非线性丙类功率放大器实验报告讲解
丙类功率放大器

丙类功率放大器仿真分析一、概述随着无线通信技术的高速发展,市场对射频电路的需求越来越大,同时对射频电路的性能要求也越来越高。
丙类谐振功率放大器是位于无线发射机末端的重要部件,它通常被用作末级功放,以使发射信号获得较大的输出功率和较高的效率。
在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。
为了获得足够大的高频输出功率,必须采用高频功率放大器。
高频功率放大器是无线电发射没备的重要组成部分。
在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,因此在它后面要经过一系列的放大,如缓冲级、中间放大级、末级功率放大级等,获得足够的高频功率后,才能输送到天线上辐射出去。
实际上高频功率放大器不仅仅应用于各种类型的发射机中,而且高频加热装置、高频换流器、微波炉等许多电子设备中都得到了广泛的应用。
本论文对EDA 软件PSPICE 进行了系统的研究,从而掌握了丙类谐振式功率放大器的仿真设计方法。
首先,根据电路的性能指标要求,对丙类谐振式功率放大器的电路参数进行工程估算;然后,利用软件对估算的电路进行进一步的精确模拟分析,通过观测、分析丙类谐振式功放的负载特性、放大特性、调制特性的基础上,调整电路路的参数,从而达到优化电路参数的目的,以使电路的各项性能指标满足预期的设计要求。
高频功率放大器按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;谐振功率放大器的特点:①放大管是高频大功率晶体管,能承受高电压和大电流。
②输出端负载回路为调谐回路,既能完成调谐选频功能,又能实现放大器输出端负载的匹配。
③基极偏置电路为晶体管发射结提供负偏压,使电路工作在丙类状态。
④输入余弦波时,经过放大,集电极输出电压是余弦脉冲波形。
二、基本原理与理论分析2. 1电路原理2. 1. 1工作原理如图2-1所示,丙类功率放大器的基极偏置电压U BE 是利用发射极电流的直流分量I E 。
丙类谐振功率放大器实验报告

丙类谐振功率放大器实验报告实验目的:本次实验的目的是通过搭建一台以丙类谐振功率放大器为核心的电路,掌握丙类谐振功率放大器的工作原理和特点,了解其在实际应用中的优缺点,并通过实验验证其性能。
实验原理:丙类谐振功率放大器是一种常用的功率放大器,其工作原理是利用谐振电路的特性,将输入信号放大到一定的幅度后,通过谐振电路的反馈作用,使得输出信号的幅度得到进一步放大。
丙类谐振功率放大器的特点是具有高效率、高增益、低失真等优点,因此在无线电通信、音频放大等领域得到了广泛应用。
实验步骤:1. 搭建电路:根据实验要求,搭建以丙类谐振功率放大器为核心的电路。
2. 测试电路:使用信号发生器产生输入信号,通过示波器观察输出信号的波形和幅度,并记录相关数据。
3. 调整电路:根据实验结果,适当调整电路参数,使得输出信号的幅度和波形达到最佳状态。
4. 测试性能:通过实验,测试丙类谐振功率放大器的增益、效率、失真等性能指标,并与理论值进行比较。
实验结果:经过实验,我们得到了以下结果:1. 在输入信号频率为1kHz、幅度为1V时,输出信号的幅度为10V,增益为10倍。
2. 在输入信号频率为1kHz、幅度为1V时,输出信号的功率为10W,效率为50%。
3. 在输入信号频率为1kHz、幅度为1V时,输出信号的失真率为5%。
实验分析:通过实验结果,我们可以看出,丙类谐振功率放大器具有高增益、高效率、低失真等优点,能够满足实际应用的需求。
但是,由于谐振电路的特性,丙类谐振功率放大器对输入信号的频率和幅度有一定的限制,因此在实际应用中需要根据具体情况进行选择。
我们还发现,在实验过程中,电路参数的调整对输出信号的幅度和波形有着重要的影响,因此在实际应用中需要进行精细的调整,以达到最佳的性能指标。
结论:通过本次实验,我们掌握了丙类谐振功率放大器的工作原理和特点,了解了其在实际应用中的优缺点,并通过实验验证了其性能。
同时,我们也认识到了电路参数的调整对性能指标的影响,这对于实际应用具有重要的意义。
非线性丙类功率放大器实验报告

非线性丙类功率放大器实验报告姓名:学号:班级:日期:非线性丙类功率放大器实验一、 实验目的1. 了解丙类功率放大器的基本工作原理,掌握丙类放大器的调谐特性以及负载改变时的动态特性。
2. 了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。
3. 比较甲类功率放大器与丙类功率放大器的功率、效率与特点。
二、 实验基本原理非线性丙类功率放大器的电流导通角o90<θ,效率可达到80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。
特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小),基极偏置为负值,电流导通角o90<θ,为了不失真地放大信号,它的负载必须是LC 谐振回路。
丙类功率放大器丙类功率放大器的基极偏置电压V BE 是利用发射极电流的直流分量I EO(≈I CO )在射极电阻上产生的压降来提供的,故称为自给偏压电路。
当放大器的输入信号'i v 为正弦波时,集电极的输出电流i C 为余弦脉冲波。
利用谐振回路LC 的选频作用可输出基波谐振电压v c1,电流i c1。
图8-3画出了丙类功率放大器的基极与集电极间的电流、电压波形关系。
分析可得下列基本关系式:011R I V m c m c =式中,m c V 1为集电极输出的谐振电压及基波电压的振幅;m c I 1为集电极基波电流振幅;0R 为集电极回路的谐振阻抗。
2102111212121R V R I I V P mc m c m c m c C ===式中,P C 为集电极输出功率 CO CC D I V P =式中,P D 为电源V CC 供给的直流功率;I CO 为集电极电流脉冲i C 的直流分量。
放大器的效率η为COm c CC m c I I V V 1121⋅⋅=η负载特性当放大器的电源电压+V CC,基极偏压v b,输入电压(或称激励电压)v sm 确定后,如果电流导通脚选定,则放大器的工作状态只取决于集电极回路的等效负载电阻R q。
实验三高频功率放大器(丙类)

实验操作过程
调整丙类功率放大器的输入和输 出阻抗,使其与信号源和负载匹 配。
逐步增加输入信号的幅度,观察 放大器的输出波形和参数变化。
使用示波器记录放大器的输入和 输出波形,分析波形的失真情况。
打开高频信号发生器,设置合适 的信号频率和幅度。
使用电压表和电流表测量放大器 的各项参数,如输入电压、输出 电压、输入电流、输出电流等。
02
它主要由输入匹配网络、功放管 、输出匹配网络和偏置电路等部 分组成。
高频功率放大器的分类
根据功放管的类型,高频功率 放大器可分为电子管式高频功 率放大器和晶体管式高频功率
放大器。
根据工作频率,高频功率放 大器可分为超短波高频功率 放大器和微波高频功率放大
器。
根据放大器的级数,高频功率 放大器可分为单级高频功率放 大器和多级高频功率放大器。
对未来实验的展望与建议
01
深入研究不同类型的 高频功率放大器
在未来的实验中,可以进一步探索甲 类、乙类等不同类型的高频功率放大 器的设计与制作,比较它们之间的性 能差异和应用特点。
02
结合实际应用场景进 行优化设计
针对实际应用需求,可以对高频功率 放大器进行优化设计,如提高输出功 率、降低失真度、拓宽带宽等,以满 足不同场景下的使用要求。
通过分析实验数据,我们发现放大器在不同频率下的响应特性有所不同。在低频段,放大 器的放大效果较好;而在高频段,放大效果逐渐减弱。这可能与放大器的设计参数和元器 件特性有关。
线性度与失真
在实验过程中,我们观察到输出信号存在一定的失真现象。失真可能源于放大器的非线性 特性,如饱和、截止等。为了量化失真程度,我们采用了失真度指标进行分析。
实验七丙类功率放大器实验

实验七丙类功率放⼤器实验实验七丙类功率放⼤器实验⼀、实验⽬的:1. 了解谐振功率放⼤器的基本⼯作原理,初步掌握⾼频功率放⼤电路的计算和设计过程;2. 了解电源电压与集电极负载对功率放⼤器功率和效率的影响。
⼆、预习要求:1. 复习谐振功率放⼤器的原理及特点;2. 分析图7-7所⽰的实验电路,说明各元件的作⽤。
三、实验电路说明:本实验电路如图7-7所⽰。
图7-7本电路由两级组成:Q1等构成前级推动放⼤,Q2为负偏压丙类功率放⼤器,R4、R5提供基极偏压(⾃给偏压电路),L1为输⼊耦合电路,主要作⽤是使谐振功放的晶体三极管的输⼊阻抗与前级电路的输出阻抗相匹配。
L2为输出耦合回路,使晶体三极管集电极的最佳负载电阻与实际负载电阻相匹配。
R14为负载电阻。
四、实验仪器:1. 双踪⽰波器2. 万⽤表3. 实验箱及丙类功率放⼤模块4.⾼频信号发⽣器五、实验内容及步骤;1. 将开关拨到接通R14的位置,万⽤表选直流毫安的适当档位,红表笔接P2,⿊表笔接P3;2. 检查⽆误后打开电源开关,调整W使电流表的指⽰最⼩(时刻注意监控电流不要过⼤,否则损坏晶体三极管);3. 将⽰波器接在TP1和地之间,在输⼊端P1接⼊8MHz幅度约为500mV的⾼频正弦信号,缓慢增⼤⾼频信号的幅度,直到⽰波器出现波形。
这时调节L1、L2,同时通过⽰波器及万⽤表的指针来判断集电极回路是否谐振,即⽰波器的波形为最⼤值,电流表的指⽰I0为最⼩值时集电极回路处于谐振状态。
⽤⽰波器监测此时波形应不失真。
4. 根据实际情况选两个合适的输⼊信号幅值,分别测量各⼯作电压和峰值电压及电流,并根据测得的数据分别计算:1)电源给出的总功率;2)放⼤电路的输出功率;3)三极管的损耗功率;4)放⼤器的效率。
六、实验报告要求:1. 根据实验测量的数值,写出下列各项的计算结果:1)电源给出的总功率;2)放⼤电路的输出功率;3)三极管的损耗功率;4)放⼤器的效率。
2. 说明电源电压、输出电压、输出功率的关系。
丙类功率放大器电路组成和工作原理分析

+
+
ib V +
uce
+
ube - -
vc C -L
输出
vb=Vbmcoswt
-
+- VBB
-+ VCC
vBE VBB Vbmcost;
VBB设置在功率管的截止区,以实现丙类工作, 丙类工作时集电极电流为尖顶脉冲
集电极电流 ic
iC IC0 ic1 ic2
IC0 Ic1mcost Ic2mcos2t
丙类谐振功率 放大器的工作原理
不同工作状态时放大器的特点
工作状态 半导通角 理想效率
负载
应用
甲类 乙类
甲乙类 丙类
θ c=1800 θ c=900
900<θ c<1800 θ c<900
50%
78.5%
50% <η <78.5% η >78.5%
电阻
低频
推挽,回 低频、高
路
频
推挽
低频
选频回路 高频
ic
+
+
ib V +
uce
+
ube - -
vc C -L
输出
vb=Vbmcoswt
-
+- VBB
-+ VCC
vBE VBB Vbmcost;
vCE VCC Vcmcost(Vcm Ic1mRP )
结论:丙类功放导通时间短,集电极 功耗小,所以效率高。
总结:
1、电路工作状态:晶体管发射结为负偏置, 由 VBB 来保证,流过晶体管的电流为余弦脉冲 波形;
C Rp L vc +
Vc c
ic
+
C
Rp
丙类高频功率放大器实验报告

丙类高频功率放大器实验报告一、实验目的1.了解和熟悉丙类放大器、高频功率放大器及其工作原理;2.掌握丙类高频功率放大器电路的设计和调试方法;3.实现一个丙类高频功率放大器的设计和调试。
二、实验原理1.丙类放大器丙类放大器是一种功率放大器,其输出信号的一个部位接近正弦波而另一部分则大约失真。
丙类放大器又称为开关放大器,工作原理如下:(1)若输入的信号为负半周期,管子导通,输出便接近0V;(2)若输入信号为正半周期,管子截止,输出电压取决于负载电路。
(3)由于丙类放大器的输出电压只在正半周期时才产生,故功率效率可达90%以上,但其输出信号存在失真,因此丙类放大器多用于功率放大应用中。
2.高频功率放大器高频功率放大器的特点是恢复时间低,速度快、功率输出大,其主要应用在收音机、电视机、雷达、电子计算机等电子设备中,其原理如下:高频功率放大器具有放大频率宽、能量转换效率高、输入输出匹配好、频率稳定性好、体积小、功率大等特点。
其主要应用在无线通信、信号干扰、雷达和通信等电子设备中。
三、设计内容1.电路图设计高频功率放大器电路调试原理如下:(1)采用驱动单一管子的电路,以避免传输相位问题,同时减少了对驱动器电路的要求。
(2)采用变压器耦合方式,从低频端口把信号发送到功率放大器,减少了对驱动信号源的要求。
(3)采用反馈电路,对稳定性及主动去谐增益方面起到较好的作用。
2.实验步骤(1)根据所设计的电路图,依据实际元器件参数选择合适型号、参数元器件进行组装,拼装好整个高频放大器的主板电路。
(2)在采用反馈电路的前提下,测试电路器件的频率特性,应适当减小反馈电压以提高增益。
(3)根据反馈电路实验条件测量出高频功率放大器的输出功率、增益、谐波失真等有关参数,得出实验结果。
四、实验结果及分析高频功率放大器的实验结果及分析如下:1.功率输出本次实验所测试电路的功率输出可达到40W的功率输出。
2.增益本次实验所测试电路的增益为30dB左右,符合预期结果。
简述丙类功率放大器的原理

简述丙类功率放大器的原理丙类功率放大器是一种常见的功率放大器,它的原理可以概述为通过将输入信号分为两个部分,一个部分用于控制开关管的导通,另一个部分则用来控制开关管的关断,从而实现对输入信号的放大。
这种设计使得丙类功率放大器具有高效率和低失真的特点,被广泛应用于音频放大、射频通信等领域。
丙类功率放大器的原理基于晶体管(或管子)的非线性导通特性。
晶体管的导通和关断是通过基极电流进行控制的。
在丙类功率放大器中,晶体管通常使用开关型晶体管(如MOSFET)或具有延迟特性的双极型晶体管(如BJT)。
开关型晶体管具有高开关速度和低导通电阻,适用于高频率的应用;而双极型晶体管的导通特性更加符合音频信号的放大需求。
丙类功率放大器的输入信号被分为两个部分,一个部分用于控制晶体管的导通,另一个部分则用来控制晶体管的关断。
这样,晶体管只在输入信号正半周期与负半周期的过渡点才会被导通,而在信号的保持期则关闭,从而减小了功率放大器在无信号输入时的功耗。
具体实现时,丙类功率放大器通常采用交叉耦合的方式。
即将输入信号通过耦合电容分为正信号和负信号,分别作用于两个晶体管的控制端。
在正信号过程中,正信号晶体管导通,负信号晶体管关闭;在负信号过程中,负信号晶体管导通,正信号晶体管关闭。
这样,输入信号就被放大到输出端。
需要注意的是,由于丙类功率放大器在正负信号过程中只有一个晶体管处于导通状态,因此输出信号将会出现截止失真。
为了解决这个问题,一般会在输出端引入一个滤波电路,对输出信号进行滤波和重构。
滤波电路通常由电感和电容组成,用于将输出信号的截止部分滤除,使得输出信号更加接近于原始信号。
总结起来,丙类功率放大器的原理是通过将输入信号分为控制导通和关断的两个部分,利用晶体管的开关特性对输入信号进行放大。
由于只有一个晶体管处于导通状态,使得丙类功率放大器具有高效率和低失真的特点。
通过引入滤波电路,可以进一步改善输出信号的质量。
这种放大器常用于音频放大、射频通信等领域,是一种常见且实用的功率放大器设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性丙类功率放大器实验报告
姓名:
学号:
班级:
日期:
37
38 非线性丙类功率放大器实验
一、实验目的
1. 了解丙类功率放大器的基本工作原理, 掌握丙类放大器的调谐特性以及负载改变时的动态特性。
2. 了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。
3. 比较甲类功率放大器与丙类功率放大器的功率、效率与特点。
二、实验基本原理
非线性丙类功率放大器的电流导通角 o
90<θ, 效率可达到 80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。
特点:非线性丙类功率放大器通常用来放大窄带高频信号 (信号的通带宽度只有其中心频率的 1%或更小 ,基极偏置为负值,电流导通角o 90<θ,为了不失真地放大信号,它的负载必须是 LC 谐振回路。
丙类功率放大器
丙类功率放大器的基极偏置电压 V BE 是利用发射极电流的直流分量 I EO
(≈ I CO 在射极电阻上产生的压降来提供的,故称为自给偏压电路。
当放大器的输入信号 '
i v 为正弦波时,集电极的输出电流 i C 为余弦脉冲波。
利用谐振回路 LC 的选频作用可输出基波谐振电压 v c1, 电流 i c1。
图 8-3画出了丙类功率放大器的基极与集电极间的电流、电压波形关系。
分析可得下列基本关系式:
011R I V m c m c =
式中, m c V 1为集电极输出的谐振电压及基波电压的振幅; m c I 1为集电极基波电流振幅; 0R 为集电极回路的谐振阻抗。
2102111212121R V R I I V P m
c m c m c m c C ===
39
式中, P C 为集电极输出功率 CO CC D I V P =
式中, P D 为电源 V CC 供给的直流功率; I CO 为集电极电流脉冲 i C 的直流分量。
放大器的效率η为
CO
m
c CC m c I I V V 1121⋅
⋅
=η
负载特性
当放大器的电源电压+V CC ,基极偏压 v b ,输入电压 (或称激励电压 v sm
确定后, 如果电流导通脚选定, 则放大器的工作状态只取决于集电极回路的等效负载电阻 R q 。
谐振功率放大器的交流负载特性如图 8-4所示
40
O
i
由图可见,当交流负载线正好穿过静态特性转移点 A 时,管子的集电极电压正好等于管子的饱和压降 V CES ,集电极电流脉冲接近最大值 I cm 。
此时,集电极输出的功率 P C 和效率η都较高,此时放大器处于临界工作状态。
R q 所对应的值称为最佳负载电阻,用 R 0表示,即
2
02 (P V V R CES CC -=
当 R q ﹤ R 0时,放大器处于欠压状态,如 C 点所示,集电极输出电流虽然较大,但集电极电压较小,因此输出功率和效率都较小。
当 R q ﹥ R 0时, 放大器处于过压状态,如 B 点所示,集电极电压虽然比较大,但集电极电流波形有凹陷, 因此输出功率较低, 但效率较高。
为了兼顾输出功率和效率的要求, 谐振功率放大器通常选择在临界工作状态。
判断放大器是否为临界工作状态的条件是:
CES cm CC V V V =-
本实验电路原理图如下图所示,
J5
该实验电路由两级功率放大器组成。
其中 Q 3(3DG12 、 T 6组成甲类功
率放大器,工作在线性放大状态,其中 R A3、 R 14、 R 15组成静态偏置电阻,
调节 R A3可改变放大器的增益。
W 1为可调电阻, 调节 W 1可以改变输入信号
幅度, Q 4(3DG12 、 T 4组成丙类功率放大器。
R 16为射极反馈电阻, T 4为谐振回路, 甲类功放的输出信号通过 R 13送到 Q 4基极作为丙放的输入信号, 此时只有当甲放输出信号大于丙放管 Q 4基极-射极间的负偏压值时, Q 4才导通工作。
与拨码开关相连的电阻为负载回路外接电阻,改变 S 1拨码开关
的位置可改变并联电阻值,即改变回路 Q 值。
三、实验仪器
高频电子线路实验箱;
双踪示波器;
高频信号发生器;
万用表。
四、实验内容与步骤
1. 测试调谐特性
41
在前置放大电路出入 J3 处输入频率 f =10.7MHz(Vp-p≈50mV的高频信号,调节 W1 和中周 T6, TP6 处信号的电压幅值为 2V 左右, 1 全部拔下,使 S 改变输入信号频率,从 9MHz~15MHz(以 1MHz 为步进)记录 TP6 处的输出电压值,填入下表。
fi V0 (V 9MHz 10MHz 11MHz 12MHz 13MHz 14MHz 15MHz 1.16 2.7 2 1.1 0.8 0.66 0.55 当输入激励电压频率达到谐振频率时,输出电压达到最大值。
2. 测试负载特性在前置放大电路中输入 J3 处输入频率 f =10.7MHz(Vp-p≈50mV)的高频信号,调节 W1 使 TP6 处信号约为 2V,调节中周使回路调谐(调谐标
准:TH4 处波形为对称双峰)。
将负载电阻转换开关 S1 依次从 1—4 拨动,用示波器观测相应的 Vc 值和 Ve 波形,分析负载对工作状态的影响。
Vb=2V f=10.7MHz RL(Ω VcP-P(V VeP-P(V 100 330 VCC=5V 820 ∞ 3.2 0.45 4 0.46 3.6 0.5 3.8 0.48 随着 RL 的增大,非线性丙类功率放大器从欠压状态变为临界状态,最后变为过压状态。
最佳负载电阻。
2 P0 当 RL﹤R0 时,放大器处于欠压状态,集电极输出电流虽然较大,但集电极电压较小,因此输出功率和效率都较小。
当 RL﹥R0 时,放大器处于过压状态,集电极电压虽然比较大,但集电极电流波形有凹陷,因此输出功率较低,但效率较高。
42
五、实验注意事项实验时,应注意三极管金属外壳的升温情况,必要时,可暂时降低高讯仪输出电平。
六、思考题 1、丙类放大器的特点是什么?为什么要用丙类放大器?答:(1)特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的 1%或更小,基极偏置为负值,电流导通角,为了不失真地放大信号,它的负载必须是 LC 谐振回路。
(2)非线性丙类功率放大器的电流导通角,效率可达到 80%,通 o 常作为发射机末级功放以获得较大的输出功率和较高的效率。
2、影响功率放大器功率和效率的主要电路参数是什么?答:基极电流、基极电压、谐振阻抗。
七、实验体会通过此次实验,我了解了非线性丙类功率放大器的工作原理,熟悉了高频实验箱、示波器等仪器的操作,一方面加深了我对课本理论知识的理解,另一方面,提高了我的实验动手操作能力,为知识的学以致用打下了一定的基础。
本次实验也培养了我独立分析问题,解决问题的能力,当实验中遇到问题时,能够及时冷静下来,结合相关知识,找出问题出现的原因。
43。