变压器差动保护电流互感器接线方式分析

合集下载

关于差动保护电流互感器极性现场接线

关于差动保护电流互感器极性现场接线

关于差动电流保护互感器的极性
网上有好多关于差动电流极性不能接错的讨论,并且都给出了原理图,但实际应用中怎样接才不错,尤其是用了微机保护以后,接入保护装置的端子具体的用图示来看。

一、首先看电动机差动接线如下图
其中1LH和3LH用作差动保护
这里注意,CT的极性端一定要注意,电动机差动保护CT的极性端不在同一侧,即
1、如果机端互感器的同极性端在靠近母线侧,则电动机中性点侧的电流互感器同极性端应该靠近中性点侧(远离电动机侧)。

2、如果机端互感器的同极性端在靠近电动机侧,则中性点侧的电流互感器同极性端应该靠近电源侧(接近电动机侧)。

二、变压器差动
变压器差动保护的接线同电动机,即接进保护装置的互感器极性高压侧和低压侧
的极性端要么都靠近变压器,要么都远离变压器。

常用的都是靠近母线侧即变压器高
低压母线侧。

注意在保护装置内①②是一组原件(可理解为一个绕组),③④是一组原件,其
中①③是极性端。

三、线路光纤差动保护
对于线路的差动由于微机差动保护装置有两个,一般为同一厂家、同一型号、同一版本,分别在线路的两端,通过光纤通道连接。

可以理解为同变压器的一样,只不过两
个绕组装在了两个地点。

至于互感器的极性都要以接近母线侧为减极性端(同名端),下面看具体的界限图示。

动作判据如下。

分析主变纵差动保护不平衡电流原因及解决方法(2)

分析主变纵差动保护不平衡电流原因及解决方法(2)

分析主变纵差动保护不平衡电流原因及解决方法(2)对于由电流互感器计算变比与实际变比不同而产生的不平衡电流可采用2种方法来克服:一是采用自耦变流器进行补偿。

通常在变压器一侧电流互感器(对三绕组变压器应在两侧)装设自耦变流器,将LH输出端接到变流器的输入端,当改变自耦变流器的变比时,可以使变流器的输出电流等于未装设变流器的LH的二次电流,从而使流入差动继电器的电流为零或接近为零。

二是利用中间变流器的平衡线圈进行磁补偿。

通常在中间变流器的铁心上绕有主线圈即差动线圈,接入差动电流,另外还绕一个平衡线圈和一个二次线圈,接入二次电流较小的一侧。

适当选择平衡线圈的匝数,使平衡线圈产生的磁势能完全抵消差动线圈产生的磁势,则在二次线圈里就不会感应电势,因而差动继电器中也没有电流流过。

采用这种方法时,按公式计算出的平衡线圈的匝数一般不是整数,但实际上平衡线圈只能按整数进行选择,因此还会有一残余的不平衡电流存在,这在进行纵差保护定值整定计算时应该予以考虑。

2、由变压器两侧电流相位不同而产生的不平衡电流的克服方法对于由变压器两侧电流相位不同而产生的不平衡电流可以通过改变LH接线方式的方法(也称相位补偿法)来克服。

对于变压器Y形接线侧,其LH采用△形接线,而变压器△形接线侧,其LH采用Y形接线,则两侧LH二次侧输出电流相位刚好同相。

但当LH采用上述连接方式后,在LH接成△形侧的差动一臂中,电流又增大了3倍,此时为保证在正常运行及外部故障情况下差动回路中没有电流,就必须将该侧LH的变比扩大3倍,以减小二次电流,使之与另一侧的电流相等。

3、由变压器外部故障暂态穿越性短路电流产生的不平衡电流的克服方法在变压器外部故障的暂态过程中,使纵差保护产生不平衡电流的主要原因是一次系统的短路电流所包含的非周期分量,为消除它对变压器纵差保护的影响,广泛采用具有不同特性的差动继电器。

对于采用带速饱和变流器的差动继电器是克服暂态过程中非周期分量影响的有效方法之一。

浅谈对变压器差动保护不平衡电流的认识

浅谈对变压器差动保护不平衡电流的认识

浅谈对变压器差动保护不平衡电流的认识摘要:差动保护是变压器的主保护。

但在实际运行中,产生了不平衡电流降低了保护的灵敏度,有时会产生误动作现象。

本文分析了差动保护不平衡电流产生的原因,并提出有效的防范措施。

关键词:差动保护不平衡电流影响措施引言在旗县农电局66千伏变电所中,差动保护是变压器的主保护。

理论上,当变压器两侧电流互感器的极性相同时,把电流互感器不同极性的二次端子相连,差动继电器的工作线圈并联在电流互感器的二次端子上,此时变压器两侧的二次电流大小相等,方向相反,通过继电器中的电流为零,差动继电器将不会动作。

但是在实际运行时,由于各种因素产生了不平衡电流,因而降低了保护的灵敏度,有时会产生误操作现象。

因此通过了解变压器差动保护工作原理,分析差动保护不平衡电流产生的原因,找出有效的防范措施,提高差动保护动作的灵敏度性,对确保变压器的安全稳定运行很有必要。

1 不平衡电流产生的原因及其对差动保护的主要影响和消除方法(1)变电所主变压器基本采用Yd11的接线方式,其两侧电流的相位差为30度,所以会在差动继电器中产生不平衡电流。

消除这种不平衡电流影响的最好方法是采用相位补偿法,通常将变压器的高压侧的三个电流互感器接成三角形,将变压器低压侧的三个电流互感器接成星形,通过调整互感器出线联接方式可使二次电流的相位相同。

但是经过相位调整后,在高低压侧的电流幅值出现了偏差,差动电流增大。

为了保证在正常运行情况下差动回路中电流近似为零,常通过将该侧电流互感器的电流乘以个系数,尽可能与另一侧的电流相近,使差动电流维持在最小水平。

这是消除不平衡电流的一种常用方法。

(2)变压器的励磁涌流也会产生不平衡电流。

变压器空载投入运行时,由于变压器的铁芯非常饱和,励磁电流将剧烈增大,这时出现可达额定电流8倍左右的励磁涌流。

励磁涌流的大小与回路的阻抗、变压器的容量和铁芯性质等有关系,变压器容量越大,涌流倍数反而越小。

另一方面,励磁涌流中含有二次谐波分量和大量的非周期分量,非周期分量都是偏到时间轴的一边,衰减比较慢。

差动保护的基本接线原理

差动保护的基本接线原理

变压器差动保护变压器的纵差动保护用于防御变压器绕组和引出线多相短路故障、大接地电流系统侧绕组和引出线的单相接地短路故障及绕组匝间短路故障。

目前国内的微机型差动保护,主要由分相差动元件和涌流判别元件两部分构成。

对于用于大型变压器的差动保护,还有5次谐波制动元件,以防止变压器过激磁时差动保护误动。

为防止在较高的短路电流水平时,由于电流互感器饱和时高次谐波量增加,产生极大的制动力矩而使差动元件据动,故在谐波制动的变压器差动保护中还设置了差动速断元件,当短路电流达到4~10 倍额定电流时,速断元件快速动作出口。

差动保护的基本接线原理一般地,对于Y/∆接线方式的变压器,定义电流的正方向为自母线流向变压器,其差动保护的接线如下图所示,图3.1.1 差动保护接线图该接线图中包含了两个方面的内容:1)由于Y/∆接线方式,导致两侧CT一次电流之间出现一定的相位偏移,所以应对Y侧(或∆侧)CT一次电流进行相位补偿;2)由于I1 、I2 所在侧的电压等级不同,所以二者的有名值不能直接进行运算,二者必须归算到同一电压等级。

一般的处理方法为将I2 归算到I1 侧(通常即高压侧)。

针对以上两点,传统的方法是通过将Y 测的CT 做∆接,同时∆侧的CT 做Y 接,实现相位补偿(即保护内部五校正),由此而导致的Y 侧电流放大3倍则结合CT 变比的选择以及CT 的不平衡补偿完成,最后将处理后的电流I1′、I2′引入保护;随着微机型变压器差动保护的出现,为了简化现场接线,通常要求变压器各侧CT均按星型接线方式,CT极性端均指向同一方向(如母线侧),然后将各侧的CT二次电流I1、I2直接引入保护,而以上关于相位和CT变比的不平衡补偿则在保护内部通过软件进行补偿。

下面以Y/∆-11接线方式的变压器为例,来简单介绍微机型变压器差动保护内部利用软件进行数字式纵差动保护的相位校正和幅值校正。

变压器比率差动保护原理及校验方法分析

变压器比率差动保护原理及校验方法分析

1引言随着生产生活进一步发展,社会各界对电能需求量进一步增加,电力企业为满足当前用电需求,不断优化电网,各种各样高压输电线路、变压设备等逐渐投入到电网建设之中。

变压器属于电网重要仪器之一,保证变压器质量可以有效提升电网整体可靠性。

而研究变压器比率差动保护原理及校验,对于提升变压器自身可靠性有很大意义。

2变压器比率差动保护原理差动保护属于变压器保护形式的一种,是指比较变压器不同侧相位与电流不同,进而构成一种保护。

尽管变压器各侧电路互不相通,电流不等,但可以根据变压器短路(外部)时流出与流入变压器的功率与正常情况下变压器工作时流出与流入变压器的功率进行比对,利用各侧电流安匝之和近似为零等,进而建立相应的差动保护平衡方程[1]。

一旦变压器内部发生故障后,可以通过建立相应差动保护平衡方程对相应差动电流流过的差动回路进行控制,促使差动继电器发挥作用,进而对变压器进行保护。

2.1不平衡电流产生的原因一旦变压器外部电路出现短路等故障后,差流回路(差动保护)会产生较大非平衡电流。

一般导致不平衡电流出现的原因包括以下几个:各侧电流(变压器)的互感器变比和型号不一致;高低压侧(变压器)绕组接线的形式不相同;暂态非平衡电流产生原因与变压故障、空载电流有很大关系,变压器外部故障消除后,或者有空载电流进入电源后,电压恢复励磁涌流导致暂态非平衡电流出现;变压器带负荷调分接头引起变比变化。

2.2不平衡电流处理措施常规变压器非平衡电流处理方式包括如下几种:确保各侧电流互感器必须一致。

相关技术人员选择相同电流互感器,安装在变压器各侧要尽可能选择变比、型号相同的仪器,确保各侧对变压器影响相同,避免非平衡电流产生。

技术人员也可以适当增加保护动作电流,以有效避免外部短路造成非平衡电流产生,动作电流具体数额要在对差动保护的整定计算中,进一步考虑[2];相关技术人员可以利用相位补偿法有效解决因高低压侧绕组方式不同导致的非平衡电路;相关技术人员可以采用波形对称原理、二次谐波制动原理、励磁涌流波形和内部短路电流差别等方式来躲避励磁涌流,避免非平衡电流产生;可以利用对变压器差动保护的整定计算的进一步优化,消除由于带负荷调分接头导致的非平衡电流问题。

电流互感器的极性、接线方式及其应用

电流互感器的极性、接线方式及其应用

电流互感器的极性、接线方式及其应用摘要:介绍了电流互感器的极性和常用的几种接线方式的,分析其应用以及运行中应注意的问题。

关键词:极性;电流互感器;接线方式1 引言在电力系统中电流互感器的作用是把大电流变成小电流,将连接在继电器及测量仪器仪表的二次回路与一次电流的高压系统隔离,并将一次电流变换到 5A 或 1A 两种标准的二次电流值。

电流互感器的极性与电流保护密切相关,特别是在农电系统中,电流保护起主导作用,因此必须掌握好极性与保护的关系。

本文分析了电流互感器的极性和常用电流保护的关系,以及易出错的二次接线。

2 电流互感器的极性电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。

电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。

(也可理解为一次电流与二次电流的方向关系)。

按照规定,电流互感器一次线圈首端标为 L1,尾端标为 L2;二次线圈的首端标为 K1,尾端标为 K2。

在接线中 L1 和 K1 称为同极性端,L2 和 K2 也为同极性端。

其三种标注方法如图 1 所示。

电流互感器同极性端的判别与耦合线圈的极性判别相同。

较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。

当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和 2 不是同极性端。

3 电流互感器的极性与常用电流保护以及易出错的二次接线3.1 一相接线来源:图 1 电流互感器的三种极性标注图 2 一相接线一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。

电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。

许继变压器差动保护的具体做法

许继变压器差动保护的具体做法

对于许继WBH-800变压器保护,其主保护差动保护的具体做法如下:对于(星/三角)接线方式,例如高压侧为星型低压侧为三角型,那么外部接线方式如下:如果做单项A相试验,在高压侧A相接入一0度电流大小整定值,低压侧A相接入一180度电流,但是低压侧三角型接线如接入一相电流则在C相会产生一相自产电流,所以必须把其自产电流平衡掉,那么可以在C相加入一个0度电流。

简单的做法是在低压侧加入一180度的A进C 出电流。

这样可以固定高压侧或低压侧,改变另外一侧电流那么直到保护动作记下两个电流值,更具公式,以及平衡系数计算比例系数看是否同装置定值一致。

同样对于(星/星)接线方式,例如高压侧为星型低压侧为星型,那么外部接线方式如下:如果做单项A相试验,在高压侧A相接入一0度电流大小自己定,低压侧A相接入一180度电流,这样可以固定高压侧或低压侧,改变另外一侧电流那么直到保护动作记下两个电流值,更具公式,以及平衡系数计算比例系数看是否同装置定值一致。

公式如下:比率差动原理差动动作方程如下I op > I op.0( I res≤ I res.0)I op≥ I op.0 + S(I res– I res.0) ( I res > I res.0 ) (1-1)I res >1.2I nI op≥ 1.2I n + 0.6(I res–1.2I n) ( I res >1.2I n ) (1-2)I op为差动电流,I op.0为差动最小动作电流整定值,I res为制动电流,I res.0为最小制动电流整定值,S为比率制动系数整定值,I n为基准侧电流互感器二次侧的电流,各侧电流的方向都以指向变压器为正方向。

对于两侧差动:I op = | ∙I1 +∙I2 | (1-3)I res = |∙I1 -∙I2| / 2 (1-4)对于三侧及以上差动:I op = | ∙I1 +∙I2+…+∙I n | (1-5)I res = max{ |∙I1|,|∙I2|,…,|∙I n| } (1-6)式中:3≤n≤6,∙I1,∙I2,。

变压器差动保护整定示例

变压器差动保护整定示例

变压器差动保护整定示例1.差动保护整定范例一:三圈变压器参数如下表:变压器容量Se31500KVA变压器接线方式Yn,y,d11变压器变比Ue110kV/35kV/10kV110kV侧TA变比nTA300/535KV侧TA变比nTA1000/510KV侧TA变比nTA2000/5TA接线外部变换方式一次接线10kV侧双分支调压&DeltaU&plusmn8&times1.25%电流互感器接线系数Kjx当为Y接线时为1,当为&Delta接线时为区外三相最大短路电流假设为1000A(此值需根据现场情况计算确定) 计算:高压侧二次额定电流中压侧二次额定电流低压侧二次额定电流1)差动门槛=Kre1(Kfzq*Ktx*fi+&DeltaU+&Deltam)IeKre1-可靠系数,取1.3~1.5Kfzq-非周期分量系数,取2Ktx-TA同型系数,同型号时取0.5,不同型号时取1fi-TA最大相对误差,取0.1&DeltaU-改变变压器调压分接头引起的相对误差,取调整范围的一半,即8&times1.25%&Deltam-整定匝数与计算匝数不等引起的误差,一般取0.05=Kre1(Kfzq*Ktx*fi+&DeltaU+&Deltam)Ie=1.5(2&times0.5&times0.1+8&times1.25%+0.05)=0.375Ie建议取0.4Ie。

2)拐点电流IRT1建议取1.0Ie。

3)比率制动系数选取高压侧为基准计算Iumb.max=(KapKccKer+&DeltaU+&Deltam1+&Deltam2)&times&timesKjx &DeltaU-改变变压器调压分接头引起的相对误差,取调整范围的一半,即8&times1.25%&Deltam1-整定匝数与计算匝数不等引起的误差,取0.05,当为两卷变时取&Deltam1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器差动保护电流互感器接线方式分析
差动保护是变压器的主要保护,它的工作情况的好坏对变压器的正常运行关系极大。

要想使变压器在正常运行或在变压器外部故障时,差动保护可靠不动,就要设法使变压器的电源侧和负荷侧的CT二次线电流相位相差,及电流产生的动作安匝相等。

只要满足这两个条件变压器的差动保护在变压器内部正常时就不会动作。

为使变压器电源侧和负荷侧CT二次电流相位差,现介绍以下几种接线方式:
第一种接线方式:以我县110kV变电站1#主变为例。

它的容量为2万千伏安。

接线组别为丫O/丫
O/A—12—11。

ll 0kV侧为电源侧,压侧和低压侧为负荷侧,其接线图如下所示因为变压器的接线组别为丫o/丫O/A—12—11其低压测线电流Ia、Ib、Ic分别超前高压侧线电流高压侧CT二次相电流在减极性时与一次电流同相位。

要想使变压器电源侧和负荷侧CT二次线电流相位相差。

就设法使变压器低压侧的CT二次线电流落后于相电流,这样低压侧CT的连接顺序是a相的头连C相的尾;b相的头连a相
第二种接线方式:我们把CT的接线组别同样用钟表的12个钟头来表示,那么第一种接线方式,高压侧的CT为6点接线,中压侧为12点接线.低压侧为1点接线。

第二种接线方式就是把高压侧的CT接成12点,中压侧接成6点.低压侧接成7点。

第三种接线方式:把高压侧的CT二次接成11点,中压倒为5点,低压侧接成6点。

第四种接线方式,把高压侧的CT二次接成5点,中压侧为11点,低压侧为12点。

变压器差动保护的接线方式有四种,选CT变比时每侧就有两种;一种是星型接线,一种是三角型接线。

如果用第一种接线方式接,对三卷变压器来说,高中低三侧CT中有两侧的CT接成星型,只有一侧接成三角型。

接线较为简单。

在特定条件下,采用此种接线方式能解决差流回路中无法解决的不平衡电流。

当然无论采用那种接线方式,效果都一样,但因各地区的技术水平不一,为使差动保护不致因CT接线错误造成保护跨动,最好选其中一种接线做为典设。

第二种接线方式:我们把CT的接线组别同样用钟表的12个钟头来表示,那么第一种接线方式,高压侧的CT为6点接线,中压侧为12点接线.低压侧为1点接线。

第二种接线方式就是把高压侧的CT接成12点,中压侧接成6点.低压侧接成7点。

第三种接线方式:把高压侧的CT二次接成11点,中压倒为5点,低压侧接成6点。

第四种接线方式,把高压侧的CT二次接成5点,中压侧为11点,低压侧为12点。

变压器差动保护的接线方式有四种,选CT变比时每侧就有两种;一种是星型接线,一种是三角型接线。

如果用第一种接线方式接,对三卷变压器来说,高中低三侧CT中有两侧的CT接成星型,只有一侧接成三角型。

接线较为简单。

在特定条件下,采用此种接线方式能解决差流回路中无法解决的不平衡电流。

当然无论采用那种接线方式,效果都一样,但因各地区的技术水平不一,为使差动保护不致因CT接线错误造成保护跨动,最好选其中一种接线做为典设。

相关文档
最新文档