系统可靠性安全性分析FHA_孙有朝_可靠性原理
合集下载
3_系统可靠性分析

N 1
N
并联系统的特征
(1)并联系统的失效概率低于各单元的失效概率; (2)并联系统的可靠度高于各单元的可靠度;
(3)并联系统的平均寿命高于各单元的平均寿命。这说 明,通过并联可以提高系统的可靠度;
(4)并联系统的各单元服从指数寿命分布,该系统不再 服从指数寿命分布。
并联与串联对比图
R(t)
t
例1
现有n个相同的单元,其寿命不可靠度函数为 F(t)=1-e-λt,组成并联系统,试求系统的故障率。
解:组成n个并联系统后,寿命的累积失效概率为 F (t ) (1 e t ) n 失效概率密度为: f (t ) F '(t ) ne t (1 e t ) n1 系统故障率为: f (t ) n e t (1 e t ) n1 (t ) t n 1 F (t ) 1 (1 e )
可靠性框图
使水流出系统属串联系统,使水关闭系统属并联系统。 并—串联系统框图
串--并联系统框图
2、串联系统
由n个单元组成的串联系统表示当这n个单元都 正常工作时,系统才正常工作,换句话说,当系统任 一单元失效时,就引起系统失效。 串联系统可靠度计算如下
R串联 (t ) P( X t ) P( X1 t X2 t X n t ) P( X i t ) Ri (t )
i 1 i 1 n n
串联系统失效率计算如下:λi(t)是第i个单元的失效率
串联 (t ) i (t )
i 1 n
串联系统任一单元失效时,就引起系统失效,其失效是 和事件,串联单元每一个可靠时系统才能可靠,是积事件。 串联系统可靠度是组成该系统的各独立单元可靠度的乘积。
系统可靠性分析方法课件

总结词
可靠性框图是一种图形化工具,用于描述系统各组成部分之间的逻辑关系和相互依赖性 。
详细描述
可靠性框图通过绘制方框和箭头,表示系统各组成部分之间的连接关系和信息流向。通 过分析可靠性框图,可以评估系统各部分对整体可靠性的贡献程度,以及潜在的薄弱环
节。
蒙特卡洛模拟法
总结词
蒙特卡洛模拟法是一种基于概率统计的可靠性分析方法,通过模拟系统在不同条件下的性能表现来评估其可靠性 。
系统可靠性分析方法 课件
目录
• 系统可靠性概述 • 可靠性分析方法 • 系统可靠性建模 • 系统可靠性评估 • 系统可靠性优化 • 系统可靠性工程实践
01 系统可靠性概述
定义与特点
定义
系统可靠性是指在规定时间和条 件下,系统完成规定功能的能力 。
特点
与系统设计、制造、使用和维护 等密切相关,是系统性能的综合 表现。
综合化与智能化阶段
随着科技的不断发展, 可靠性工程逐渐与其他 学科融合,并向智能化 方向发展。
02 可靠性分析方法
故障模式与影响分析(FMEA)
总结词
故障模式与影响分析是一种预防性的可靠性分析方法,通过对产品或系统的各 个组成部分进行深入分析,识别潜在的故障模式及其对系统性能的影响。
详细描述
FMEA从设计阶段开始,对产品或系统的每个组成部分进行逐一分析,列出可能 的故障模式,并评估其对系统性能的影响程度。通过优先排序,确定需要重点 关注的潜在故障模式,为改进设计和开发提供依据。
混联系统
01
由串联和并联混合组成的系统,既有串联部分也有并联部分。
混联系统建模
02
综合考虑串联和并联的特点,建立数学模型来描述系统的可靠
性。
可靠性框图是一种图形化工具,用于描述系统各组成部分之间的逻辑关系和相互依赖性 。
详细描述
可靠性框图通过绘制方框和箭头,表示系统各组成部分之间的连接关系和信息流向。通 过分析可靠性框图,可以评估系统各部分对整体可靠性的贡献程度,以及潜在的薄弱环
节。
蒙特卡洛模拟法
总结词
蒙特卡洛模拟法是一种基于概率统计的可靠性分析方法,通过模拟系统在不同条件下的性能表现来评估其可靠性 。
系统可靠性分析方法 课件
目录
• 系统可靠性概述 • 可靠性分析方法 • 系统可靠性建模 • 系统可靠性评估 • 系统可靠性优化 • 系统可靠性工程实践
01 系统可靠性概述
定义与特点
定义
系统可靠性是指在规定时间和条 件下,系统完成规定功能的能力 。
特点
与系统设计、制造、使用和维护 等密切相关,是系统性能的综合 表现。
综合化与智能化阶段
随着科技的不断发展, 可靠性工程逐渐与其他 学科融合,并向智能化 方向发展。
02 可靠性分析方法
故障模式与影响分析(FMEA)
总结词
故障模式与影响分析是一种预防性的可靠性分析方法,通过对产品或系统的各 个组成部分进行深入分析,识别潜在的故障模式及其对系统性能的影响。
详细描述
FMEA从设计阶段开始,对产品或系统的每个组成部分进行逐一分析,列出可能 的故障模式,并评估其对系统性能的影响程度。通过优先排序,确定需要重点 关注的潜在故障模式,为改进设计和开发提供依据。
混联系统
01
由串联和并联混合组成的系统,既有串联部分也有并联部分。
混联系统建模
02
综合考虑串联和并联的特点,建立数学模型来描述系统的可靠
性。
系统的可靠性

1
2
n
Se Sw
待机单元
工作单元
检测装置
装换装置
第三讲 系统的可靠性
第三讲 系统的可靠性
如系统中失效检测和装换装置可靠度为1,各单元元件在储存期内不影响其寿命,当各单元失效率相同时,系统的可靠度为: (3-17) 如果旁联系统分别由1和2两个单元组成,其失效检测和转换装置的可靠性为Rsw,则该旁联系统的可靠度为: (3-18) 并联系统和表决系统都是工作冗余,也叫热储备,而旁联系统为非工作冗余,也叫冷储备。
第三讲 系统的可靠性
第三讲 系统的可靠性
第三讲 系统的可靠性
若各单元的寿命均服从指数分布,即Ri(t)=e-it,式中i为第i个单元的失效率,则: (3-2) 式中s为串联系统的失效率: (3-3) 串联系统的平均寿命定义为: (3-4)
如各单元的失效率均相等,则有: s=n (3-5) MTTFs=1/n (3-6) 串联系统的可靠度好象链条的可靠度,只要链条中任一链环断裂,链条就坏,所以,链条的寿命是由强度最差,寿命做短的链环来决定,所以,串联系统又叫链条模型。 [例题] 如果一个串联系统由10个失效率 均等于10-5/h的单元组成,且已知各单元的寿命均服从指数分布,试求该系统的失效率,平均寿命MTTFs及工作到104h时的可靠度Rs(104h). 解:将n=10, =10-5/h代入式(3-5)可得: =1010-5/h=10-4/h MTTFs=1/ s=1/(10-4/h)=104h 将 s,t=104h代入式(3-2)可得 Rs(104h)=e-10-4 104=e-1=0.368
第三讲 系统的可靠性
第三讲 系统的可靠性
若各单元的寿命均服从指数分布,即R(t)=e- t, 为各单元的失效率,则系统可靠度Rs(t)为: (3-14) 所以: (3-15) 用归纳法可证明:
2
n
Se Sw
待机单元
工作单元
检测装置
装换装置
第三讲 系统的可靠性
第三讲 系统的可靠性
如系统中失效检测和装换装置可靠度为1,各单元元件在储存期内不影响其寿命,当各单元失效率相同时,系统的可靠度为: (3-17) 如果旁联系统分别由1和2两个单元组成,其失效检测和转换装置的可靠性为Rsw,则该旁联系统的可靠度为: (3-18) 并联系统和表决系统都是工作冗余,也叫热储备,而旁联系统为非工作冗余,也叫冷储备。
第三讲 系统的可靠性
第三讲 系统的可靠性
第三讲 系统的可靠性
若各单元的寿命均服从指数分布,即Ri(t)=e-it,式中i为第i个单元的失效率,则: (3-2) 式中s为串联系统的失效率: (3-3) 串联系统的平均寿命定义为: (3-4)
如各单元的失效率均相等,则有: s=n (3-5) MTTFs=1/n (3-6) 串联系统的可靠度好象链条的可靠度,只要链条中任一链环断裂,链条就坏,所以,链条的寿命是由强度最差,寿命做短的链环来决定,所以,串联系统又叫链条模型。 [例题] 如果一个串联系统由10个失效率 均等于10-5/h的单元组成,且已知各单元的寿命均服从指数分布,试求该系统的失效率,平均寿命MTTFs及工作到104h时的可靠度Rs(104h). 解:将n=10, =10-5/h代入式(3-5)可得: =1010-5/h=10-4/h MTTFs=1/ s=1/(10-4/h)=104h 将 s,t=104h代入式(3-2)可得 Rs(104h)=e-10-4 104=e-1=0.368
第三讲 系统的可靠性
第三讲 系统的可靠性
若各单元的寿命均服从指数分布,即R(t)=e- t, 为各单元的失效率,则系统可靠度Rs(t)为: (3-14) 所以: (3-15) 用归纳法可证明:
系统可靠性原理(全部)

第2章 元件可靠性分析
1 元件的基本概念
元件 在可靠性统计、检验和分析中不需要再细分 的部件或部件组合。元件应有独立的功能 元件分为有效和失效两状态(可能有多个状态) 可修复元件 如果元件使用一段时间后发生故障, 经过修理能够恢复到原来的工作状态 不可修复元件 如果元件使用一段时间后发生故障, 不能修复或虽能修复,但很不经济 元件的可靠性指标包括:故障分布函数、故障密 度函数、可靠度函数、平均无故障工作时间、故 障率函数
委内瑞拉大停电 2008年4月29日16时15分发生大规模停电, 包括首都加拉加斯在内的全国一半地区受到停 电影响。加拉加斯以及委内瑞拉中部、西部13 个州的全部或部分地区受到影响。停电后,加拉 加斯地铁全线瘫痪,缺少了红绿灯的地面交通变 得混乱不堪。
3 电力系统可靠性
• 电力系统可靠性是可靠性理论在电力系统中的 应用 • 电力系统可靠性是指电力系统按可接受的质量 标准和所需数量不间断地向电力用户供应电力 和电能量的能力 • 电力系统可靠性包括充裕度和安全性两个方面 • 充裕度是在静态条件下电力系统满足用户电力 和电能量的能力 • 安全性是在动态条件下电力系统经受住突然扰 动并不间断地向用户提供电力和电能量的能力
3电力系统可靠性?电力系统可靠性是可靠性理论在电力系统中的应用可靠性理论在电力系统中的应用?电力系统可靠性是指电力系统按可接受的质量标准和所需数量不间断地向电力用户供应电力和电能量的能力向电力用户供应电力和电能量的能力充和安两?电力系统可靠性包括充裕度和安全性两个方面?充裕度是在静态条件下电力系统满足用户电力和电能量的能力条件下电力系统满足用户电力和电能量的能力?安全性是在动态条件下电力系统经受住突然扰动并不间断地向用户提供电力和电能量的能力条件下电力系统经受住突然扰动并不间断地向用户提供电力和电能量的能力31研究内容第一层发电系统可靠性评估第二层层发输电系统可靠性评估输电系统可靠性评估层第层发输电系统可靠性评估第三层电力系统可靠性配电系统可靠性评估发电厂变电所电气主接线可靠性评估发电厂变电所电气主接线可靠性评估?研究如何用统计的方法获得元件的可靠性指标研究如何用统计的方法获得元件的可靠性指标?研究如何构成各个环节的可靠性数学模型?寻找提高电力系统可靠性的途径和方法32电力系统可靠性的任务?研究可靠性和经济性的最佳搭配课程内容?系统可靠性基本概念?不可修复系统可靠性分析方法?可修复系统可靠性评估方法?状态空间分析法?共模故障的分析?频率与持续时间法?考虑两态天气情况下的马尔可夫过程参考书目?李群湛
安全系统工程_第四章可靠性分析

n
Rs 1 Fs 1 (1 Ri )
i 1
n
Fs (t) Fi (t)
i 1
s (t)
e 1t 1
2e2t
(1
)e (12 )t 2
e e e 1t
2t
(12 )t
《安全系统工程》
当1 2时,即系统有不同元素组成时,
s (t) max[1, 2 ]
lim
t
不可靠是不安全的原因。
系统本身不可靠导致事故 危险源控制系统不可靠导致事故。
系统安全分析的基础是可靠性分析
2. 故障的基本概念
2.1故障的定义
《安全系统工程》
故障(Failure):系统、设备、元件等在运行过 程中因为性能低下而不能实现预定的功能的现象。
F(t) 1 R(t)
失效(Fault):无实现预定功能的能力。 故障(Failure)是失效(Fault)的原因 本课将二者统称为故障(Failure)
过修理后仍然能够继续驾驶。 狭义可靠性:狭义的“可靠性”是产品在使用期间没
有发生故障的性质。例如一次性注射器,在使用的时间 内没有发生故障,就认为是可靠的;再如某些一旦发生 故障就不能再次使用的产品,日光灯管就是这类型的产 品,一般损坏了只能更换新的。
广义可靠性=狭义可靠性+维修性
1.3可靠性指标体系
(t )
3 常用的故《障安时全间系分统布工函程数》
3.2 威布尔分布
(tt0 )m
可靠度函数为:R(t) e
tm
故障时间分布函数为:F (t) 1 e
故障时间密度函数为:f
(t)
m
(t
-
tm
t 0 )m1e
η=1;t0=0
大学系统安全工程学教学课件-安全系统可靠性分析

R(1000)
1000
e 700
e 1.429
0.239
威布尔分布
瑞典工程师威布尔从30年代开始研究轴承寿命,他采用了 “链式”模型来解释结构强度和寿命问题。
威布尔分布可以描述不同类型的故障,在可靠性工程中得 到了广泛的应用。双参数的威布尔分布目前在寿命数据分 析中广泛应用。
故障时间的威布尔分布函数为:
可靠度R (t)
把产品在规定的条件下和规定的时间内,完成规定功能的
概率定义为产品的“可靠度”。用R (t)表示: R (t ) = P (T >t ) 其中P (T >t )就是产品使用时间T 大于规定时间t 的概率。
可靠度R (t)
若受试验的样品数是N0个,到t时刻未失效的有N s (t)个; 失效的有N f (t)个。则没有失效的概率估计值,即可靠
靠性工作暂行规定》。 1987年5月,国务院、中央军委颁发《军工产品质量管理
条例》。 1987年12月和1988年3月先后颁发了国家军用标准
GJB368—87和G员会(1EC)于1965年设立了可靠性技术委 员会,1977年改名为可靠性与可维修性技术委员会。
f (t)
(t)
0
100
1.00
-
0
0
0
1
94
0.94
6
0.06
0.06
0.06
2
75
0.75
19
0.25
0.19
0.20
3
32
0.32
43
0.68
0.43
0.57
4
9
0.09
23
0.91
0.23
0.72
5
系统可靠性

基本概念
可靠性定义 系统的可靠性是系统在规定的条件下和规定的时 间内完成规定功能的能力。 研究的目的在于提高系统的可靠性,从而提高经 济效益。
可靠度
可靠度R(t) 可靠度是指系统或元素在规定的条件和规定的时 间内,无故障地完成规定的概率。即: R(t) = P(X>t) = 1―F(t) 式中: F(t)为系统在[0,t)时刻内失效(故障)的概率 ,又称不可靠度或失效函数。 一般地,R(t) 服从指数分布,如图3-7所示
R(t) = e -λt = e -t/m λ—— 平均故障率, 次/min m —— 平均故障间隔时间,min/次, m=1/λ,即平 均工作时间。
R(t)具有以下特征:
1) Rt ) R (t )是t的单调减函数。
t
(1)条件合适改走向长壁为倾斜长壁(少一道运输 环节)。国内外已有整阶段整个水平布置一个大功率 综采面的设想,这样将使运输环节最少。 (2)用长距离胶带运输机代替多台短距离刮板运输 机。 (3)一台可弯曲运输机代替两台串联运输机。
5)尽管采用质量好,效率高的设备及零、配件 ,提高“元件”可靠性。如用“多绳摩擦提升机 ”代替单绳普通提升机。
a.出故障的是哪一台; b.什么时间出的故障; c.中途是否经过修理等等。
但可靠度R(120) = 0.96 则要求100台设备中有 96台设备能无故障地工作120小时,显然可靠度 要求是高的。
常用平均有效度:
A
1
1
μ—— 平均修复率,次/min λ—— 平均故障时间,min/次
串、并联系统可靠性参数计算
串联
R(t ) Ri
i 1
n
A Ai
i 1
第三章系统安全分析-可靠性分析、PHA、FMEA

2)减少串联级数;
s
i
3)缩短任务时间。
i 1
8
四、系统可靠度计算
2. 并联系统
为了提高系统的可靠性,通常需要使系统的部分 子系统乃至全部子系统有一定数量贮备,利用贮 备提高系统可靠性最常用的办法就是采用并联结 构的系统。 1)热贮备系统(冗余系统) • 是指贮备的单元也参与工作,即参与工作的数量 大于实际所必须的数量,这种系统又称冗余系统
23
第五节、预先危险性分析(PHA)
预先危险分析程序
熟 悉 系 统
调 查 收 集 资 料
系 统 功 能 分 解
分 析 触 发 事 件
分 析 辨 识 危 险 源
确 定 危 险 等 级
制 定 措 施
措 施 落 施
24
第五节、预先危险性分析(PHA)
危险等级参考
等级 1 2
3 4
等级 安全的
临界的
危险的 灾难性
τ2
τ3
τ4
τ5
取平均值,平均故障修复时间
5
三、可靠度函数与故障率
✓ 在一定的使用条件下,可靠度是时间的函数;设可 靠度为R(t),不可靠度为F(t),则:R(t)+F(t)=1
✓ 故障概率密度函数:f(t)=dF(t)/dt
✓ 故障率
0 f (t)dt1
(t)dt 1 dR(t)
R(t)
R(t) exp[ t (t)dt]et 0
F3、……、Fn,根据概率
A
3
B
乘法定理可得系统
(1) 不可靠度: n
Fs Fi i 1
n
热贮备系统
(2) 系统可靠度:
n
Rs 1 (1Ri) i1