船舶结构与强度设计 第5章 应力集中
船舶强度与结构设计

2.船体强度计算内容和方法
(1)确定作用在船体及各个结构上的外力。 (2)确定船体结构在外载作用的响应:结构 剖面中的应力与变形 ;结构的极限状态分 析。即所谓内力问题。 (3)确定合适的强度标准,并检验强度条件。 这三部分内容是一个综合的整体,通常 被
分散到船舶静力学、船船结构力学等几门课 程中讨论。
局部强度─局部构件(纵桁、横梁、肋骨等)、节 点(肘板等)、局部结构(舱壁、甲板、船底板、 舷侧板等)的强度。
5
§2 作用在船 体结构上的 载荷
6
作用于船体上的载荷可按其响应和随时间变化进行 分类。
1.按结构响应分类:总体性载荷和局性载荷。 总体性载荷─引起整个船体变形或破坏的载荷和 载荷效应。如总纵弯曲的力矩、剪力、应力及纵 向扭矩等。
14
§4 评价结构 设计的质 量指标
15
为得到一个优秀的结构设汁,应考虑以下问 题:
1.安全性
即结构要能承受正常使用时各种可能的 载荷作用,并在偶然事件发生时及发生后, 仍能保持必需的整体稳定性(即仅产生局部 损坏而不发生整体的破坏)。
2.船舶的整体配合性
船舶是一个整体,在船舶设计时,结构 设计必须同总体、轮机、设备电气及通风等 其它方面的设计互相配合,以保证船舶在各 方面都具有良好的工作性能。
船体强度是研究船体结构安全性的科学。
1.结构的安全性
结构的安全性包括: (1)结构能承受在正常施工和正常使用时可 能出现的各种载荷,并在偶然事件发生时及发 生后仍能保持必需的整体稳定性。 (2)结构在正常使用时,对于民船必须适合 营运的要求,和具有足够的耐久性;对于军船 还必须满足在规定海况下,具有良好的战斗性 能和生命力。
局部性载荷─指引起局部结构、构件变形或破坏的 载荷,如水密试验时的水压力,机器的不平衡所 造成的惯性力、局部振动,海损时的水压力等。
船舶结构力学习题答案

船舶结构力学习题答案【篇一:船舶结构力学各章思考题】>(摘自习题)(一)绪论1 什么叫做船体总纵弯曲?船体的总纵强度与局部强度有什么区别与联系?2.船体结构中有哪些受压构件?为什么说船在总弯曲时船体受压的构件(主要是中垂状态时的上层甲板)因受压过度而丧生稳定性后,会大大减低船体抵抗总弯曲的能力?3.何谓骨架的带板?带板的宽度(或面积)与什么因素有关,如何确定?试分析带板宽度对骨架断面几何要素的影响。
4.什么叫做船体结构的计算图形,它是用什么原则来确定的?它与真实结构有什么差别?5.一个完整的船体结构计算图形应包含哪些具体内容?为什么对同一船体结构构件,计算图形不是固定的、一成不变的?(二)单跨梁的弯曲理论1 梁弯曲微分方程式是根据什么基本假定导出的,有什么物理意义,适用范围怎样?2 单跨梁初参数法中的四个参数指什么参数?它们与坐标系统的选择有没有关系?3 为什么当单跨梁两端为自由支持与单跨梁两端为弹性支座支持时,在同样外荷重作用下梁梁断面的弯矩和剪力都相等;而当梁两端是刚性固定与梁两端为弹性固定时,在同样外荷重作用下两梁断面的弯矩和剪力都不同?4 梁的边界条件与梁本身的计算长度、剖面几何要素、跨间荷重有没有关系?为什么? 5 当梁的边界点上作用有集中外力p或几种外弯矩m时,一种处理是把该项外力放在梁端,写进边界条件中去。
另一种处理时把该项外力放在梁上,不写进边界条件。
在求解梁的弯曲要素时,两种处理方法的具体过程有哪些不同?最后结果有没有差别?6 梁的弹性支座与弹性固定端各有什么特点?它们与梁本身所受的外荷重(包括大小、方向及分布范围)有没有关系?为什么梁在横弯曲时,横荷重引起的弯曲要素可以用叠加法求出?(三)力法1 什么叫力法?如何建立力法方程式?2 什么是力法的基本结构和基本未知量?基本结构与原结构有什么异同?力法正则方程式的物理意义是什么?3 当连续梁两端为弹性固定时,如何按变形连续条件建立该处的方程?4 力法可否用来计算不可动节点的复杂钢架?如可以,应如何做?5 用力法计算某些支座有限位移的连续梁或平面刚架时应注意什么问题?6 刚架与板架的受力特征和变形特征有何区别?7 何谓梁的固定系数?它与梁端弹性固定端的柔性系数有何不同?(四)位移法1 试举例说明位移法的基本原理。
船舶结构设计与强度分析

船舶结构设计与强度分析船舶作为一种非常重要的交通工具,在人类的生活和经济发展中发挥着巨大的作用。
而船舶的结构设计和强度分析则是保证船舶安全和性能的重要因素之一。
本文将从船舶的设计原则、结构设计和强度分析等方面为读者详细介绍船舶结构设计与强度分析的知识。
一、船舶设计原则船舶设计原则主要包括几个方面,如船舶的设计目的、功能和性能、流体力学、海洋环境、安全等。
在设计船舶时需要充分考虑这些因素,以保证船舶的安全和性能。
首先,船舶的设计目的、功能和性能是设计的重要基础。
不同类型的船舶有不同的设计目的和功能,因此其设计也不同。
例如,客船需要舒适和安全,货船则需要承载大量货物和保证运输效率。
另外,船舶的性能也是非常重要的,如航行速度、稳定性、操纵性等。
设计者需要考虑到这些要素才能满足用户的需求。
其次,流体力学在船舶设计中也是非常重要的。
设计者需要考虑到水动力学因素,如阻力、推进性能等。
另外,船舶的浮力和稳定性也是需要考虑的要素。
在设计船舶时需要确保其稳定性和纵倾角,以保证其在海上航行的安全性能。
除此之外,海洋环境对船舶的设计也有很大的影响。
海洋环境因素,如水深、气候、风浪等,都会影响船舶的性能。
因此在设计船舶时需要考虑到这些因素,充分考虑海洋环境的影响。
最后,安全也是船舶设计中必须考虑的因素。
在设计船舶时需要确保其安全性能,如抗波性、抗风性、耐受性等。
此外,船舶应当装备相应的安全设备以应对不时之需。
设计者需要充分考虑这些因素,确保设计出的船舶具有良好的安全性能,以保障人民生命和财产安全。
二、船舶结构设计船舶结构设计是指对船体的各个部分进行设计,满足其航行需要和根据需要进行改进。
包括以下几个方面:1. 船体结构设计船体结构设计主要分为船头、船尾和船体三个部分。
其中,船头主要包括船头上部和船头下部,它们的几何形状和在船体中的位置都要满足航行和稳定性的要求。
船尾主要包括船尾甲板、船尾边缘和船尾柱,其中船尾柱的设计对船的稳定性影响较大。
船舶与海洋工程结构物强度课件

船舶与海洋工程结构物强度课件船舶与海洋工程结构物强度是海洋工程领域中非常重要的课程,涉及到船舶和海洋工程结构物的设计、建造和运行过程中所需的强度学知识。
这门课程通常包括以下内容:1. 结构力学基础,介绍结构力学的基本原理,如受力分析、应力、应变、材料力学等,为后续学习提供基础。
2. 船舶结构强度,讲解船舶结构的设计原理、材料选择、受力分析等,包括船体、甲板、舱壁等部位的强度计算和评估。
3. 海洋工程结构物强度,涵盖海洋平台、海底管道、海洋风电等结构物的强度设计与评估,考虑海洋环境、载荷、材料等因素。
4. 疲劳与断裂力学,介绍材料疲劳与断裂的基本理论,以及在船舶与海洋工程结构中的应用和影响。
5. 结构可靠性与安全评估,讲解结构可靠性理论,以及如何对船舶和海洋工程结构进行安全评估和风险分析。
这门课程的学习对于从事船舶与海洋工程结构设计、工程管理、海洋资源开发等领域的工程师和研究人员来说至关重要。
学生通过学习这门课程可以掌握船舶与海洋工程结构物的强度设计与评估方法,提高工程实践能力,为相关领域的发展和创新做出贡献。
在课件设计方面,通常会包括理论讲解、案例分析、实例演练等多种教学手段,以帮助学生深入理解课程内容。
课件可能包括文字、图片、表格、动画等多种形式,以便更好地呈现和解释相关的知识点和案例。
同时,课件设计也应该注重与工程实际的结合,引入真实的工程案例和实践经验,帮助学生将理论知识应用到实际工程中去。
总的来说,船舶与海洋工程结构物强度课件应该全面系统地介绍相关的理论知识和实际应用,帮助学生掌握强度设计与评估的基本原理和方法,培养工程实践能力,促进相关领域的发展与创新。
06_第七章_应力集中

0
(7.1.2)
沿圆孔边缘的应力按下式分布
0 1 2cos 2
(7.1.3)
式中 σ0 —— X 轴方向的平均拉力; a —— 圆孔半径; θ、r —— 板中任一点的极坐标。
5
7-1
•
应力集中与应力集中系数
在孔边A、B两点发生高度应力集中,这两点的拉应力为平均 拉应力的三倍,故应力集中系数k =3。 • 应力随着离开 A、B 两点的距离增加而迅速降低,在离开孔边 缘的距离等于圆孔半径之处,应力值仅比平均拉应力值高22%。 应力集中仅局限于孔边A、B两点附近。 • 在θ = 0°时,沿孔边的切向应力等于板端的平均拉应力σ0。
max k 3 0
6
7-1
应力集中与应力集中系数
对于实际工程问题而言,当板宽与开孔直径之比大于5 时,上述理论解在实用上已具有一定的精度。 对于具有不同的板宽与孔径之比的板,应力集中系数 值的变化如下所示。该系数值是以开孔处的拉伸应力作为 基准应力求得的。
7
规范计算举例
影响参数:Tp、tr、r
数值分析
有限元方法求解——适用于复杂结构(如肘板趾端)
试验测量 光弹性试验测量、实船结构测试
4
7-1
应力集中与应力集中系数
(1)圆形开孔板拉伸时的应力集中
对于具有圆孔且承受拉伸作用的平板,根据无限宽板的弹性 理论解,在通过开口圆心的横剖面上的正应力可用下式表示
a 2 3a 4 2 2 4 2 r r
0
6M d 2t (7.1.9)
17
7-1
应力集中与应力集中系数
扭转时的应力集中 在具有小圆孔的薄壁管扭转时,相当于承受纯剪切作用的平板,沿 圆孔周围的切向应力按下式计算
船舶结构设计中的疲劳强度分析

船舶结构设计中的疲劳强度分析一、引言随着人民生活水平的不断提高,海洋运输成为国际贸易中不可或缺的一部分,船舶结构的安全性和可靠性越来越受到重视。
而疲劳强度分析技术在船舶结构设计中具有重要的作用。
二、疲劳强度分析概述疲劳强度是指物体在交替应力作用下产生损伤的能力,通常用承受交替应力循环以致导致断裂所需的循环次数来表示。
而疲劳强度分析是通过计算某一结构在规定的载荷条件下的循环次数,确定该结构的疲劳寿命和疲劳强度,从而保证船舶结构的安全性和可靠性。
三、疲劳强度分析技术1. 疲劳载荷谱分析疲劳载荷谱分析是指对船舶在实际使用中所受到的载荷进行统计和分析,确定疲劳载荷谱。
通过对载荷谱分析,可以获得船舶在实际使用时所受到的疲劳载荷谱,为疲劳强度分析提供了重要的基础数据。
2. 有限元疲劳强度分析有限元疲劳强度分析是指采用有限元方法对船舶结构模型进行建模和分析,计算其在实际载荷条件下的疲劳强度。
该方法可以模拟船舶结构的实际使用情况,准确地计算疲劳强度,为船舶结构的设计提供科学依据。
3. 应力集中系数法疲劳强度分析应力集中系数法疲劳强度分析是指通过计算结构中应力集中系数,来评估结构在疲劳载荷下的疲劳性能。
该方法简单易行,适用于设计初期的疲劳强度评估。
4. 频域方法疲劳强度分析频域方法疲劳强度分析是指通过对结构的振动信号进行频域分析,计算出其疲劳强度。
该方法能够准确地计算某一结构的疲劳寿命和疲劳强度,但需要大量的数据处理,复杂度较高。
四、结构材料的疲劳特性船舶结构材料的疲劳特性是指材料在交替应力作用下的损伤特性。
不同种类的结构材料具有不同的疲劳特性。
一般来说,疲劳寿命越长的材料可以承受更多的循环次数,对于船舶结构的设计来说,需要选择具有较长疲劳寿命的材料,以确保结构的安全性和可靠性。
五、结论疲劳强度分析技术在船舶结构设计中具有重要的作用,可以评估船舶在疲劳载荷下的性能,为船舶结构的安全性和可靠性提供保障。
在选择结构材料时,需要考虑其疲劳特性,选择具有较长疲劳寿命的材料。
船舶强度与结构设计_授课教案_第四章应力集中模块

第四章应力集中模块一、应力集中及应力集中系数在船体构造中,构件的中断常常是不行防止的。
中断构件在其剖面形状与尺寸突变处的应力,在局部范围内会产生急剧增大的现象,这种现象称为应力集中。
因为船体在波涛上的总纵曲折拥有交弯的特征,应力集中又拥有三向应力特征,严重的应力集中更易于惹起局部裂纹和促使裂纹的逐渐扩展。
第二次世界大战中和大战后,因为构造张口惹起应力集中从而产生裂痕致使船体折断的事故占整个船体构造海损事故总数中的极大多数。
所以,在第二次世界大战后,对于船体构造的应力集中问题,曾惹起了造船界的广泛重视,展开了大批的研究工作。
此刻,对这个问题已经有了比较清楚地认识。
因为应力集中是致使构造破坏的一个重要原由,构造设计工作者在设计中一定一直注意这个问题。
再进一步对船体构造中比较突出的几个应力集中问题及该地区的构造设计作一些介绍。
往常,用应力集中系数来表示应力集中的程度。
应力集中区的最大应力m ax 或m ax 分别与所选基准应务0 或0 之比值,即k max 或k max(1)00称为应力集中系数。
基准应力不一样,应力集中系数也不一样。
所以,给定应力集中系数时,应指明基准应力的取法。
中断构件的应力变化规律以及应力集中系数的大小很大程度上决定于这些构件的形状。
当前,已经能够确立各样形状的中断构件的应力集中系数。
二、张口的应力集中及降低角隅处应力集中的举措在大型船舶上,强力甲板上的货舱口、机舱口等大张口,都严重地破坏了船体构造的连续性。
当船舶总纵曲折时,在甲板开吵嘴隅外的应力梯度急剧高升,惹起严重的应力集中,造成船体构造的单薄环节。
对于舱吵嘴隅处应力集中确实定,致使去除方角而采纳圆弧形角隅,并在角隅处采纳加复板或厚板进行增强,同时要采纳IV级或V 级的资料。
1.张口的应力集中对于孔边的应力集中,可用拥有小椭圆开孔的无穷宽板受位抻的状况来说明(见下列图)。
应用弹性理论可求得A、B 两点的应力分别为:aA(12 )(2)pB式中为无穷远处的拉伸应力;b2/ a为椭圆孔在 A 点的曲率半径;2a 与 2b分别为垂直及平行于拉伸方向的椭圆主轴,负号代表压应力。
船体结构与强度设计总结

1、结构的安全性是指结构能承受在正常施工和正常使用时可能出现的各种载荷和(或)载荷效应,并且在偶然事件发生时及发生后,仍能保持必须的整体稳定性。
此外,结构在正常使用时,还必须适合营运的要求,并在正常的维护保养条件下,具有足够的耐久性。
2、船体强度计算包括:(1)确定作用在船体或各个结构上的载荷的大小及性质,即外力问题;外载荷(2)确定结构剖面中的应力与变形,即结构的响应分析(亦称载荷效应分析);或者求使结构失去它应起的各种作用中的任何一种作用时的载荷,即结构的极限状态分析(亦或求载荷效应的极限值),即内力问题。
响应(3)确定合适的强度标准,并检验强度条件。
衡准(结构的安全性衡准都普遍采用确定性的许用应力法)3、通常将船体强度分为总强度和局部强度来研究。
4、结构的安全性是属于概率性的。
5、把船体当做一根漂浮的空心薄壁梁(成为船体梁),从整体上研究其变形规律和抵抗破坏的能力,通常成为总强度。
总强度就是研究船体梁纵弯曲问题。
从局部上研究局部构件变形规律和抵抗破坏的能力,通常称为局部强度。
6、作用在船体结构上的载荷,按其对结构的影响可分为:总体性载荷、局部性载荷。
按载荷随时间变化的性质可分为:不变载荷、静变载荷、动变载荷和冲击载荷。
7、总体性载荷是指引起整个船体的变形或破坏的载荷和载荷效应。
局部性载荷是指引起局部结构、构件变形或破坏的载荷。
冲击载荷,是指在非常短的时间内突然作用的载荷,例如砰击。
8、结构设计的基本任务是:选择合适的结构材料和结构型式,决定全部构件的尺寸和连接方式,在保证具有足够的强度和安全性等要求下,使结构具有最佳的技术经济性能。
9、船体结构设计,一般随全船设计过程分为三个阶段,即初步设计、详细设计和生产设计。
10、结构设计应考虑:安全性、营运适合性、船舶的整体配合性、耐久性、工艺性、经济性。
11、大多数结构的优化设计都以最小重量(或最小体积)作为设计的目标。
但是,减小结构尺寸、降低结构重量,往往会增加建造工作量,从而增加制造成本同时还会引起维护保养费用的增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)疲劳特点
①只有在交变应力作用下,疲劳才会发生。 ②疲劳破坏起源于高应力局部。 构件应力集中处,常常是疲劳破坏的起源。 ③疲劳破坏是是一个发展过程,在足够多次的扰 动载荷作用之后,形成裂纹或完全断裂。
2.疲劳断裂是船舶结构损伤的主要原因 (1)为什么船舶容易疲劳破坏? ① 交变载荷作用 海洋波浪周期5-10秒,船舶寿命期内结构受交变应 力作用次数约108
1.舱口角隅应力集中 甲板上大舱口破坏了甲板结构连续性,在角隅处 引起应力集中。 舱口角隅应力集中系数k:舱口角隅处最大应力与 平均应力之比。 影响应力集中系数的主要因素是角隅半径r与舱口 宽度b之比。当r/b增大,应力集中系数急剧减小,ቤተ መጻሕፍቲ ባይዱ r/b>0.2时,k不再变化。
影响应力集中系数的主 要因素是角隅半径r与 舱口宽度b之比。当r/b 增大,应力集中系数急 剧减小,当r/b>0.2时, k不再变化。
② 结构存在应力集中和裂纹 结构不连续、焊接缺陷、装配误差,应力集中难免。 ③海水腐蚀加速疲劳。
(2)提高结构疲劳强度的措施 为了结构疲劳强度,主要措施是降低应力集中。 ① 改善连接点设计,如结构平顺过渡 ② 提高工艺、焊接质量、装配精度 ③ 结构防腐
第4节《规范》降低应力集中的措施
①甲板开口 当强力甲板上的货舱开口角隅是圆形时, 角隅处 要求加厚板, 且角隅半径与舱口宽度之比不小于1/20。 开口角隅是抛物线形或椭圆形时, 角隅处的甲板不 需加厚板。
② 机座纵桁和龙骨的过渡 如机座纵桁在整个机舱长度内贯通, 在两端舱 壁的背面均设有过渡肘板。 在中内龙骨中断处的 机舱内应设置长度不小于2 个肋距的肘板过渡。
③ 肘板趾端 为避免主要强力构件端部的应力集中,在大型 肘板趾端处,肘板的面板应向端部削斜。
④ 不同厚度钢板进行对接 不同厚度钢板进行对接, 其厚度差大于或等于 4mm 时, 应将厚板的边缘削斜, 使其均匀过渡, 削斜 的宽度应不小于厚度差的4 倍。
⑤上层建筑端部过渡 上层建筑的舷侧外板应延伸至上层建筑端部以 外,且其高度逐步减小至主船体的舷顶列板,过渡 应光顺。
2.应力集中系数 应力集中处的最大应力与所选定的平均应力之 比称为应力集中系数。 它是应力集中程度的标志,应力集中系数大说明 应力集中严重。 宽板中心开圆孔应力集中系数约为3。
第2节 船体结构中的应力集中
甲板上舱口、构件连接处、上层建筑与主船体连 接处,断面和形状突然变化,存在应力集中,因而应 力较大。
2.结构连接处的应力集中系数 一般船舶结构连接方式应力集 中系数可查阅手册。
第3节 结构疲劳
钢材也会疲劳?
1.结构疲劳特点
(1)结构疲劳 材料或结构在多次交变载荷作用下,即使最大 应力明显低于材料的屈服极限,经过一段时间作用 后,某点或多点会产生裂纹,并在一定循环次数后 裂纹逐渐扩展,直到最后断裂,材料或结构的这种 破坏成为疲劳破坏。