船舶强度与结构设计

合集下载

船体强度和结构设计

船体强度和结构设计

船体强度和结构设计
船体强度和结构设计是船舶设计中最重要的部分之一。

船体强度和结构设计的目的是确保船舶在航行中能够承受各种外部力量和内部压力,保证船舶的安全性和可靠性。

船体强度设计主要包括船体的强度计算和结构设计。

船体的强度计算是指通过计算船体的各个部位的受力情况,确定船体的强度要求。

船体的结构设计是指根据船体的强度要求,设计船体的结构形式和材料,以满足船体的强度要求。

船体强度设计的主要考虑因素包括船舶的航行条件、船舶的载重量、船舶的航速、船舶的航线、船舶的使用寿命等。

在设计船体强度时,需要考虑船舶在不同的航行条件下的受力情况,如波浪、风力、水流等。

同时,还需要考虑船舶的载重量和航速,以确定船体的强度要求。

此外,船舶的航线和使用寿命也是船体强度设计的重要考虑因素。

船体结构设计的主要考虑因素包括船体的结构形式、材料和连接方式。

船体的结构形式包括船体的外形和内部结构,如船体的船首、船尾、船体侧壁、船底等。

船体的材料包括船体的钢材、铝合金、复合材料等。

船体的连接方式包括焊接、螺栓连接等。

船体强度和结构设计的重要性不言而喻。

只有通过科学的设计和计算,才能确保船舶在航行中的安全性和可靠性。

因此,在船舶设计
中,船体强度和结构设计是必不可少的一部分。

船舶强度与结构设计第二章

船舶强度与结构设计第二章

第2章 船体总纵强度计算根据梁弯曲理论: Z I M ⋅=σ (2-1)对于一定计算状态,可求出作用于船体剖面上的弯矩M 值。

为了计算剖面弯曲应力σ,还必须先计算剖面对水平中和轴的惯性矩I ,以及剖面任意构件至水平中和轴的距离Z 等剖面要素。

2.1 船体总纵弯曲应力第1次近似计算2.1.1 船体剖面要素计算由于船体结构对称于中纵剖面,一般只需对半个剖面进行剖面要素的计算。

具体步骤如下:首先,画出船体计算剖面的半剖面图,如图2-1所示。

然后,对纵向强力构件进行编号,并注意把所有至中和轴距离相同的构件列为一组进行编号;选取图 2-1 船体横剖面图参考轴O O '-',该轴可选在离基线0.45倍~0.50倍型深处。

最后,列表进行计算,并分别求出各组构件剖面积i A ,其形心位置至参考轴的距离i Z (按所选定的符号法则,在参考轴以上的构件i Z 取为正),静力矩i i Z A ,惯性矩2i i Z A 。

对于高度较大的垂向构件,如舷侧板等,还要计算其自身惯性矩12/20i i h A i =(i h 为该构件的垂直高度,这种表达式也适用于倾斜板的剖面)。

则得:∑=A A i∑=B Z A i i∑=+C i ZA i i )(02 (2-2) 剖面水平中和轴至参考轴的距离为: )m (AB =∆ (2-3)由移轴定理,剖面对水平中和轴的惯性矩为: )(2)(222A B C A C I -=∆-= (cm 2 ·m 2) (2-4)任意构件至中和轴的距离为: A B Z Z Z i i i -=∆-=' (m ) (2-5)最上层连续甲板和船底是船体剖面中离中和轴最远的构件,构成了船体梁的上下翼板。

构成船体梁上翼板的最上层连续甲板通常称为强力甲板。

设中和轴至强力甲板和船底的垂直距离分别为d Z 和b Z ,则强力甲板和船底处的剖面模数分别为: d d Z I W =,b b Z I W = (2-6)在一般船舶中,中和轴离船底较近,即d Z >b Z ,因此b d W W <。

船舶结构设计与强度分析

船舶结构设计与强度分析

船舶结构设计与强度分析船舶作为一种非常重要的交通工具,在人类的生活和经济发展中发挥着巨大的作用。

而船舶的结构设计和强度分析则是保证船舶安全和性能的重要因素之一。

本文将从船舶的设计原则、结构设计和强度分析等方面为读者详细介绍船舶结构设计与强度分析的知识。

一、船舶设计原则船舶设计原则主要包括几个方面,如船舶的设计目的、功能和性能、流体力学、海洋环境、安全等。

在设计船舶时需要充分考虑这些因素,以保证船舶的安全和性能。

首先,船舶的设计目的、功能和性能是设计的重要基础。

不同类型的船舶有不同的设计目的和功能,因此其设计也不同。

例如,客船需要舒适和安全,货船则需要承载大量货物和保证运输效率。

另外,船舶的性能也是非常重要的,如航行速度、稳定性、操纵性等。

设计者需要考虑到这些要素才能满足用户的需求。

其次,流体力学在船舶设计中也是非常重要的。

设计者需要考虑到水动力学因素,如阻力、推进性能等。

另外,船舶的浮力和稳定性也是需要考虑的要素。

在设计船舶时需要确保其稳定性和纵倾角,以保证其在海上航行的安全性能。

除此之外,海洋环境对船舶的设计也有很大的影响。

海洋环境因素,如水深、气候、风浪等,都会影响船舶的性能。

因此在设计船舶时需要考虑到这些因素,充分考虑海洋环境的影响。

最后,安全也是船舶设计中必须考虑的因素。

在设计船舶时需要确保其安全性能,如抗波性、抗风性、耐受性等。

此外,船舶应当装备相应的安全设备以应对不时之需。

设计者需要充分考虑这些因素,确保设计出的船舶具有良好的安全性能,以保障人民生命和财产安全。

二、船舶结构设计船舶结构设计是指对船体的各个部分进行设计,满足其航行需要和根据需要进行改进。

包括以下几个方面:1. 船体结构设计船体结构设计主要分为船头、船尾和船体三个部分。

其中,船头主要包括船头上部和船头下部,它们的几何形状和在船体中的位置都要满足航行和稳定性的要求。

船尾主要包括船尾甲板、船尾边缘和船尾柱,其中船尾柱的设计对船的稳定性影响较大。

船舶结构强度与设计复习题

船舶结构强度与设计复习题

船舶结构强度与设计复习题船舶结构强度与设计复习题船舶结构强度与设计是船舶工程中非常重要的一部分,它涉及到船舶的安全性和可靠性。

在进行船舶结构设计时,需要考虑到各种力学和材料力学的知识。

下面将提供一些船舶结构强度与设计的复习题,帮助读者回顾相关知识。

1. 什么是船舶结构强度?船舶结构强度是指船舶结构在各种外力作用下的抗力能力。

它包括静态强度、动态强度和疲劳强度等方面。

船舶结构的设计应该能够满足船舶使用寿命内的各种工况和负荷要求。

2. 船舶结构设计中常用的材料有哪些?船舶结构设计中常用的材料包括钢材、铝合金和玻璃钢等。

钢材具有高强度和良好的可塑性,广泛应用于船舶建造。

铝合金具有较低的密度和良好的耐腐蚀性能,适用于船舶的轻量化设计。

玻璃钢具有优良的抗腐蚀性能,适用于船舶的特殊部位。

3. 船舶结构设计中常见的荷载有哪些?船舶结构设计中常见的荷载包括静荷载和动荷载。

静荷载包括自重、货物重量、燃油重量等,它们是静态荷载。

动荷载包括波浪荷载、风荷载、船员和乘客的荷载等,它们是动态荷载。

4. 什么是船舶结构的疲劳强度?船舶结构的疲劳强度是指船舶结构在循环荷载作用下的抗疲劳能力。

船舶在航行过程中会受到波浪的作用,波浪荷载会引起船体的振动和变形,从而产生疲劳损伤。

船舶结构的疲劳强度设计要考虑到船舶使用寿命内的循环荷载。

5. 船舶结构设计中常用的强度计算方法有哪些?船舶结构设计中常用的强度计算方法包括解析法和数值模拟法。

解析法是指通过解析公式和理论计算船舶结构的强度。

数值模拟法是指通过有限元分析等数值方法计算船舶结构的强度。

这两种方法在船舶结构设计中都有广泛应用。

6. 船舶结构设计中需要考虑的安全系数有哪些?船舶结构设计中需要考虑的安全系数包括材料强度安全系数、结构强度安全系数和疲劳强度安全系数等。

材料强度安全系数是指材料的实际强度与设计强度之间的比值,用来保证材料的可靠性。

结构强度安全系数是指结构的实际强度与设计强度之间的比值,用来保证结构的可靠性。

船体强度与结构设计

船体强度与结构设计

船体强度与结构设计船体强度与结构设计1. 船体梁抵抗总纵弯曲的能⼒,成为总纵强度(简称纵强度)。

2. 重量的分类:(1)按变动情况来分○1不变重量,即空船重量,包括:船体结构、舾装设备、机电设备等各项固定重量。

○2变动重量,即装载重量,包括:货物、燃油、淡⽔、粮⾷、旅客、压载等各项可变重量。

(2)按分布情况分○1总体性重量,即沿船体梁全场分布的重量,通常包括:主体结构、油漆、索具等各项重量,对于内河⼤型客船,还包括:纵通的上层建筑及旅客等各项重量。

○2局部性重量:即沿船长某⼀区段分布的重量,通常包括:货物、燃油、淡⽔、粮⾷、机电设备、舾装设备等各项重量。

3.重量分布原则:对于各项重量按近似的和理想化的分布规律处理时,必须遵循静⼒等效原则1)保持重量的⼤⼩不变,这就是说要使近似分布曲线所围的⾯积等于该项实际重量2)保持重量重⼼的纵坐标不变,即要使近似分布曲线所围的⾯积⾏⼼纵坐标与该项重量的重⼼纵坐标相等3)近似分布的曲线的范围与该项重量的实际分布范围相同或⼤体相同3.描述浮⼒沿船长分布状况的曲线称为浮⼒曲线。

4.计算状态:通常是指,在总纵强度计算中为确定最⼤弯矩所选取的船舶典型装载状态,⼀般包括满载、压装、空载等和按装载⽅案可能出现的最不利以及其它正常营运时可能出现的更为不利的装载状态。

4.静波浪弯矩与船型、波浪要素以及船舶与波浪的相对位置有关,波浪要素包括波形、波长和波⾼,⽬前得到最⼴泛应⽤的坦⾕波理论,根据这⼀理论,⼆维波的剖⾯是坦⾕曲线形状。

坦⾕波曲线形状的特点是:波峰陡峭,波⾕平坦,波浪轴线上下的剖⾯积不相等,故谓坦⾕波。

4.传统的标准计算⽅法:(1)将船舶置于波浪上,即假想船舶以波速在波浪的船舶⽅向上航⾏,船舶与波浪处于相对静⽌状态。

(2)以⼆维坦⾕波作为标准波形,计算波长等于船长(内河船舶斜置于⼀个波长上),计算波⾼按有关规范或强度标准选取。

(3)取波峰位于船中及波⾕位于船中两种状态分别进⾏计算。

船舶结构强度分析及设计优化

船舶结构强度分析及设计优化

船舶结构强度分析及设计优化船只是人类历史上的重要交通工具之一,它不仅可以通过水路连接各个地区,还可以承担货物和人员的运输任务。

但是,船只的安全性是最重要的,因此在每次设计和建造船只时,船舶结构强度分析和设计优化是非常重要的。

这篇文章旨在探讨如何进行船舶结构分析以及如何进行设计优化。

一、船舶结构强度分析在设计一艘船时,船舶结构强度是非常重要的,因为不光是船只的空间大小和灵活性需要考虑,还要考虑到船只能够在较恶劣的天气条件下安全地完成航行任务。

在进行船舶结构强度分析时,需要考虑以下因素:1. 负载情况船舶有多种不同的负载情况如:自重、船员、货物、燃料和水。

每一种负载都会增加船舶的重量,同时也会对结构强度产生影响。

因此,需根据实际负载情况进行船舶结构强度分析。

2. 力学要求在船只设计过程中,要考虑到船只能在恶劣的海洋环境中顺利航行,因此船只的结构必须能够承受气流和波浪的作用力。

船只设计时必须满足三个力学要求:剪切力、弯曲力和扭曲力。

3. 材料强度在船只设计过程中,需要考虑船只的材料强度。

通常船只在建造过程中会使用不同材料的组合,如钢铁、铝等。

因此,要进行材料强度分析,以确保船只材料本身的强度能够满足任务需求。

二、船舶设计优化进行完船舶结构强度分析后,接下来就是设计优化。

在船只设计中,只有满足以下几个方面,才能让一艘船只成为安全、高效和经济的船只:1. 减轻船只重量对于船只设计来说,重量已经是一个非常重要的方面。

因为船只的重量越轻,船员的航行成本也就越低。

船只重量的减轻可能可以通过改变船只的材料、结构和形状等方面来实现。

2. 提高航速为了让船只航行速度更快、航程更长,设计师需要在船只速度、船体设计和动力装置方面进行优化。

最终目标是提高船只的速度和性能,同时保持船只的稳定和可靠性。

3. 节油减排现在许多国家都提倡低碳环保的理念,国际海事组织为此颁布了许多关于船舶排放的法规。

因此,在船只设计过程中,需要考虑如何减少船只的能源消耗和减少对环境的影响。

船舶结构强度分析及优化设计

船舶结构强度分析及优化设计

船舶结构强度分析及优化设计船舶,是沉浸在海洋中的移动性建筑物,其结构强度的分析和优化设计是保证其安全性的关键。

本文将从船舶结构的发展历程、强度分析的步骤和方法、在优化设计中如何应用结构分析等方面进行探讨。

一、船舶结构的发展历程船舶结构的发展历程可以追溯到古代文明时期,中国南方古代船舶厂遗址就证明了古代船舶结构的科学性和技术精湛性。

随着人类的发展,航行时间、航行范围、航行速度等不断提高,船舶结构的强度需求也日益增加。

19世纪初期,船体主要采用木材构成,但当时的木制船只重心过高、抗风性能差、耐久性低等问题逐渐显现。

后来随着钢铁工业的发展,船舶材料演变为钢铁材料,这使得船舶的结构强度得到了极大的提高。

二、船舶结构的强度分析步骤和方法船舶结构的强度分析步骤主要包括载荷计算、结构计算和校核分析。

其中载荷计算是指对船舶在不同航行状态中的外力进行计算,如风力、水力、波浪力、排水力等等,这些外力将对船舶结构产生巨大的影响。

结构计算是指对船舶的各个部分进行计算,如船体、主机房、上层建筑等,以确定各部位的受力情况。

校核分析是指对各个部分的受力情况进行评估和比对,使其满足船级社要求的规范和标准。

在强度分析中需要考虑到船舶腐蚀、疲劳损伤、开裂以及爆炸等突发情况的处理。

船舶结构的强度分析方法主要包括有限元法、有限差分法、刚度法、试验分析法等。

在其中有限元法是目前应用较为广泛的方法之一,其基本理论是将结构分割成若干小块,利用力学原理计算其各个分块的内应力和变形情况,以达到预判属于何种应力状态、哪些部位可能会产生破坏、哪些部位应当加强等目的。

三、在优化设计中如何应用结构分析船舶的优化设计除了要符合船级社的规范以外,还需要考虑到航行稳定性、运载能力、动力性能等方面。

在结构分析中,可以通过对各个部位的分析、对各种力的分析以及应力应变的估算等一系列操作,确定不同材料的使用范围、决策载货量和速度等。

在优化设计中,还需要结合人工智能等技术,进行复杂的数据计算和分析。

海底支持维护船的船舶结构设计与强度分析

海底支持维护船的船舶结构设计与强度分析

海底支持维护船的船舶结构设计与强度分析在深海维护船的运营中,船舶的结构设计和强度分析是关键的技术要求。

海底支持维护船是为了对海洋能源设施、水下管道、油井和海底设备进行维护和修理而构建的特殊船舶。

它们承担着重要的任务,因此船舶的结构必须经过精心设计和严格的强度分析,以确保其在恶劣海况下的安全性和可靠性。

首先,对于海底支持维护船的结构设计,需要考虑以下几个方面:一、船型选择:深海维护船通常选用多体船型,具有良好的稳定性和操作性能。

这种船型可以提供足够的载荷能力和舱容,便于承载维护设备和人员。

二、船体结构设计:船体应采用高强度钢材制造,以承受海浪、冲击和振动的作用。

船体内部的结构应采用合理的布局和加强设计,以确保船体的强度和刚度。

三、吊装设备设计:深海维护船需要配备吊装设备,用于安装和维修海底设备。

吊装设备的设计应考虑到船体的稳定性和平衡性,同时确保吊装过程的安全和可靠性。

四、动力系统设计:深海维护船需要具备足够的推力和操纵性能,以适应复杂的海洋环境。

动力系统的设计应考虑到船舶的工作负荷和耐久性,选择合适的发动机和推进设备。

其次,对于海底支持维护船的强度分析,需要进行以下几个关键的分析和计算:一、静力强度分析:静力强度分析主要涉及船体的稳定性和载荷能力。

通过对船体结构进行有限元分析,计算船舶在各种海况下的应力和变形情况,以确保船体的强度和稳定性。

二、动力强度分析:动力强度分析主要考虑船体在航行和海浪冲击下的应力和变形情况。

通过数值模拟和试验验证,分析船体各部位的应力和疲劳寿命,以预防结构破坏和断裂。

三、冲击强度分析:冲击强度分析主要涉及船体在碰撞或意外情况下的抗冲击性能。

通过冲击试验和数值模拟,评估船体的抗冲击能力,以保护船员和设备的安全性。

四、疲劳强度分析:疲劳强度分析主要考虑船体在长期运营中的疲劳寿命和可靠性。

通过模拟船舶的实际工况和载荷,计算船体结构的疲劳损伤和剩余寿命,以指导船舶维护和检修。

最后,海底支持维护船的船舶结构设计和强度分析需要满足相关的国际和行业标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2.船体强度计算内容和方法
(1)确定作用在船体及各个结构上的外力。 (2)确定船体结构在外载作用的响应:结构 剖面中的应力与变形 ;结构的极限状态分 析。即所谓内力问题。 (3)确定合适的强度标准,并检验强度条件。 这三部分内容是一个综合的整体,通常 被
分散到船舶静力学、船船结构力学等几门课 程中讨论。
局部强度─局部构件(纵桁、横梁、肋骨等)、节 点(肘板等)、局部结构(舱壁、甲板、船底板、 舷侧板等)的强度。
5
§2 作用在船 体结构上的 载荷
6
作用于船体上的载荷可按其响应和随时间变化进行 分类。
1.按结构响应分类:总体性载荷和局性载荷。 总体性载荷─引起整个船体变形或破坏的载荷和 载荷效应。如总纵弯曲的力矩、剪力、应力及纵 向扭矩等。
14
§4 评价结构 设计的质 量指标
15
为得到一个优秀的结构设汁,应考虑以下问 题:
1.安全性
即结构要能承受正常使用时各种可能的 载荷作用,并在偶然事件发生时及发生后, 仍能保持必需的整体稳定性(即仅产生局部 损坏而不发生整体的破坏)。
2.船舶的整体配合性
船舶是一个整体,在船舶设计时,结构 设计必须同总体、轮机、设备电气及通风等 其它方面的设计互相配合,以保证船舶在各 方面都具有良好的工作性能。
船体强度是研究船体结构安全性的科学。
1.结构的安全性
结构的安全性包括: (1)结构能承受在正常施工和正常使用时可 能出现的各种载荷,并在偶然事件发生时及发 生后仍能保持必需的整体稳定性。 (2)结构在正常使用时,对于民船必须适合 营运的要求,和具有足够的耐久性;对于军船 还必须满足在规定海况下,具有良好的战斗性 能和生命力。
局部性载荷─指引起局部结构、构件变形或破坏的 载荷,如水密试验时的水压力,机器的不平衡所 造成的惯性力、局部振动,海损时的水压力等。
船体受到的最基本的载荷有:装载的货物(或武备)、 油、水等重力及舷外水压力(静水或波浪)。这些载 荷既引起局部结构、构件的变形成破坏,同时又 是引起船体梁总纵弯曲或扭转的基本载荷。
7
2.按载荷随时间变化分类:不变载荷、静载荷、动 载荷和冲击载荷。 不变载荷─在作用时间内不改变其大小的载荷, 如静水载荷(包括静水压力、货物压力、静水弯矩 等)、水密试验时的水压力等。在不变载荷作用下 的结构响应分析称为静力分析。 静载荷─载荷在作用时间内基本不变化的,故又 称为准静态载荷。如,作用于船体的波浪载荷(包 括动水压力、波浪诱导弯矩等)、液体货物的晃动 压力、航行中的甲板上浪、下水载荷等,其中最 重要的是波浪载荷。由于波浪载荷的随机性以及 载荷与响应之间的复杂的相互作用,其计算是一 项复杂的任务它涉及统计理论、流体动力学,以 及系统分析等多种专门知识。
9
动载荷─是指在作用时间内的变化周 期与所研究的结构构件响应的固有振 动周期同阶。如局部结构的强迫(机械) 振动、由螺旋桨引起的脉动压力、船 体梁的波激振动等。这方面的内容属 于“船舶振动”课程内容。 冲击载荷─指在非常短的时间内突然 作用的载荷,例如砰击,水下爆炸冲 击等。
10
在计算动载荷及冲击载荷的响应时, 通常需作动力分析才能有足够的精度。
传统的评定船体强度和确定性的 设计方法终将会由船体结构的可靠性 分析的概率设计计算方法所代替。
4
总强度─将船体当作飘浮的空心薄壁梁(称为 船体梁),从整体上研究其变形规律和抵抗 破坏的能力,通常称为总强度。
由于舶体主要是纵弯曲变形,所以总 强度就是研究船体梁纵弯曲问题。
随着如集装箱船这类甲板长大开口船 的出现,计算扭转强度也成了十分重要的 问题,目前在这方面的研究已取得了长足 的进步。
通常静力分析和动力分析是分开进 行的,动力分析通常只研究对于静载 荷的偏离,因此,结构总的响应为这 两种分析结果的和。
11
§3 结构设计 的基本任 务和内容
12
结构设计通常在船舶总体设计完成之后, 船舶的主要尺度、船体型线及总体布置(船 舶建筑型式、甲板层数、甲板与内底位置 及舱室的划分等)已经确定后进行。
1.结构设计的基本任务:
1)选择合适的结构材料和结构型式; 2)决定全部构件的尺寸和连接方式; 3)在保证具有足够的强度和安全性等要求 下,使结构具有最佳的技术经济性能。
13
2.船体结构设计各阶段的任务
船体结构设计分为三个阶段,即初步设计、 详细设计和生产设计。在不同的阶段完成不同的 工作: (1)初步设计 根据技术任务书对整个结构的设计 原则(例如,船体材料及结构型式的选择、重大技 术措施的采取等)进行分析比较,对主要构件的布 置与尺过进行理论估算,并绘制横剖面图,给出 钢料预估单。 (2)详细设计 根据确认的初步设计及审批初步设 计时所作的各项决定,解决结构设计中的技术问 题,最终确定构件的布置、尺寸及连接方式,提 交验船部门审查所需要的设计图纸及技术文件。 (3)生产设计 绘制各部结构、构件连接的施工详 图,以及分段施工图等。
8
直至目前造船业仍将船舶静置在波浪上 的纵强度计算的标准方法。由于所有船舶 的强度都是在同一计算原理的基础上进行 比较,而作为比较标准的许用应力又是以 大量安全航行的总纵弯曲应力计算、海损 事故的纵强度分析以及实船测量所得的大 量应力数据为基础,并按照安全要பைடு நூலகம்制定 出来的。实践表明,采用这种方法在一定 范围内进行应力比较和判断船体强度,具 有简单、方便、可靠等优点。
2
结构的安全性标准以在规定计算载荷下计算 结构剖面中的应力 与许用应力[ ] 相比较, 即利用条件 [ ] 检验强度是否足够。
实际上在船体强度计算中有许多不确定因 素:
(1) 载荷具有很大的变动性和随机性; (2) 材 料的性能的不确定性; (3)建造质量,分析计 算中的简化、假设、近似所造成的误差等。
因此,结构的安全性是属于概率性的,只有 运用概率方法才能充分揭示作用在船体结构中 的随机外力的真相和结构材料在随机载荷作用 下的破坏机理。
3
在船舶结构工程中概率方法的应用目 前仍处于初步阶段。现行对民船仍采 用规范法,对超规船则辅以直接计算 方法,而军船则采用计算方法。在具 体计算中,通常将船体强度分为总强 度和局部强度进行研究。
相关文档
最新文档