AF=2x,BF=18﹣2x,∵EF⊥AB,∴∠EFB=90°,∵cos B=BFBE=35,∴BE=53(18﹣2x),∵DE∥AB,∴DE CE AB CB=,∴515(182)31815x x--=∴x=6,∴BE=53⨯(18﹣12)=10,故选:C.【题目点拨】本题主要考查了三角形的综合应用,根据平行线得到相关线段比例是解题关键.7、C【分析】根据反比例函数k的几何意义得出S△POC =12×2=1,S矩形ACOD=6,即可得出13PCAC=,从而得出14PCPA=,通过证得△POC∽△PBA,得出2POCPAB116S PCS PA⎛⎫==⎪⎝⎭,即可得出S△PAB=1S△POC=1.【题目详解】如图,由题意可知S△POC=12×2=1,S矩形ACOD=6,∵S△POC=12OC•PC,S矩形ACOD=OC•AC,∴POCACOD 1OC?PC1 2OC?AC6S S ==矩形,∴13 PCAC=,∴14 PCPA=,∵AB∥x轴,∴△POC∽△PBA,∴2POCPAB116 S PCS PA⎛⎫==⎪⎝⎭,∴S△PAB=1S△POC=1,∴△PAB的面积等于定值1.故选:C.【题目点拨】本题考查了反比例函数的性质以及矩形的面积的计算,利用相似三角形面积比等于相似比的平方是解决本题的关键.8、D【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【题目详解】抛物线y=x2先向右平移1个单位得y=(x﹣1)2,再向上平移3个单位得y=(x﹣1)2+3.故选D.【题目点拨】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a (x -h )2+k (a ,b ,c 为常数,a ≠0),确定其顶点坐标(h ,k ),在原有函数的基础上“h 值正右移,负左移; k 值正上移,负下移”.9、B【分析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【题目详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上 则该二次函数的图像与轴有两个交点,且它们分别在轴两侧故选B.【题目点拨】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.10、B【分析】根据绝对值的定义直接解答.【题目详解】解:根据绝对值的概念可知:|−2121|=2121,故选:B .【题目点拨】本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.11、A【解题分析】先根据反比例函数的解析式判断出k 的符号,再根据反比例函数的性质即可得出结论.【题目详解】解:∵反比例函数y=2x中,k=2>0, ∴反比例函数y=2x的图象分布在一、三象限. 故选:A .【题目点拨】 本题考查的是反比例函数的性质,熟知反比例函数y=k x(k≠0)中,当k >0时,反比例函数图象的两个分支分别位于一三象限是解答此题的关键.12、C 【分析】利用切线长定理可得切线的性质的PA =PB ,CA PA ⊥,则PAB PBA ∠=∠,90CAP ∠=,再利用互余计算出62PAB ∠=,然后在根据三角形内角和计算出P ∠的度数.【题目详解】解:∵PA ,PB 是⊙O 的切线,A ,B 为切点,∴PA =PB ,CA PA ⊥,90CAP ∠=∴62PAB PBA ∠=∠=在△ABP 中180PAB PBA P ∠+∠+∠=∴56P ∠=故选:C .【题目点拨】本题主要考查了切线长定理以及切线的性质,熟练掌握切线长定理以及切线性质是解题的关键.二、填空题(每题4分,共24分)13、22【分析】【题目详解】∵方程x 2+2x -11=0的两根分别为m 、n ,∴m+n=-2,mn=-11,∴mn(m +n)=(-11)×(-2)=22.故答案是:2214、25【分析】设2a m =,2c n =,则5b m =,5d n =,代入计算即可求得答案.【题目详解】∵线段a b c d 、、、满足25a cb d ==, ∴设2a m =,2c n =,则5b m =,5d n =, ∴()()223234622310155235m n a c m n b d m n m n +++===+++, 故答案为:25. 【题目点拨】本题考查了比例线段以及比例的性质,设出适当的未知数可使解题简便.15、3【分析】根据黄金分割的概念得到AP AB = ,把6cm AB = 代入计算即可. 【题目详解】∵P 是线段AB 的黄金分割点,AP BP >∴116322AP AB ==⨯=故答案为3.【题目点拨】本题考查了黄金分割点的应用,理解黄金分割点的比例并会运算是解题的关键.16、8π 【分析】求出圆锥的底面圆周长,利用公式12S LR =即可求出圆锥的侧面积. 【题目详解】解:圆锥的底面圆周长为224ππ⨯=, 则圆锥的侧面积为14482ππ⨯⨯=. 故答案为8π.【题目点拨】本题考查了圆锥的计算,能将圆锥侧面展开是解题的关键,并熟悉相应的计算公式.17、70【解题分析】∵将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1, ∴∠A 1OA=100°.又∵∠AOB=30°,∴∠A 1OB=∠A 1OA -∠AOB=70°.18、1∶3【解题分析】根据四边形ABCD 与四边形A B C D ''''位似,OA:OA 1:3'=,可知位似比为1:3,即可得相似比为1:3,即可得答案.【题目详解】∵四边形ABCD 与四边形A B C D ''''位似,点O 为位似中心. OA:OA 1:3'=,∴四边形ABCD 与四边形A B C D ''''的位似比是1∶3,∴四边形ABCD 与四边形A B C D ''''的相似比是1∶3,∴AB ∶AB ''=OA ∶OA′=1∶3,故答案为1∶3.【题目点拨】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.三、解答题(共78分)19、(1)见解析;(2)53=FG 【分析】(1)由DME A ∠=∠,可证∠AFM=∠BMG,从而可证∽AMF BGM ;(2)当=45α︒时,可得AC BC ⊥且4AC BC ==,再根据∽AMF BGM 可求BG ,从而可求CF ,CG ,进而可求答案.【题目详解】(1)证明:∵DME A ∠=∠∴AFM DME E A E BMG ∠=∠+∠=∠+∠=∠,又∵A B ∠=∠∴∽AMF BGM .解:(2)∵=45α︒,DME A B α∠=∠=∠=∴AC BC ⊥且4AC BC ==∵M 为AB 的中点,∴22AM BM ==又∵∽AMF BGM ,∴AF BM AM BG= ∴2222833AM BM BG AF ⋅⨯=== ∴431=-=-=CF AC AF ,84433=-=-=CG BC BG ∴222245133FG CF CG ⎛⎫=+=+= ⎪⎝⎭【题目点拨】本题考查的是相似三角形的判定与性质和勾股定理,熟练掌握相似三角形的相关知识与勾股定理是解题的关键.20、(1)2y x 2x =-或2y x 2x =+;(2)C 点坐标为:(0,3),D (2,-1);(3)P (32,0). 【分析】(1)根据二次函数的图象经过坐标原点O (0,0),直接代入求出m 的值即可.(2)把m=2,代入求出二次函数解析式,利用配方法求出顶点坐标以及图象与y 轴交点即可.(3)根据两点之间线段最短的性质,当P 、C 、D 共线时PC+PD 最短,利用相似三角形的判定和性质得出PO 的长即可得出答案.【题目详解】解:(1)∵二次函数22y x 2mx m 1=-+-的图象经过坐标原点O (0,0),∴代入得:2m 10-=,解得:m=±1.∴二次函数的解析式为:2y x 2x =-或2y x 2x =+.(2)∵m=2,∴二次函数为:()22y x 4x 3x 21=-+=--.∴抛物线的顶点为:D (2,-1).当x=0时,y=3,∴C 点坐标为:(0,3).(3)存在,当P 、C 、D 共线时PC+PD 最短.过点D 作DE ⊥y 轴于点E ,∵PO ∥DE ,∴△COP ∽△CED . ∴OP OC ED EC =,即3OP 2=, 解得:3OP 2= ∴PC+PD 最短时,P 点的坐标为:P (32,0). 21、(1)①6y x=;②02y <≤;(2)小明的说法不正确. 【分析】(1)①直接利用三角形面积求法进而得出y 与x 之间的关系;②直接利用3x ≥得出y 的取值范围;(2)直接利用x y +的值结合根的判别式得出答案.【题目详解】(1)①11632S =⨯⨯=, ∵x 为底,y 为高, ∴132xy =, ∴6y x =; ②当3x =时,2y =,∴当3x ≥时,y 的取值范围为:02y ≤<;(2)小明的说法不正确,理由:根据小明的说法得:64x x+=, 整理得:2460x x -+=,∵1a =,4b =-,6c =,∴()224441680b ac =-=--⨯⨯=-<⊿,方程无解,∴一个三角形的一边与这边上的高之和不可能是4,∴小明的说法不正确.【题目点拨】本题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y 与x 之间的关系是解题关键.22、∠P=50°【解题分析】根据切线性质得出PA=PB ,∠PAO=90°,求出∠PAB 的度数,得出∠PAB=∠PBA ,根据三角形的内角和定理求出即可.【题目详解】∵PA 、PB 是⊙O 的切线,∴PA=PB ,∴∠PAB=∠PBA ,∵AC 是⊙O 的直径,PA 是⊙O 的切线,∴AC ⊥AP ,∴∠CAP=90°,∵∠BAC=25°,∴∠PBA=∠PAB=90°-25°=65°,∴∠P=180°-∠PAB-∠PBA=180°-65°-65°=50°.【题目点拨】本题考查了切线长定理,切线性质,三角形的内角和定理,等腰三角形的性质的应用,主要考查学生运用定理进行推理和计算的能力,题目具有一定的代表性,难度适中,熟记切线的性质定理是解题的关键.23、无触礁的危险,理由见解析【分析】作高AD ,由题意可得∠ACD=60°,∠ABC=30°,进而得出∠ABC=∠BAC=30°,于是AC=BC=20海里,在Rt △ADC 中,利用直角三角形的边角关系,求出AD 与15海里比较即可.【题目详解】解 :过点A 作AD ⊥BC ,垂足为D∵∠ ABC=30︒ ∠ ACD=60︒∴∠ BAC=30︒=∠ ABC∴BC=AC=20∴sin 60︒ =AD ACAD=20sin 60︒⨯315>所以货船在航行途中无触礁的危险.【题目点拨】本题考查了解直角三角形的应用,解一般三角形的问题一般可以转化为解直角三角形的问题,正确作出高线是解题的关键.24、 [问题发现]2:3;[拓展提高]:1:2CD BD =;[解决问题]5BP =或7BP =.【分析】[问题发现]由:1:2CD CB =,可知AD 是中线,则点P 是△ABC 的重心,即可得到:AP AD =2∶3;[拓展提高]过点E 作//EF AD 交CD 于点F ,则EF 是△ACD 的中位线,由平行线分线段成比例,得到23BP BD BE BF ==,通过变形,即可得到答案; [解决问题]根据题意,可分为两种情况进行讨论,①点D 在点C 的右边;②点D 在点C 的左边;分别画出图形,求出BP 的长度,即可得到答案.【题目详解】解:[问题发现]:∵:1:2CD CB =,∴点D 是BC 的中点,∴AD 是△ABC 的中线,∵点E 是AC 的中点,则BE 是△ABC 的中线,∴点P 是△ABC 的重心,∴:AP AD =2:3;故答案为:2:3.[拓展提高]:过点E 作//EF AD 交CD 于点F .E 是AC 的中点,F 是CD 的中点,∴EF 是△ACD 的中位线,12CF DF CD ∴==, //,EF AD//PD EF ∴,23BP BD BE BF ∴==, ∴()2233BD BF BD DF ==+, 1222BD DF CD CD ∴==⨯=, 即:1CD BD =.:1:2CD BD ∴=.[解决问题]:∵在Rt ABC 中, 90ACB ∠=,3,8CB AC ==,∵点E 是AC 的中点, ∴118422CE AC ==⨯=, ∵CD=4,则点D 可能在点C 的右边和左边两种可能;①当点D 在点C 的右边时,如图:过点P 作PF ⊥CD 与点F ,∵ 90PFD ACB ∠=∠=︒, ADC PDF ∠=∠,∴△ACD ∽△PFD , ∴ DF PF DC AC =,即 48DF PF =, ∴ 2PF DF =,∵ 90PFD ACB ∠=∠=︒, EBC PBF ∠=∠,∴△ECB ∽△PBF ,∴ BC EC BF PF=, ∵ 431BF DF CD BC DF DF =+-=+-=+, ∴3412DF DF =+, 解得: 2DF =,∴ 213BF =+=, 224PF =⨯=,∴22 345BP =+=;②当点D 在点C 的左边时,如图:过点P 作PF ⊥CD 与点F ,与①同理,可证△ACD ∽△PFD ,△ECB ∽△PBF ,∴ 2PF DF =, BC EC BF PF=, ∵ 347BF BC CD DF DF DF =+-=+-=-,∴34 72DF DF=-, 解得: 2.8DF =,∴ 2 2.8 5.6PF =⨯=, 7 2.8 4.2BF =-=,∴7BP ==;∴5BP =或7BP =.【题目点拨】本题考查了相似三角形的判定和性质,平行线分线段成比例,勾股定理,以及三角形的重心,解题的关键是熟练掌握相似三角形的判定和性质,以及勾股定理解三角形.注意运用分类讨论的思想进行解题.25、(1)a=-4;(2)m=4或m=-2或m=2或m=0;(3)y=3-2-2x x . 【解题分析】(1)依据定义进行判断即可;(2)首先将原式变形为-3-3m-3,然后依据m-1能够被3整数列方程求解即可;(3)先将函数y=322x x -- 化为y=42x -+3,再结合平移的性质即可得出结论. 【题目详解】(1)∵-31-411x x x x +=++=1+-41x +,∴a=-4. (2)-3-33-3-3(-1)-3-1-1-1m m m m m m +===-3-3-1m , ∴当m-1=3或-3或1或-1时,分式的值为整数,解得m=4或m=-2或m=2或m=0.(3)y=3-23-643(-2)4-2-2-2x x x x x x ++===3+4-2x , ∴将y=4x的图象向右移动2个单位长度得到y=4-2x 的图象,再向上移动3个单位长度得到y-3=4-2x ,即y=3-2-2x x . 【题目点拨】本题考查了分式的基本性质,熟练掌握分式的基本性质和找出图象平移的性质是解题的关键.26、见解析【分析】根据反比例函数的性质、一次函数的性质及三角形的面积公式即可求解.【题目详解】解:①求反比例函数的解析式 设反比例函数解析式为k y x =将A(-2,1)代入得 k = -2 所以反比例函数的解析式为-2y x= ②求B 点的坐标. (或n 的值)将x =1代入-2y x=得y =-2 所以B(1,-2)③求一次函数解析式设一次函数解析式为y =kx+b将A(-2,1) B(1,-2) 代入得21 2k b k b -+=⎧⎨+=-⎩解得 11k b =-⎧⎨=-⎩ 所以一次函数的解析式为y = -x-1④利用图像直接写出当x 为何值时一次函数值等于反比例函数值.x= -2或x=1时⑤利用图像直接写出一次函数值大于反比例函数值时,x 的取值范围. x<-2或0<x<1⑥利用图像直接写出一次函数值小于反比例函数值时,x 的取值范围. -2<x <0或x >1⑦求C 点的坐标.将y =0代入y = -x-1得x = -1所以C 点的坐标为(-1,0)⑧求D 点的坐标.将x =0代入y = -x-1得y= -1所以D 点的坐标为(0,-1)⑨求∆AOB 的面积AOB S ∆=C AO S ∆+BOC S ∆=1112⨯⨯+1122⨯⨯=32【题目点拨】此题主要考查反比例函数与一次函数综合,解题的关键是熟知反比例函数的性质.。

2014年广东省广州市初中毕业生学业考试数学含答案.docx

2014年广东省广州市初中毕业生学业考试数学含答案.docx

2014 年中考真题秘密★启用前广州市 2014 年初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25 小题,满分150 分.考试时间120 分钟.注意事项:1.答卷前,考生务必在答题卡第 1 面、第 3 面、第 5 面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题同的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30 分)一、选择题(本大题共10 小题,每小题 3 分,满分30 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.()的相反数是().( A )(B)(C)(D)【考点】相反数的概念【分析】任何一个数的相反数为.【答案】 A2.下列图形是中心对称图形的是().( A )(B)(C)(D)【考点】轴对称图形和中心对称图形.2014 年中考真题【分析】旋转180°后能与完全重合的图形为中心对称图形.【答案】 D3.如图 1,在边长为 1 的小正方形组成的网格中,的三个顶点均在格点上,则().( A )(B)(C)(D)【考点】正切的定义.【分析】.【答案】D4.下列运算正确的是().( A)(B)(C)(D)【考点】整式的加减乘除运算.【分析】, A 错误;,B错误;,C 正确;,D错误.【答案】 C5.已知和的半径分别为2cm 和 3cm,若,则和的位置关系是().(A )外离(B)外切(C)内切(D)相交【考点】圆与圆的位置关系.【分析】两圆圆心距大于两半径之和,两圆外离.【答案】 A6.计算,结果是().( A)(B)(C)(D)【考点】分式、因式分解【分析】【答案】 B7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7, 10, 9, 8, 7, 9, 9,8.对这组数据,下列说法正确的是().( A)中位数是8(B)众数是9(C)平均数是8(D)极差是7【考点】数据【分析】中位数是8.5;众数是9;平均数是8.375;极差是3.【答案】 B8.将四根长度相等的细木条首尾相接,用钉子钉成四边形,转动这个四边形,使它形状改变,当时,如图,测得,当时,如图,().( A)(B)2(C)(D)图 2-①图2-②【考点】正方形、有内角的菱形的对角线与边长的关系【分析】由正方形的对角线长为 2 可知正方形和菱形的边长为,当=60°时,菱形较短的对角线等于边长,故答案为.【答案】 A9.已知正比例函数()的图象上两点(,)、(,),且,则下列不等式中恒成立的是().( A)(B)(C)(D)【考点】反比例函数的增减性【分析】反比例函数中,所以在每一象限内随的增大而减小,且当时,,时,∴当时,,故答案为【答案】 C10.如图 3,四边形、都是正方形,点在线段上,连接,和相交于点.设,().下列结论:①;②;③;④.其中结论正确的个数是().(A ) 4 个(B)3个(C)2个(D)1个【考点】三角形全等、相似三角形【分析】①由可证,故①正确;②延长 BG交 DE于点 H,由①可得,(对顶角)∴=90°,故②正确;③由可得,故③不正确;④,等于相似比的平方,即,∴,故④正确.【答案】 B第二部分非选择题(共120 分)二、填空题(共 6 小题,每小题 3 分,满分 18分)11.中,已知,,则的外角的度数是 _____.【考点】三角形外角【分析】本题主要考察三角形外角的计算,,则的外角为【答案】12.已知是∠ AOB的平分线,点 P 在 OC上, PD⊥ OA,PE⊥OB,垂足分别为点,,则 PE 的长度为 _____.【考点】角平线的性质【分析】角平分线上的点到角的两边距离相等.【答案】 1013.代数式有意义时,应满足的条件为______.【考点】分式成立的意义,绝对值的考察【分析】由题意知分母不能为0,即,则【答案】14.一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积为_______(结果保留).【考点】三视图的考察、圆锥体全面积的计算方法【分析】从三视图得到该几何体为圆锥体,全面积=侧面积+ 底面积,底面积为圆的面积为:,侧面积为扇形的面积,首先应该先求出扇形的半径R,由勾股定理得,,则侧面积,全面积.【答案】15.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________,该逆命题是 _____命题(填“真”或“假”).【考点】命题的考察以及全等三角形的判定【分析】本题主要考察命题与逆命题的转换,以及命题真假性的判断【答案】如果两个三角形的面积相等,那么这两个三角形全等.假命题.16.若关于的方程有两个实数根、,则的最小值为___.【考点】一元二次方程根与系数的关系,最值的求法【分析】该题主要是考察方程思想与函数思想的结合,由根与系数的关系得到:,,原式化简.因为方程有实数根,∴,.当时,最小值为.【答案】三、解答题(本大题共9 小题,满分102 分,解答应写出文字说明、证明过程或演算步骤).17.(本小题满分分)解不等式:,并在数轴上表示解集.【考点】不等式解法【分析】利用不等式的基本性质,将两边不等式同时减去,再同时加上,再除以,不等号的方向不变 .注意在数轴上表示时,此题是小于等于号,应是实心点且方向向左.【答案】解:移项得,,合并同类项得,,系数化为 1 得,,在数轴上表示为:18.(本小题满分分)如图 5,平行四边形的对角线相交于点,过点且与、分别交于点,求证:.图 5【考点】全等三角形的性质与判定、平行四边形的性质【分析】根据平行四边形的性质可知,,,又根据对顶角相等可知,,再根据全等三角形判定法则,,得证.【答案】证明:∵平行四边形的对角线相交于点∴,∴在和中,∴19.(本小题满分10 分)已知多项式.(1)化简多项式;(2)若,求的值 .【考点】(1)整式乘除( 2)开方,正负平方根【分析】(1)没有公因式,直接去括号,合并同类型化简( 2)由第一问答案,对照第二问条件,只需求出,注意开方后有正负【答案】解 :( 1)( 2),则20.(本小题满分10 分)某校初三( 1)班 50 名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远90.18三级蛙跳12一分钟跳绳80.16投掷实心球0.32推铅球50.10合计501(1)求,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;2014 年中考真题( 3)在选报“推铅球”的学生中,有 3 名男生, 2 名女生,为了了解学生的训练效果,从这机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.5 名学生中随【考点】(【分析】(1)频率( 2)①频率与圆心角;②树状图,概率1)各项人数之和等于总人数50 ; 各项频率之和为1(2)所占圆心角=频率 *360(3)画出列表图,至多有一名女生包括有一个女生和一个女生都没有两种情况.【答案】( 1)(2)“一分钟跳绳”所占圆心角 =( 3)至多有一名女生包括两种情况有 1 个或者 0 个女生列表图:男 A男 B男 C女 D女 E男 A( A , B)( A , C)( A , D)( A , E)男 B( B , A)(B , C)( B , D)( B , E)男 C( C, A)( C, B)( C,D)( C, E)女 D( D , A )( D , B)( D , C)( D , E)女 E( E, A )( E, B)( E, C)( E, D)有1 个女生的情况: 12 种有0 个女生的情况: 6 种至多有一名女生包括两种情况18 种至多有一名女生包括两种情况 == =0.90已知一次函数的图像与反比例函数的图像交于两点,点的横坐标为2.(1)求的值和点的坐标;(2)判断点的象限,并说明理由.【考点】 1 一次函数; 2 反比例函数; 3 函数图象求交点坐标【分析】第( 1)问根据点是两个图象的交点,将代入联立之后的方程可求出,再将点的横坐标代入函数表达式求出纵坐标;第(2)问根据一次函数与反比例函数的解析式分析两图像经过的象限,得出两图像交点所在象限. 此题主要考查反比例函数与一次函数的性质【答案】解:(1)将与联立得:1点是两个函数图象交点,将解得故一次函数解析式为将代入得,带入 1 式得:,反比例函数解析式为的坐标为(2)点在第四象限,理由如下:一次函数经过第一、三、四象限,反比例函数经过第二、四象限,因此它们的交点都是在第四象限.从广州某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400 千米,普通列车的行驶路程是高铁的行驶路程的 1.3 倍.(1)求普通列车的行驶路程;( 2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的 2.5 倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短 3 小时,求高铁的平均速度.【考点】行程问题的应用【分析】路程 =速度×时间,分式方程的实际应用考察【解析】(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米)千米 / 时.(2)设普通列车的平均速度为千米/时,则高铁平均速度为依题意有:可得:答:高铁平均速度为 2.5 ×120=300 千米 /时.23、(本小题满分12 分)如图 6,中,,.(1)动手操作:利用尺规作以为直径的,并标出与的交点,与的交点(保留作图痕迹,不写作法):(2)综合应用:在你所作的圆中,①求证:;②求点到的距离.【考点】( 1)尺规作图;( 2)①圆周角、圆心角定理;②勾股定理,等面积法【分析】( 1)先做出中点,再以为圆心,为半径画圆 .( 2)①要求,根据圆心角定理,同圆中圆心角相等所对的弧也相等,只需证出即可,再根据等腰三角形中的边角关系转化.②首先根据已知条件可求出,依题意作出高,求高则用勾股定理或面积法,注意到为直径,所以想到连接,构造直角三角形,进而用勾股定理可求出,的长度,那么在中,求其高,就只需用面积法即可求出高.【答案】(1)如图所示,圆为所求( 2)①如图连接,设,又则②连接,过作于,过作于cosC=, 又,又为直径设,则,在和中,有即解得:即又即24.(本小题满分14 分)已知平面直角坐标系中两定点A(-1,0), B(4,0),抛物线()过点A、B,顶点为 C.点 P( m,n)( n<0)为抛物线上一点.(1)求抛物线的解析式与顶点C的坐标.(2)当∠APB为钝角时,求m的取值范围.( 3)若,当∠为直角时,将该抛物线向左或向右平移t ()个单位,点、C移动后对APB P 应的点分别记为、,是否存在 t ,使得首尾依次连接A、 B、、所构成的多边形的周长最短?若存在,求t 值并说明抛物线平移的方向;若不存在,请说明理由.【考点】动点问题.(1)二次函数待定系数法;(2)存在性问题 , 相似三角形 ;(3)最终问题 , 轴对称 , 两点之间线段最短【答案】 (1) 解: 依题意把的坐标代入得:;解得 :抛物线解析式为顶点横坐标,将代入抛物线得(2) 如图 ,当时,设,则过作直线轴,(注意用整体代入法)2014 年中考真题解得,当在之间时,或时,为钝角.(3) 依题意,且设移动(向右,向左)连接则又的长度不变四边形周长最小,只需最小即可将沿轴向右平移 5 各单位到处沿轴对称为∴当且仅当、 B 、三点共线时,最小,且最小为,此时,设过的直线为,代入∴即将代入,得:,解得:∴当, P、 C 向左移动单位时,此时四边形ABP’C’周长最小。

广州市海珠区九年级上期末考试数学试题有答案

广州市海珠区九年级上期末考试数学试题有答案

海珠区第一学期期末调研测试九年级数学试卷本试卷分选择题和非选择题两局部,共三大题 25 小题,共 4 页,总分值150 分,考试时间 12分钟,能够使用计算器 . 第一局部 选择题〔共30分〕一.选择题〔本题有 10个小题,每题 3分,共 30分.下边每题给出的四个选项中,只有一个是正确的〕下边图形中,是中心对称图形的是〔〕2.在平面直角坐标系中,点 P 〔-3,4〕对于原点对称的点的坐标是〔〕 A.(3,4)B.(3,-4)C.(4,-3)D.(-3.以下事件中是不行能事件的是〔〕A.三角形内角和小于180°两实数之和为正C.买体育彩票中奖D.抛一枚硬币2次都正面向上假如两个相像正五边形的边长比为1∶10,那么它们的面积比为〔〕:25、把抛物线yx 2向左平移1个单位,再向下平移 2个单位,所得抛物线的分析式为〔 〕A 、y(x1)22B 、y(x1)22C 、y(x1)22D 、y(x1)226.如图,△ABC 为直角三角形,C90 ,AC6,BC8, 以点C 为圆心,以CA 为半径作⊙C ,那么△ABC 斜边的中点D 与⊙C 的地点关系是〔〕A.点D 在⊙C 上B.点D 在⊙C 内C.点D 在⊙C 外D.不可以确立7.点,是抛物线y(1)23上的两点,那么以下大小关系正确的选项是〔〕M 〔-3,y 1〕 N 〔-2,y 2〕<y <3<y <y<y <3<y 2<y 11 212218.今年“十一〞长假某湿地公园迎旅行巅峰,第一天的旅客人数是 万人,第三天的旅客人数为,那么依据题意可列方程为万人,假定每日旅客增添的百分率同样且设为〔〕〔1+〕2B、〔1+2〕2〔1-〕2D、〔1+〕〔1+〕210.如图,抛物线ya2bc(a>0) 过点〔1,0〕和点〔0,-2,且极点在第三象限,设Pa〕c,那么P的取值范围是〔〕<P<0<P<0 C.-4<P<2<P<0第二局部非选择题〔共120分〕二.填空题〔本题有6个小题,每题3分,共18分〕在一个有15万人的小镇,随机检查了1000人,此中200人会在平时生活中进行垃圾分类,那么在该镇随机挑一个人,会在平时生活中进行垃圾分类的概率是_____.12.如图,在平面直角坐标系中,点A的坐标为〔-1,2〕,AB轴于点B,以原点O为位似中心,将△OAB放大为原的2倍获得△OA1B1,且点A1在第二象限,那么点A1的坐标为___13. 方程x2 mx20的一个根是1,那么它的另一个根是____14. 如图,在Rt△ABC中,BAC 90,将Rt△ABC绕点C按逆时针方向旋转48得Rt△ABC,且点A恰幸亏边BC上,那么B的大小为____.15. 如图,△ABC的周长为8,⊙O与BC相切于点D,与AC的延伸线相切于点E,与AB的延长线相切于点F,那么AF的长为____.16. 如图,正方形ABCD的边长为2,点O是边AB上一动点〔点O不与点A,B重合〕,以O为圆心,2为半径作⊙O,分别与AD,BC订交于M,N,那么劣弧MN长度a的取值范围是___.三.解答题〔本题共9个小题,共102分,解答要求写出文字说明,证明过程或计算步骤〕17.解方程〔本大题2小题,每题5分,总分值10分〕〔1〕2450〔2〕332618.〔本题总分值 10分〕如图,在正方形网格中,每个小正方形的边长均为1个单位.(1〕把(2〕求ABCABC绕着点C逆时针旋转90 ,画出旋转后对应的A11BC旋转到A1B1C时线段AC扫过的面积.219.〔本小题总分值10分〕如图,甲分为三平分数字转盘,乙为四平分数字转盘,自由转动转盘.3〔1〕转动甲转盘,指针指向的数字小于3的概率是;4〔2〕同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率. 5..678910111213141520.〔本题总分值10分〕对于的一元二次方程有两个实162+2+a-2=0,有两个实数根1,2。

广东省广州市2014年中考数学真题试题(含扫描答案)

广东省广州市2014年中考数学真题试题(含扫描答案)

2014年广州市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔走宝自已的考生号、姓名;走宝考场室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. (0)a a ≠的相反数是 ( )A .a -B .2aC .||aD .1a2.下列图形中,是中心对称图形的是 ( ) A . B . C . D .3.如图1,在边长为1的小正方形组成的网格中,ABC ∆的三个顶点均在格点上,则tan A =( )A .35 B .45 C .34 D .434.下列运算正确的是( )A .54ab ab -=B .112a b a b +=+C .624a a a ÷=D .2353()a b a b =5.已知1O 和2O 的半径分别为2cm 和3cm ,若127cm O O =,则1O 和2O 的位置关系是( )A . 外离B .外切C .内切D .相交6.计算242x x --,结果是 ( ) A .2x - B .2x + C .42x - D .2x x+7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是 ( )A . 中位数是8B . 众数是9C . 平均数是8D . 极差是78.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变.当90B ∠=︒时,如图2-①,测得2AC =.当60B ∠=︒时,如图2-②,AC =( )图2-① 图2-②A B .2 C D .9.已知正比例函数(0)y kx k =<的图象上两点11(,)A x y 、22(,)B x y ,且12x x <,则下列不等式中恒成立的是( )A .120y y +>B .120y y +<C .120y y ->D .120y y -<10.如图3,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O .设AB a =,()CG b a b =>.下列结论:①BCG DCE ∆≅∆;②BG DE ⊥;③DG GO GC CE =;④22()EFO DGO a b S b S ∆∆-⋅=⋅.其中结论正确的个数是 ( )A .4个B .3 个C .2个D .1个第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11. ABC ∆中,已知60A ∠=︒,80B ∠=︒,则C ∠的外角..的度数是______︒. 12. 已知OC 是AOB ∠的平分线,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为点D 、E ,10PD =,则PE 的长度为______.13. 代数式11x -有意义时,x 应满足的条件为______. 14. 一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积...为______.(结果保留π)15. 已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题: ,该逆命题是 命题(填“真”或“假”).16. 若关于x 的方程222320x mx m m +++-=有两个实数根1x 、2x ,则21212()x x x x ++的最小值为______.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解不等式:523x x -≤,并在数轴上表示解集.18.(本小题满分9分)如图5,ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F ,求证:AOE COF ∆≅∆.19.(本小题满分10分)已知多项式2(2)(1)(2)3A x x x =++-+-(1)化简多项式A ;(2)若2(1)6x +=,求A 的值.20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a b ,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5 名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.21.(本小题满分12分)已知一次函数6y kx =-的图象与反比例函数2k y x =-的图象交于A B 、两点,点A 的横坐标为2.(1)求k 的值和点A 的坐标;(2)判断点B 所在的象限,并说明理由.22.(本小题满分12分) 从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(本小题满分12分)如图6,ABC ∆中,AB AC ==cos C =. (1)动手操作:利用尺规作以AC 为直径的O ,并标出O 与AB 的交点D ,与BC 的交点E (保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:DE CE =;②求点D 到BC 的距离。

中考数学试卷2014年广州卷(有答案)

中考数学试卷2014年广州卷(有答案)

2014年广州市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.a(a≠0)的相反数是( )A.-aB.a2C.|a|D.12.下列图形中,是中心对称图形的是( )3.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan A=( )A. B. C. D.4.下列运算正确的是( )A.5ab-ab=4B.1+1=C.a6÷a2=a4D.(a2b)3=a5b35.已知☉O1和☉O2的半径分别为2 cm和3 cm,若O1O2=7 cm,则☉O1和☉O2的位置关系是( )A.外离B.外切C.内切D.相交6.计算-,结果是( )-A.x-2B.x+2C.-D.7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是( )A.中位数是8B.众数是9C.平均数是8D.极差是78.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变.当∠B=90°时,如图①,测得AC=2.当∠B=60°时,如图②,AC=()A. B.2 C. D.29.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是( )A.y1+y2>0B.y1+y2<0C.y1-y2>0D.y1-y2<010.如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连结BG、DE,DE和FG相交于点O.设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a-b)2·S△EFO=b2·S△DGO.其中结论正确的个数是( )A.4个B.3个C.2个D.1个第Ⅱ卷(非选择题,共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角..的度数是°.12.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D,E,PD=10,则PE的长度为.有意义时,x应满足的条件为.13.代数式1-114.一个几何体的三视图如图,根据图示的数据计算该几何体的全面积...为.(结果保留π)15.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题: ,该逆命题是命题(填“真”或“假”).16.若关于x的方程x2+2mx+m2+3m-2=0有两个实数根x1、x2,则x1(x2+x1)+的最小值为.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解不等式:5x- ≤ x,并在数轴上表示解集.18.(本小题满分9分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别交于点E、F,求证:△AOE≌△COF.19.(本小题满分10分)已知多项式A=(x+2)2+(1-x)(2+x)-3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.21.(本小题满分12分)已知一次函数y=kx-6的图象与反比例函数y=-的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.22.(本小题满分12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的 2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(本小题满分12分)如图,△ABC中,AB=AC=4,cos C=.(1)动手操作:利用尺规作以AC为直径的☉O,并标出☉O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.24.(本小题满分14分)已知平面直角坐标系中两定点A(-1,0)、B(4,0),抛物线y=ax2+bx- (a≠0)过点A、B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t0个单位,点C、P平移后对应的点分别记为C'、P',是否存在t,使得首尾依次连接A、B、P'、C'所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.25.(本小题满分14分)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB= ,BC= ,CD= ,点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连结CF,设CE=x,△BCF的面积为S1,△CEF 的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;,并写出x的取值范围;(2)试用x表示1的值.(3)当△BFE的外接圆与AD相切时,求1答案全解全析:一、选择题1.A 因为a+(-a)=0,所以-a 为a 的相反数,故A 选项正确.2.D A 选项不是中心对称图形,故本选项错误;B 选项是轴对称图形,不是中心对称图形,故本选项错误;C 选项是轴对称图形,不是中心对称图形,故本选项错误;D 选项是中心对称图形,故本选项正确.故选D.3.D ∵AB= ,BC= ,∠ABC=90°,∴tan A= =.故选D.4.C A 选项,合并同类项的结果为4ab,不是4,故本选项错误;B 选项,1 +1 =,故本选项错误;C 选项,a 6÷a 2=a 6-2=a 4,故本选项正确;D 选项,(a 2b)3=(a 2)3·b 3=a 6b 3,故本选项错误.故选C.5.A ∵r 1=2 cm,r 2=3 cm,O 1O 2=7 cm,∴O 1O 2>r 1+r 2,∴两圆外离.故选A.6.B -- =( )( - )- =x+2,故选B.7.B 将这组数据按从小到大的顺序排列为7,7,8,8,9,9,9,10.由此可得这组数据的中位数是8 9=8.5,众数是9,平均数是18(7× +8× +9× +10×1)=678,极差是10-7=3,故选B.8.A ∵题图①为正方形,AC 为其对角线,∴BC=AC= .∵题图②为菱形,∠B=60°,连结AC,∴△ABC 为等边三角形,∴AC=BC= .故选A. 9.C ∵k<0,∴y 随x 的增大而减小,∵x 1<x 2,∴y 1>y 2,∴y 1-y 2>0.故选C. 评析 本题考查了正比例函数的增减性,可借助函数图象求解,属容易题.10.B 延长BG 交DE 于P,∵四边形ABCD 和四边形CEFG 都是正方形,∴BC=DC,CG=CE,∠BCG=∠DCE=90°,∴△BCG≌△DCE;∵∠DCE=90°,∴∠CDE+∠CED=90°,∵△BCG≌△DCE,∴∠CDE=∠CBG,∴∠CBG+∠CED=90°,∴∠BPE=90°,∴BG⊥DE;∵OG∥CE,∴△DGO∽△DCE,∴= ,∴≠;易知△DGO∽△EFO,∴S △DGO ∶S △EFO == -,∴(a -b)2·S △EFO =b 2·S △DGO .∴ 个结论中有3个是正确的,故选B. 二、填空题 11.答案 140解析 ∵∠C=180°-∠A -∠B=180°-60°-80°= 0°, ∴∠C 的外角的度数是180°- 0°=1 0°. 12.答案 10解析 ∵角平分线上的点到角两边的距离相等,∴PE=PD=10. 13.答案 x≠±1解析 ∵分式的分母不能为0,∴ x -1≠0,∴x≠±1.评析 本题考查了分式的意义和绝对值的性质,属于容易题. 14.答案 π解析 由三视图知,该几何体为圆锥,其中底面直径为6,高为4,所以母线长为 =5,所以侧面积为1× π× × =1 π,又底面积为9π,所以该几何体的全面积为 π. 评析 本题将几何体的三视图与圆锥的全面积结合起来进行考查,既考查了学生的观察能力,又考查了运用公式的能力以及计算能力,属中等难度题.15.答案 如果两个三角形的面积相等,那么这两个三角形全等;假解析 一个命题的逆命题,就是将原命题的条件与结论互换,因为面积相等的两个三角形不一定全等,所以其逆命题为假命题.16.答案解析 ∵关于x 的方程x 2+2mx+m 2+3m-2=0有两个实数根,∴( m)2-4(m 2+3m- )≥0,∴m≤,由根与系数的关系知x 1+x 2=-2m,x 1x 2=m 2+3m- ,∴x 1(x 2+x 1)+ =(x 1+x 2)2-x 1x 2=4m 2-(m 2+3m-2)=3 -1+,当m=1时,x 1(x 2+x 1)+ 取得最小值,最小值为.评析 本题考查了一元二次方程根的判别式,根与系数的关系,以及二次函数的最值问题,是一道综合性较强的试题,对考生的综合能力要求较高,属较难题. 三、解答题17.解析 5x- ≤ x, x≤ , x≤1.解集在数轴上表示如下:18.证明 ∵四边形ABCD 为平行四边形, ∴AB∥CD,OA=OC, ∴∠EAO=∠FCO, 在△AOE 和△COF 中,∠ ∠ ,,∠ ∠ ,∴△AOE≌△COF(ASA).19.解析 (1)A=(x+2)2+(1-x)(2+x)-3=x 2+4x+4-x 2+x-2x+2-3=3x+3.( )∵(x+1)2=6,∴x+1=± 6,∴A= x+ = (x+1)=± 6. 20.解析 (1)a=0.24,b=16. ( ) 60°×0.16= 7.6°.(3)男生编号为A 、B 、C,女生编号为D 、E,由枚举法可得AB 、AC 、AD 、AE 、BC 、BD 、BE 、CD 、CE 、DE,共10种, 其中DE 为女女组合,∴所抽取的两名学生中至多有一名女生的概率为10-110=910. 21.解析 (1)联立两函数解析式可得 -6, - ,即kx-6=- . 将x=2代入该方程得2k-6=-,解之得k=2, 则两函数分别为y=2x-6,y=- .将x=2代入y=2x-6得y=-2,则点A 的坐标为(2,-2).(2)由 -6, -得2x-6=- ,∴x 2-3x+2=0, 解之得x 1=1,x 2=2,∴y 1=-4,y 2=-2,即点B 的坐标为(1,-4),位于第四象限. 22.解析 (1) 00×1. = 0(千米).(2)设高铁的平均速度为x 千米/时,则普通列车的平均速度为x÷ . =x 千米/时,由题意可得 00+3= 0x,解得x=300,经检验,x=300是原分式方程的解.∴高铁的平均速度是300千米/时.答:(1)普通列车的行驶路程为520千米.(2)高铁的平均速度是300千米/时. 23.解析(1)如图所示即为所求.( )①证明:如图,连结AE,∵AC为直径,∴∠AEC=90°,又AB=AC,∴∠BAE=∠CAE,∴=.②如图,连结CD,过点D作DF⊥BC于F, ∵AB=AC= ,cos∠ACB=,∴EC=AC·cos∠ACB= ,∴BC= CE=8,AE=-C=8.∵AC为直径,∴∠ADC=90°,∴S△ABC=1AB·CD,又∠AEC=90°,∴S△ABC=1AE·BC,∴1AB·CD=1AE·BC.∴CD=16,∴AD=-C=1 ,∴BD=AB-AD=8.∵S△DBC=S△DBC,∴1BD·CD=1DF·BC,∴DF=16,∴点D到BC的距离为16.24.解析(1)∵抛物线过A,B两点,∴--0,16-0,解得1,-,∴抛物线的解析式为y=1x2-x-2.解析式转化为顶点式为y=1 - - 8, ∴点C 的坐标为 ,- 8. (2)由题意知点P 在x 轴的下方,设抛物线和y 轴的交点为D,则D(0,-2),连结AD,BD.当点P 与点D 重合时,AD= O = ,BD= O =2 ,AB=5,故AD 2+BD 2=AB 2,即∠ADB=90°.由抛物线的对称性可得,点D 关于抛物线对称轴的对称点E(3,-2)满足∠AEB=90°,以AB 为直径作圆,则D,E 均在圆上,抛物线上点A 到D 及E 到B 之间的部分在圆内,当P 在这两个范围内运动时,满足∠APB 为钝角,∴m 的取值范围为-1<m<0或3<m<4.( )∵m> ,∴P 的坐标为(3,-2),将BP 沿PC 方向平移,使得P 与C 重合,B 落在B'处,作y=- 8,则C 在这条直线上,以y=- 8这条直线为对称轴,作B'的对称点B″,连结AB″,∵AB 与CP 为定值,则只需求AC+BP 的最小值即可,∴AC+BP=AC+B'C=AC+CB″≥AB″,∴当C 为AB″与直线y=- 8的交点时,AC+BP 最小,根据平移性质可得,B'的坐标为 ,-98 ,B″的坐标为 ,- 18 ,设直线AB″的解析式为y=kx+b(k≠0),∴ - 0,k b - 18,解得 - 1 8,- 1 8,∴y=- 1 8x- 1 8,当y=- 8时,x=9 8 ,-9 8 =1 1.∴t=1 1,抛物线应该向左平移.25.解析 (1)如图所示,点F 在直角梯形ABCD 的中位线MN 上,设CF 与EB 交于点G,由题意可知BF=BC=4,∵MN为直角梯形ABCD的中位线,∴MN⊥BC,BN=1BC= ,∴BN=1BF,∴∠BFN= 0°,∠FBN=60°,又BF=BC,∴△BFC为等边三角形,∴FC= ,∠FCB=60°,∴∠ECG= 0°,由题意可知EB垂直平分FC,∴GC=1FC= ,∠EGC=90°,∴CE=cos∠=,即x=.(2)如图所示,设CF与EB交于点G.∵∠EGC=90°,∠ECB=90°,∴∠GEC+∠ECG=90°,∠ECG+∠GCB=90°,∴∠GEC=∠GCB,又∠EGC=∠CGB=90°,∴△ECG∽△CBG,∴△△==16,∵G为FC的中点,∴S1=2S△BGC,S2=2S△EGC,∴1=△△=△△=16(0<x≤ ).(3)如图所示,不妨设EB与MN交于点O,∵MN是梯形ABCD的中位线,∴MN=1(AB+CD)= ,MN∥CD,∴==1,∴BO=OE.又∠BFE=90°,∴点O为△BFE的外接圆的圆心,∵BO=OE,NB=NC,∴NO=1CE=1x,OM=4-1x.不妨设△BFE的外接圆与AD相切于点H,连结OH, 故OH=1BE,OH⊥AD,过点A作AP⊥CD于P,可得四边形APCB为矩形,∴CP=AB= ,AP=BC= ,∴DP= ,∴AD=D=2,∴sin D==,∵MN∥CD,∴∠D=∠OMH,∴sin∠OMH=,∴OH=OM·sin∠OMH=-1x,∴BE= OH=-1x.在Rt△BCE中,∠BCE=90°,∴EC2+BC2=EB2,∴ 2+x2=-1x,解得x=20-32或x=-20-32(舍去), ∵0< 0- ≤ ,∴x= 0-32符合题意,此时1=16=139-80.。

2014各地中考题北师大版九年级上册数学 广东广州

2014各地中考题北师大版九年级上册数学  广东广州

秘密★启用前广州市2014年初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题同的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.()的相反数是().(A)(B)(C)(D)【考点】相反数的概念【分析】任何一个数的相反数为.【答案】A2.下列图形是中心对称图形的是().(A)(B)(C)(D)【考点】轴对称图形和中心对称图形.【分析】旋转180°后能与完全重合的图形为中心对称图形.【答案】D3.如图1,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,则().(A)(B)(C)(D)【考点】正切的定义.【分析】.【答案】D4.下列运算正确的是().(A)(B)(C)(D)【考点】整式的加减乘除运算.【分析】,A错误;,B错误;,C正确;,D错误.【答案】C5.已知和的半径分别为2cm和3cm,若,则和的位置关系是().(A)外离(B)外切(C)内切(D)相交【考点】圆与圆的位置关系.【分析】两圆圆心距大于两半径之和,两圆外离.【答案】A6.计算,结果是().(A)(B)(C)(D)【考点】分式、因式分解【分析】【答案】B7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是().(A)中位数是8 (B)众数是9 (C)平均数是8 (D)极差是7【考点】数据【分析】中位数是8.5;众数是9;平均数是8.375;极差是3.【答案】B8.将四根长度相等的细木条首尾相接,用钉子钉成四边形,转动这个四边形,使它形状改变,当时,如图,测得,当时,如图,().(A)(B)2 (C)(D)图2-①图2-②【考点】正方形、有内角的菱形的对角线与边长的关系【分析】由正方形的对角线长为2可知正方形和菱形的边长为,当=60°时,菱形较短的对角线等于边长,故答案为.【答案】A9.已知正比例函数()的图象上两点(,)、(,),且,则下列不等式中恒成立的是().(A)(B)(C)(D)【考点】反比例函数的增减性【分析】反比例函数中,所以在每一象限内随的增大而减小,且当时,,时,∴当时,,故答案为【答案】C10.如图3,四边形、都是正方形,点在线段上,连接,和相交于点.设,().下列结论:①;②;③;④.其中结论正确的个数是().(A)4个(B)3个(C)2个(D)1个【考点】三角形全等、相似三角形【分析】①由可证,故①正确;②延长BG交DE于点H,由①可得,(对顶角)∴=90°,故②正确;③由可得,故③不正确;④,等于相似比的平方,即,∴,故④正确.【答案】B第二部分非选择题(共120分)二、填空题(共6小题,每小题3分,满分18分)11.中,已知,,则的外角的度数是_____.【考点】三角形外角【分析】本题主要考察三角形外角的计算,,则的外角为【答案】12.已知是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点,,则PE 的长度为_____.【考点】角平线的性质【分析】角平分线上的点到角的两边距离相等.【答案】1013.代数式有意义时,应满足的条件为______.【考点】分式成立的意义,绝对值的考察【分析】由题意知分母不能为0,即,则【答案】14.一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积为_______(结果保留).【考点】三视图的考察、圆锥体全面积的计算方法【分析】从三视图得到该几何体为圆锥体,全面积=侧面积+底面积,底面积为圆的面积为:,侧面积为扇形的面积,首先应该先求出扇形的半径R,由勾股定理得,,则侧面积,全面积.【答案】15.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________,该逆命题是_____命题(填“真”或“假”).【考点】命题的考察以及全等三角形的判定【分析】本题主要考察命题与逆命题的转换,以及命题真假性的判断【答案】如果两个三角形的面积相等,那么这两个三角形全等.假命题.16.若关于的方程有两个实数根、,则的最小值为___. 【考点】一元二次方程根与系数的关系,最值的求法【分析】该题主要是考察方程思想与函数思想的结合,由根与系数的关系得到:,,原式化简.因为方程有实数根,∴,.当时,最小值为.【答案】三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤).17.(本小题满分分)解不等式:,并在数轴上表示解集.【考点】不等式解法【分析】利用不等式的基本性质,将两边不等式同时减去,再同时加上,再除以,不等号的方向不变.注意在数轴上表示时,此题是小于等于号,应是实心点且方向向左.【答案】解:移项得,,合并同类项得,,系数化为1得,,在数轴上表示为:18.(本小题满分分)如图5,平行四边形的对角线相交于点,过点且与、分别交于点,求证:.图5 【考点】全等三角形的性质与判定、平行四边形的性质【分析】根据平行四边形的性质可知,,,又根据对顶角相等可知,,再根据全等三角形判定法则,,得证.【答案】证明:∵平行四边形的对角线相交于点∴,∴在和中,∴19.(本小题满分10分)已知多项式.(1)化简多项式;(2)若,求的值.【考点】(1)整式乘除(2)开方,正负平方根【分析】(1)没有公因式,直接去括号,合并同类型化简(2)由第一问答案,对照第二问条件,只需求出,注意开方后有正负【答案】解:(1)(2),则20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12一分钟跳绳8 0.16投掷实心球0.32推铅球 5 0.10合计50 1(1)求,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.【考点】(1)频率(2)①频率与圆心角;②树状图,概率【分析】(1)各项人数之和等于总人数50 ; 各项频率之和为1(2)所占圆心角=频率*360 (3)画出列表图,至多有一名女生包括有一个女生和一个女生都没有两种情况.【答案】(1)(2)“一分钟跳绳”所占圆心角=(3)至多有一名女生包括两种情况有1个或者0个女生列表图:男A男B男C女D女E男A(A,B)(A,C)(A,D)(A,E)男B(B,A)(B,C)(B,D)(B,E)男C(C,A)(C,B)(C,D)(C,E)女D(D,A)(D,B)(D,C)(D,E)女E(E,A)(E,B)(E,C)(E,D)有1个女生的情况:12种有0个女生的情况:6种至多有一名女生包括两种情况18种至多有一名女生包括两种情况===0.9021.(本小题满分12分)已知一次函数的图像与反比例函数的图像交于两点,点的横坐标为2.(1)求的值和点的坐标;(2)判断点的象限,并说明理由.【考点】1一次函数;2反比例函数;3函数图象求交点坐标【分析】第(1)问根据点是两个图象的交点,将代入联立之后的方程可求出,再将点的横坐标代入函数表达式求出纵坐标;第(2)问根据一次函数与反比例函数的解析式分析两图像经过的象限,得出两图像交点所在象限.此题主要考查反比例函数与一次函数的性质【答案】解:(1)将与联立得:1点是两个函数图象交点,将带入1式得:解得故一次函数解析式为,反比例函数解析式为将代入得,的坐标为(2)点在第四象限,理由如下:一次函数经过第一、三、四象限,反比例函数经过第二、四象限,因此它们的交点都是在第四象限.22、(本小题满分12分)从广州某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【考点】行程问题的应用【分析】路程=速度×时间,分式方程的实际应用考察【解析】(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米)(2)设普通列车的平均速度为千米/时,则高铁平均速度为千米/时.依题意有:可得:答:高铁平均速度为2.5×120=300千米/时.23、(本小题满分12分)如图6,中,,.(1)动手操作:利用尺规作以为直径的,并标出与的交点,与的交点(保留作图痕迹,不写作法):(2)综合应用:在你所作的圆中,①求证:;②求点到的距离.【考点】(1)尺规作图;(2)①圆周角、圆心角定理;②勾股定理,等面积法【分析】(1)先做出中点,再以为圆心,为半径画圆.(2)①要求,根据圆心角定理,同圆中圆心角相等所对的弧也相等,只需证出即可,再根据等腰三角形中的边角关系转化.②首先根据已知条件可求出,依题意作出高,求高则用勾股定理或面积法,注意到为直径,所以想到连接,构造直角三角形,进而用勾股定理可求出,的长度,那么在中,求其高,就只需用面积法即可求出高.【答案】(1)如图所示,圆为所求(2)①如图连接,设,又则②连接,过作于,过作于cosC=, 又,又为直径设,则,在和中,有即解得:即又即24.(本小题满分14分)已知平面直角坐标系中两定点A(-1,0),B(4,0),抛物线()过点A、B,顶点为C.点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式与顶点C的坐标.(2)当∠APB为钝角时,求m的取值范围.(3)若,当∠APB为直角时,将该抛物线向左或向右平移t()个单位,点P、C移动后对应的点分别记为、,是否存在t,使得首尾依次连接A、B、、所构成的多边形的周长最短?若存在,求t值并说明抛物线平移的方向;若不存在,请说明理由.【考点】动点问题.(1)二次函数待定系数法;(2)存在性问题,相似三角形;(3)最终问题,轴对称,两点之间线段最短【答案】(1)解:依题意把的坐标代入得: ;解得:抛物线解析式为顶点横坐标,将代入抛物线得(2)如图,当时,设,则过作直线轴,(注意用整体代入法)解得,当在之间时,或时,为钝角.(3)依题意,且设移动(向右,向左)连接则又的长度不变四边形周长最小,只需最小即可将沿轴向右平移5各单位到处沿轴对称为∴当且仅当、B、三点共线时,最小,且最小为,此时,设过的直线为,代入∴即将代入,得:,解得:∴当,P、C向左移动单位时,此时四边形ABP’C’周长最小。

【试卷】2014-2015学年广东省广州市海珠区九年级(上)期末数学试卷

【试卷】2014-2015学年广东省广州市海珠区九年级(上)期末数学试卷

2014-2015学年广东省广州市海珠区九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的)1.(3分)下列图形中,是中心对称图形的有()A.4个B.3个C.2个D.1个2.(3分)下列方程中是一元二次方程的是()A.x2﹣2xy﹣4=0 B.3x﹣4=0 C.5x2﹣+4=0 D.3x2+4x﹣2=03.(3分)抛物线y=2x2向左平移3个单位,再向下平移2个单位,那么得到的抛物线的解析式是()A.y=2(x﹣3)2﹣2 B.y=2(x+3)2﹣2 C.y=2(x﹣2)2+3 D.y=2(x﹣2)2﹣3 4.(3分)下列事件中,是不可能事件的是()A.买一张电影票,座位号是偶数B.打开电视机,正在播放体育节目C.度量三角形内角和,结果是360°D.两直线平行,同位角相等5.(3分)⊙O的半径为5,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交 B.相切 C.相离 D.无法确定6.(3分)如图,已知扇形AOB的半径为3cm,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为()A.πcm2B.2πcm2C.3πcm2D.6πcm27.(3分)二次函数y=x2﹣2x+1与x轴的交点个数是()A.0 B.1 C.2 D.38.(3分)如图,在半径为5cm的⊙O中,直线l交⊙O于A、B两点,且弦AB=8cm,要使直线l与⊙O相切,则需要将直线l向下平移()A.1cm B.2cm C.3cm D.4cm9.(3分)矩形的长为x,宽为y,面积为4,则y与x之间的函数关系用图象表示大致为()A. B.C.D.10.(3分)如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分几何图形的周长为()A.B.4﹣C.1﹣D.4二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)在直角坐标系中,点(﹣2,3)关于原点中心对称的点的坐标是.12.(3分)某市组织的“中国梦,我的梦”学生演讲比赛,小鹏等25人进入总决赛,赛制规定13人上午参赛、12人下午参赛,小鹏抽到上午比赛的概率是.13.(3分)某种品牌的手机经过11、12月份连续两次降价,每部手机售价由3900元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是.14.(3分)如图,在⊙O中,∠BOC=80°,则∠BAC的度数是.15.(3分)已知正六边形的边心距为,则它的周长是.16.(3分)如图,已知函数与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的不等式ax2+bx>0的解为.三、解答题(本大题共9小题,满分102分,解答要求写出文字说明,证明过程或计算步骤)17.(10分)用适当方法解下列方程:(1)x2+4x+3=0;(2)3x(2x+1)=4x+2.18.(10分)如图,△ABC的三个顶点都在网格的格点上,每个小正方形的边长均为1个单位长度.(1)在网格中画出将△ABC绕点B顺时针旋转90°后的△A′BC′图形;(2)求点A在旋转中经过的路线的长度(结果保留π).19.(10分)不透明的口袋里装有红、白、蓝三种颜色的小球(大小、形状都相同),其中红球有1个,蓝球有2个,小王通过大量的反复实验(每次取一个球,放回搅匀后再取第二个),发现取出红球的频率稳定在左右.(1)请你估计袋中白球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个球,请用画树状图或列表法求两次都是蓝球的概率.20.(10分)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求∠ACP的度数;(2)求证:PA是⊙O的切线.21.(10分)已知反比例函数y=(m为常数,m≠5),若这个函数图象的一支位于第二象限.(1)求m的取值范围;(2)若P(﹣1,a)既在函数y=﹣2x+4的图象上,又在反比例函数y=的图象上,求m的值;并求出当﹣3<x<﹣1时,反比例函数y=函数值y的取值范围.22.(12分)某商品现在的售价为每件50元,每周可卖出400件.市场调查反映:如调整价格,涨价1元,每周要少卖出10件.已知该商品的进价为每件30元,设每件涨价x元.(1)为尽可能让利于顾客并使每周利润为8750元,求x;(2)写出每周销售利润y(单位:元)与x之间的函数解析式;(3)当售价定为多少元时,会获得每周销售最大利润?并求出每周最大销售利润.23.(12分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)求代数式x1•x2﹣x12﹣x22的最大值.24.(14分)如图1,已知在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上,OA=OB=2,等腰直角△OCD的直角顶点O在原点,点C、D 分别在线段OA、OB上,且点D为线段OB的中点,将△OCD绕点O逆时针旋转α(0°<α<180°)得到等腰直角△OC1D1,连结AC1、BD1,在旋转过程中:(1)求证:AC1=BD1;(2)是否存在△OAC1的面积与△OCD的面积相等?若存在,请求出对应α的度数;若不存在,请说明理由;(3)连接C1C、D1C,求∠C1CD1的度数.25.(14分)如图1,在平面直角坐标系xOy中,点O是坐标原点,已知点A(a,0)、B (0,b)(a>0,b>0)和⊙M,AB为⊙M的直径.(1)若a=6,b=8,写出点M的坐标;(2)若抛物线y=kx2﹣10kx+c的顶点为M(m,12),且抛物线经过点A.①求抛物线的解析式②若此抛物线的对称轴上的点P满足以点A、B、P为顶点的三角形是直角三角形,写出所有符合条件的点P的坐标.2014-2015学年广东省广州市海珠区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的)1.(3分)(2014秋•海珠区期末)下列图形中,是中心对称图形的有()A.4个B.3个C.2个D.1个【解答】解:第一、三个图形既不是轴对称图形,也不是中心对称图形.第二个图形是中心对称图形.第四个图形既是轴对称图形,也是中心对称图形.综上所述,是中心对称图形的有2个.故选:C.2.(3分)(2014秋•海珠区期末)下列方程中是一元二次方程的是()A.x2﹣2xy﹣4=0 B.3x﹣4=0 C.5x2﹣+4=0 D.3x2+4x﹣2=0【解答】解:A、是二元二次方程,故A错误;B、是一元一次方程,故B错误;C、是分式方程,故C错误;D、是一元二次方程,故D正确;故选:D.3.(3分)(2014秋•海珠区期末)抛物线y=2x2向左平移3个单位,再向下平移2个单位,那么得到的抛物线的解析式是()A.y=2(x﹣3)2﹣2 B.y=2(x+3)2﹣2 C.y=2(x﹣2)2+3 D.y=2(x﹣2)2﹣3 【解答】解:∵抛物线y=2x2向左平移3个单位,再向下平移2个单位,∴平移后的抛物线的顶点坐标为(﹣3,﹣2),∴平移得到的抛物线的解析式为y=2(x+3)2﹣2.故选:B.4.(3分)(2014秋•海珠区期末)下列事件中,是不可能事件的是()A.买一张电影票,座位号是偶数B.打开电视机,正在播放体育节目C.度量三角形内角和,结果是360°D.两直线平行,同位角相等【解答】解:A、买一张电影票,座位号是偶数是随机事件,故A错误;B、打开电视机,正在播放体育节目是随机事件,故B错误;C、度量三角形内角和,结果是360°是不可能事件,故C正确;D、两直线平行,同位角相等是必然事件,故D错误;故选:C.5.(3分)(2013•湛江一模)⊙O的半径为5,圆心O到直线l的距离为3,则直线l与⊙O 的位置关系是()A.相交 B.相切 C.相离 D.无法确定【解答】解:∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与O的位置关系是相交.故选A.6.(3分)(2014秋•海珠区期末)如图,已知扇形AOB的半径为3cm,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为()A.πcm2B.2πcm2C.3πcm2D.6πcm2【解答】解:圆锥的侧面积是:=3π(cm2).故选C.7.(3分)(2008•潜江模拟)二次函数y=x2﹣2x+1与x轴的交点个数是()A.0 B.1 C.2 D.3【解答】解:∵△=b2﹣4ac=(﹣2)2﹣4×1×1=0,∴二次函数y=x2﹣2x+1的图象与x轴有一个交点.故选B.8.(3分)(2013•廊坊一模)如图,在半径为5cm的⊙O中,直线l交⊙O于A、B两点,且弦AB=8cm,要使直线l与⊙O相切,则需要将直线l向下平移()A.1cm B.2cm C.3cm D.4cm【解答】解:作OC⊥AB,∵半径为5cm的⊙O中,直线l交⊙O于A、B两点,且弦AB=8cm∴BO=5,BC=4,∴OC=3cm,∴要使直线l与⊙O相切,则需要将直线l向下平移2cm.故选:B.9.(3分)(2014秋•海珠区期末)矩形的长为x,宽为y,面积为4,则y与x之间的函数关系用图象表示大致为()A. B.C.D.【解答】解:由矩形的面积4=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选C.10.(3分)(2014秋•海珠区期末)如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分几何图形的周长为()A.B.4﹣C.1﹣D.4【解答】解:B′C′交CD于E,连结AE,如图,∵正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,∴AB=AB′=1,∠ABC=∠AB′C′=90°,∠BAB′=30°,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴B′E=DE,∴图中阴影部分几何图形的周长=CE+EB′+AB′+AB+BC=CE+ED+AB′+AB+BC=CD+AB′+AB+BC=1+1+1+1=4.故选D.二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)(2014秋•海珠区期末)在直角坐标系中,点(﹣2,3)关于原点中心对称的点的坐标是(2,﹣3).【解答】解:点(﹣2,3)关于原点中心对称的点的坐标是(2,﹣3).12.(3分)(2014秋•海珠区期末)某市组织的“中国梦,我的梦”学生演讲比赛,小鹏等25人进入总决赛,赛制规定13人上午参赛、12人下午参赛,小鹏抽到上午比赛的概率是.【解答】解:∵某市组织的“中国梦,我的梦”学生演讲比赛,小鹏等25人进入总决赛,又∵赛制规定13人上午参赛,12人下午参赛,∴小鹏抽到上午比赛的概率是:.故答案为.13.(3分)(2014秋•海珠区期末)某种品牌的手机经过11、12月份连续两次降价,每部手机售价由3900元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是3900(1﹣x)2=2500.【解答】解:设平均每月降价的百分率为x,依题意得:3900(1﹣x)2=2500,故答案为:3900(1﹣x)2=2500.14.(3分)(2014秋•海珠区期末)如图,在⊙O中,∠BOC=80°,则∠BAC的度数是40°.【解答】解:∵∠BOC与∠BAC是同弧所对的圆心角与圆周角,∠BOC=80°,∴∠BAC=∠BOC=40°.故答案为:40°.15.(3分)(2014秋•海珠区期末)已知正六边形的边心距为,则它的周长是12.【解答】解:如图,连接OA,OB,∵六边形ABCDEF是正六边形,∴∠AOB=×360°=60°,∵OA=OB,∴△OAB是等边三角形,∴∠OAH=60°,∵OH⊥A,OH=,∴OA==2,∴AB=OA=2,∴它的周长是:2×6=12.故答案为:12.16.(3分)(2012•梁子湖区模拟)如图,已知函数与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的不等式ax2+bx>0的解为x<﹣3或x>0.【解答】解:∵反比例函数与二次函数图象交于点P,且P的纵坐标为1,∴将y=1代入反比例函数y=﹣得:x=﹣3,∴P的坐标为(﹣3,1),将所求的不等式变形得:ax2+bx>﹣,由图象可得:x<﹣3或x>0,则关于x的不等式ax2+bx>0的解为x<﹣3或x>0.故答案为:x<﹣3或x>0.三、解答题(本大题共9小题,满分102分,解答要求写出文字说明,证明过程或计算步骤)17.(10分)(2014秋•海珠区期末)用适当方法解下列方程:(1)x2+4x+3=0;(2)3x(2x+1)=4x+2.【解答】解:(1)x2+4x+3=0,分解因式得:(x+1)(x+3)=0,可得x+1=0或x+3=0,解得:x1=﹣1,x2=﹣3;(2)3x(2x+1)=4x+2,变形后移项得:3x(2x+1)﹣2(2x+1)=0,分解因式得:(2x+1)(3x﹣2)=0,可得2x+1=0或3x﹣2=0,解得:x1=﹣,x2=.18.(10分)(2014秋•海珠区期末)如图,△ABC的三个顶点都在网格的格点上,每个小正方形的边长均为1个单位长度.(1)在网格中画出将△ABC绕点B顺时针旋转90°后的△A′BC′图形;(2)求点A在旋转中经过的路线的长度(结果保留π).【解答】解:(1)如图所示;(2)∵AB==5,∴点A在旋转中经过的路线的长度==×5=π.19.(10分)(2014秋•海珠区期末)不透明的口袋里装有红、白、蓝三种颜色的小球(大小、形状都相同),其中红球有1个,蓝球有2个,小王通过大量的反复实验(每次取一个球,放回搅匀后再取第二个),发现取出红球的频率稳定在左右.(1)请你估计袋中白球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个球,请用画树状图或列表法求两次都是蓝球的概率.【解答】解:(1)设袋中白球的个数为x个,=,∴x=1,∴袋中白球的个数为1个;∴两次摸到不同颜色球的概率为:.20.(10分)(2014秋•海珠区期末)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求∠ACP的度数;(2)求证:PA是⊙O的切线.【解答】(1)解:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,即∠ACP=30°.(2)证明∵AP=AC,∴∠ACP=∠P=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.21.(10分)(2014秋•海珠区期末)已知反比例函数y=(m为常数,m≠5),若这个函数图象的一支位于第二象限.(1)求m的取值范围;(2)若P(﹣1,a)既在函数y=﹣2x+4的图象上,又在反比例函数y=的图象上,求m的值;并求出当﹣3<x<﹣1时,反比例函数y=函数值y的取值范围.【解答】解:(1)根据图象得:m﹣5<0,解得:m<5;(2)将x=﹣1,y=a代入y=﹣2x+4得:a=6,即P(﹣1,6),将P(﹣1,6)代入y=中得:m﹣5=﹣6,解得m=﹣1,则反比例解析式为y=﹣;当x=﹣3时,y=﹣=2,当x=﹣1时,y=﹣=6,根据反比例函数的性质可得:当﹣3<x<﹣1时,2<y<6.22.(12分)(2014秋•海珠区期末)某商品现在的售价为每件50元,每周可卖出400件.市场调查反映:如调整价格,涨价1元,每周要少卖出10件.已知该商品的进价为每件30元,设每件涨价x元.(1)为尽可能让利于顾客并使每周利润为8750元,求x;(2)写出每周销售利润y(单位:元)与x之间的函数解析式;(3)当售价定为多少元时,会获得每周销售最大利润?并求出每周最大销售利润.【解答】解:(1)由题意得:(50+x﹣30)(400﹣10x)=8750,整理得:x2﹣20x+75=0,解得:x=15或5,故为尽可能让利于顾客并使每周利润为8750元,取x的值为5.(2)由题意得:y=(50+x﹣30)(400﹣10x)=﹣10x2+200x+8000,即y=﹣10x2+200x+8000,(3)∵﹣10<0,∴当x=﹣=10时,y取得最大值,此时y=﹣1000+2000+8000=9000(元),即当售价为60元时,会获得每周销售最大利润,每周最大销售利润为9000元.23.(12分)(2014秋•海珠区期末)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)求代数式x1•x2﹣x12﹣x22的最大值.【解答】解:(1)根据题意得△=(2k+1)2﹣4(k2+2k)≥0,解得k≤;(2)根据题意得x1+x2=2k+1,x1x2=k2+2k,所以x1•x2﹣x12﹣x22=x1•x2﹣(x12+x22)=x1•x2﹣[(x1+x2)2﹣2x1x2]=3x1•x2﹣(x1+x2)2=3(k2+2k)﹣(2k+1)2=﹣k2+2k﹣1=﹣(k﹣1)2,而k≤,所以k=时,原代数式有最大值,最大值=﹣(﹣1)2=﹣.24.(14分)(2014秋•海珠区期末)如图1,已知在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上,OA=OB=2,等腰直角△OCD的直角顶点O在原点,点C、D 分别在线段OA、OB上,且点D为线段OB的中点,将△OCD绕点O逆时针旋转α(0°<α<180°)得到等腰直角△OC1D1,连结AC1、BD1,在旋转过程中:(1)求证:AC1=BD1;(2)是否存在△OAC1的面积与△OCD的面积相等?若存在,请求出对应α的度数;若不存在,请说明理由;(3)连接C1C、D1C,求∠C1CD1的度数.【解答】(1)证明:由旋转的性质可得:△OCD≌△OC1D1,∴OC1=OD1=,∠AOC1=∠BOD1,在△AOC1和△BOD1中,,∴△AOC1≌△BOD1,∴AC1=BD1(2)解:如图1,由(1)得△AOC1≌△BOD1,△OCD≌△OC1 D1,∴S△AOC1=S△BOD1,S△OCD=S△OC1D1,假设△OAC1的面积等于△OCD的面积,∴S△AOC1=S△BOD1=S△OCD=S△OC1 D1,当S△BOD1=S△OC1 D1,∴BC1∥OD1,在等要直角三角形OC1 D1中,∠C1 OD1=90°,∴OC1⊥OD1,∵BC1∥OD1,∴BC1⊥OC1,由(1)得OC1=OD1=OC=OD,∴点C,D,C1,D1均在以O为圆心,OD长为半径的圆O上,∵BC1⊥OC1,BC1为⊙O的切线,切点为C1,∵过圆外B点与⊙O相切的直线有且只有2条,当切点C1在第一象限时,在直角△BC1O 中,D为斜边OB的中点,连接DC1,C1 D=BD=OD===1,∴OD=DC1=C1 O=1,∴△ODC1为等边三角形,∴∠DOC1=60°,α=∠COD﹣∠DOC1=90°﹣60°=30°,如图2,当切点C1在第二象限时,同理,在Rt△BC1O中,D为斜边OB的中点,连接DC1,C1 D=BD=OD==,∴OD=DC1=C1 O=1,∴△ODC1为等边三角形,∴∠DOC1=60°,α=∠COD+∠DOC1=90°+60°=150°,∴△OAC1的面积等于△OCD的面积时,α=30°或α=150°;(3)解:由(2)得点C,D,C1,D1均在以O为圆心,OD长为半径的圆O上,当0°<α<180°时,在⊙O中圆周角∠C1CD1对着劣弧C1 D1,∴∠C1 CD1=∠C1 OD1==45°.25.(14分)(2014秋•海珠区期末)如图1,在平面直角坐标系xOy中,点O是坐标原点,已知点A(a,0)、B(0,b)(a>0,b>0)和⊙M,AB为⊙M的直径.(1)若a=6,b=8,写出点M的坐标;(2)若抛物线y=kx2﹣10kx+c的顶点为M(m,12),且抛物线经过点A.①求抛物线的解析式②若此抛物线的对称轴上的点P满足以点A、B、P为顶点的三角形是直角三角形,写出所有符合条件的点P的坐标.【解答】解:(1)若a=6,b=8,则)A(6,0),B(0,8),∴M(3,4);(2)∵A(a,0),B(0,b)(a>0,b>0),∴∠AOB=90°,∵AB为⊙M的直径,∴原点O在⊙M上,抛物线y=kx2﹣10kx+c的对称轴为x=﹣=5,∴M(5,12),∵原点O在⊙M上,直线x=5经过圆心且垂直于x轴,∴点O、A关于直线x=5对称,∵抛物线经过点A,∴点O是抛物线与x轴的另一个交点,∴c=0,把点M(5,12)代入y=kx2﹣10kx解得:k=﹣,∴y=﹣x2+x;(3)设抛物线对称轴与圆交于点P,连接BP、AP,如图,∵AB是直径,∴∠APB=90°,∵M(5,12),∴A(10,0),B(0,24),AB=26,∴P的从标为(5,25)或(5,﹣1);过点B作BP垂直BA交抛物线对称轴于点P,∵直线AB的解析式为:y=﹣x+24,∴BP的解析式为y=x+24,∴P点的坐标为(5,);过点作AP垂直AB交抛物线对称轴于点P,同理可求得P点坐标为(5,﹣).综上所述,满足要求的P点坐标为:(5,25)、(5,﹣1)、(5,)、(5,﹣).参与本试卷答题和审题的老师有:dbz1018;2300680618;ZJX;HJJ;张其铎;gbl210;sjzx;gsls;zzz;zhjh;CJX;zcx;sks;wd1899;守拙;sjw666;fangcao;LG(排名不分先后)菁优网2016年12月30日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海珠区2013学年第一学期学业水平调研测试九年级数学试卷第Ⅰ卷选择题(共30分)一、选择题:(本题共有10个小题,每小题3分,共30分)1、下列四个图形中是中心对称图形的为()A B C D2、已知x=2是一元二次方程x²-mx+2=0的一个解,则m的值为()A.-3B.3C.0D. 0或33、下列事件中是必然事件的是()A.从一个装有黄、白两色球的缸里摸出一个球,摸出的球是白球;B.小丹的自行车轮胎被钉子扎坏;C.小红期末考试数学成绩一定得满分;D.将豆油滴入水中,豆油会浮在水面上。

4、使式子有意义,则x的取值范围是()A.x>5B.x≠5C.x≥5D.x≤55、已知方程x²-3x-8=0的两个解分别为、,则+、值分别是()A.3,-8B.-3,-8C.-3,8D.3,86、两圆半径分别为3㎝和7㎝,当圆心距d=10㎝时,两圆的位置关系为()A.外离B.内切C.相交D.外切7、如图,将△ABC绕着点C顺时针旋转50°后得到△A'B'C。

若∠A=40°,∠B'=110°,则∠BCA'的度数是()A.110°B.80°C.40°D.30°第6题图第9题图第10题图8、从连续正整数10-99中选出一个数,其中每个数被选出的机会相等,球选出的数其十位数字与各位数字的和为9的概率是()A. B. C. D.9、如图,点A、B、C、D是⊙O上的点,CD⊥AB于E,若∠ADC=50°,则∠BCD=()A.50°B.30°C.40°D.25°10、已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是()A.a>0B.3是方程ax²+bx+c=0的一个根C.a+b+c=0D.当x<1时,y随x的增大而减小第Ⅱ卷非选择题(共120分)二、填空题:(本题共有6个小题,每小题3分,共18分)11、点A(3,-1)关于坐标原点的对称点A’坐标是。

12、一元二次方程x²-4x+6=0实数根的情况是。

13、一个圆锥的母线长是9,底面圆的半径是6,则这个圆锥的侧面积是。

(结果保留π)14、如图,⊙O是△ABC的内切圆,其切点分别为D、E、F,且BD=3,AE=2,则AB= 。

15、若二次根式,则x的取值范围是。

16、如图,边长为的正三角形ABC内接于⊙O,则AB所对弧ACB的长为。

ABC·O三、解答题:(本大题共9题,共102分,解答题应写出文字说明,证明过程或验算步骤)17、(本题满分10分,每小题5分)计算:(1)(2)18、(本题满分12分,每小题6分)解方程:(1)x²-6x+5=0 (2)x(2x+3)=4x+619、(本题满分9分)在10×10正方形网格中,每个小正方形的边长均为1个单位。

(1)把△ABC 绕点C逆时针旋转90°,得到△,请画出△;(2)选择点C为对称中心,请画出与△ABC关于点C对称的△△。

(不要求写出画法)某中学举行“中国梦,我的梦”演讲比赛,九年级(1)班的班长和学习委员都想去,于是他们用摸球游戏决定谁去参加,游戏规则是:在一个不透明的袋子里有除数字外完全相同的4个小球,上面分别标有数字1,2,3,4,一人先从袋中随机摸出一个小球,另一个人再从袋中剩下的3个小球中随机摸出一个小球。

(1)请列出所有可能出现的结果;(可考虑用树形图、列表等方法)(2)若摸出的两个小球上的数字和为偶数,则班长去参赛,请问他能如愿的概率是多少?21、(本题满分11分)雅安地震牵动全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动,第一天收到捐款10000元,第三天收到捐款12100元。

(1)如果第二天,第三天收到捐款的增长率相同,求捐款的平均增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少元的捐款?如图,已知⊙O 的半径为4,CD 为⊙O 的直径,AC 为⊙O 的弦,B 为CD 延长线上的一点,∠ABC =30°,且AB =AC 。

(1)求证:AB 是⊙O 的切线; (2)求弦AC 的长;(3)求图中阴影部分的面积。

23、(本题满分11分)已知抛物线y =x ²-4x +3.(1)该抛物线的对称轴是 ,顶点坐标 ;(2)将该抛物线向上平移2个单位长度,再向左平移3个单位长度得到新的二次函数图像,请写出相应的解析式,并用列表,描点,连线的方法画出新二次函数的图像;x … … y……(3)新图像上两点A (x 1,y 1),B (x 2,y 2),它们的横坐标满足<-2,且-1<<0,试比较y 1,y 2,0三者的大小关系.-5-4-3-2-1O 12345xy-11如图,点C 在以AB 为直径的半圆O 上,以点A 为旋转中心,以∠β(0°<β<90°)为旋转角度将B 旋转到点D ,过点D 作DE ⊥AB 于点E ,交AC 于点F ,过点C 作圆O 的切线交DE 于点G 。

(1)求证:∠GCA =∠OCB ; (2)设∠ABC =m °,求∠DFC 的值;(3)当G 为DF 的中点时,请探究∠β与∠ABC 的关系,并说明理由。

ABEODCFG二次函数y=ax²-6ax+c(a>0)的图像抛物线过点C(0,4),设抛物线的顶点为D。

(1)若抛物线经过点(1,-6),求二次函数的解析式;(2)若a=1时,试判断抛物线与x轴交点的个数;(3)如图所示A、B是⊙P上两点,AB=8,AP=5。

且抛物线过点A(x1,y1),B(x2,y2),并有AD=BD。

设⊙P上一动点E(不与A、B重合),且∠AEB为锐角,若<a≤1时,请判断∠AEB与∠ADB的大小关系,并说明理由。

BA·PE海珠区2013学年第一学期期末调研测试九年级数学试卷标准答案一.选择题(本大题共10小题,每小题3分,共30分).题号 1 2 3 4 5 6 7 8 9 10答案 A B D C A D B A C B二.填空题(本大题共6小题,每小题3分,共18分).11.(3-,1);12.没有实数根;13.54π;14. 5 ;15.2x≥;16.83π;三.解答题(本大题共9小题,共102分.解答应写出文字说明.证明过程或演算步骤).17.(本题9分)(1)原式=332335335-+=+(2)原式=()433633631892-⨯=⨯==18.(本题9分)(1)答案:11x=,25x=;(2)答案:12x=,23 2x=-19.(本题10分)B2B1A2A1CBA 20.(本题10分)解:(1)开始1234123412344321由树形图可得共有12种情况.(2)摸出的两个小球上的数字和为偶数的有(1,3)、(2、4)、(3,1)、(4、2)四种情况,则他能如愿的概率是:41123P ==.21.(本题12分)解:(1)解:设捐款增长率为x ,依题意可得: ()210000112100x +=解得:10.1x =,2 2.1x =-(不符合,舍去)答:捐款增长率为10%.(增长率最好写成百分比形式) (2)第四天该单位能收到的捐款有: ()310000110%13310+=(元).22.(本题12分)证明:(1)连接AO∵AB AC =,30ABC =︒∠∴30ABC ACB ==︒∠∠,120BAC =︒∠ ∵OA OC = ∴30OAC =︒∠∴1203090OAB BAC OAC ==︒-︒=︒∠∠-∠∴OA BA ⊥∴AB 是O 的切线.(2)在Rt OAB △中,30B =︒∠,4AO = ∴60AOB =︒∠,43AB = ∵AB AC = ∴43AC =(3)作AE BC ⊥交BC 于点E .在Rt ABE △中,30B =︒∠,43AB = ∴23AE =∴114234322OAC S OC AE =⋅=⨯⨯=△26048==3603OAD S ππ︒⨯︒扇形 ∴8=433OAC OAD S S S π+=+△阴影扇形E ODCBA23.(本题12分)解:(1)2x = ; (2,1-)(2)新二次函数的解析式为:()()223433222y x x x x =+-+++=++x3- 2- 1- 0 1y521 25xy123456–1–2–3–4–5–6123456–1–2–3–4–5–6o(3)由函数图象可知:12x <-,对应12y >;210x -<<,对应212y <<. 所以:120y y >>.24.(本题14分)证明:(1)∵AB 是直径 ∴90ACB =︒∠ ∵CG 是O 的切线 ∴90OCG =︒∠ 由90GCA ACO ACO OCB +=+=︒∠∠∠∠ 得:GCA OCB =∠∠(2)∵90AFE CAB CAB ABC +=+=︒∠∠∠∠,且DFC AFE =∠∠ ∴DFC ABC m ==︒∠∠(3)连接CD由(1)可知GCA OCB =∠∠;由(2)可知DFC ABC =∠∠∵OC OB =∠ ∴OCB OBC =∠∠ ∴DFC GCA =∠∠ ∴GF GC =∵G 是DF 的中点 ∴DG GF GC == 即:DCF △是直角三角形. ∴90DCF =︒∠ ∴D C B 、、三点共线∵D 点是由B 点以β∠为旋转角度绕A 点旋转而得 ∴AB AD = ∴ABD △是等腰三角形又∵AC BD ⊥ 由等腰三角形三线合一可得AC 平分DAB ∠,即1122CAB DAB β==∠∠在Rt ABC △中,90CAB ABC +=︒∠∠故:1+=902ABC β︒∠O G FED CBA25.(本题14分)证明:(1)由二次函数26y ax ax c =-+的图象抛物线经过点(0,4),可得:4c =若抛物线经过点(1,6-),可得:2a = 所以二次函数的解析式为:22124y x x =-+ (2)若1a =,则二次函数解析式为:264y x x =-+令2640y x x =-+=则:()264143616200=--⨯⨯=-=>△ 所以抛物线与x 轴交点有2个.(3)连接AP ,作PF AB ⊥交AB 于点F由二次函数26y ax ax c =-+,可得抛物线的对称轴为:3x =∵点A B 、在抛物线上,且8AB =,AD BD = ∴点A B 、是关于对称轴3x =对称∴点A 的坐标是(1-,74a +),点B 的坐标是(7,74a +)在Rt APF △中,142AF AB ==,5AP =,可得:3PF =∴P 点坐标为(3,71a +)由顶点公式可得顶点D 的坐标是(3,49a -) ∴()()7149163PD a a a =+--=-① 当1D 点在P 内时,15PD <,则1635a -<,得:31162a << 此时:1AEB AD B <∠∠② 当2D 点在P 上时,25PD =,则1635a -=,得:12a = 此时:2AEB AD B =∠∠③ 当3D 点在P 外时,35PD >,则1635a ->,得:112a <≤ 此时:3AEB AD B >∠∠x =3F EP D 3D 2D 1BA。

相关文档
最新文档