三相异步电动机的正反转.
三相异步电动机电动机双重连锁的正反转

三相异步电动机电动机双重连锁的正反转1. 引言三相异步电动机是一种广泛应用于工业和家庭领域的电动机。
在实际应用中,为了确保电动机的安全运行和可靠性,常常需要对电动机的正反转进行双重连锁控制。
本文将深入探讨三相异步电动机的双重连锁控制原理、应用场景以及实现方法等相关内容。
2. 三相异步电动机的基本原理2.1 三相异步电动机的工作原理三相异步电动机是利用电磁感应原理工作的电动机。
当电机的定子上供给三相交流电时,产生的旋转磁场将作用于转子上的导体,使导体感应出电动势,并通过感应向量效应引起转子产生转矩,从而实现电机的运转。
2.2 三相异步电动机的正反转控制原理三相异步电动机的正反转控制原理是通过改变定子绕组的相序来实现的。
当电机的供电相序为正序时,电机正转;当供电相序为逆序时,电机逆转;当供电相序为零序时,电机停止转动。
3. 三相异步电动机的双重连锁控制3.1 双重连锁控制的意义双重连锁控制是为了避免电动机误操作造成的危险而设置的一种保护机制。
通过对电动机的正反转进行双重连锁控制,可以确保电机在切换运行方向时,操作人员不会因误操作而导致事故的发生,保证人员和设备的安全。
3.2 双重连锁控制的实现方法双重连锁控制的实现方法通常包括硬件和软件两个方面。
3.2.1 硬件方面硬件方面的实现主要包括接线连接和控制回路的设计。
在三相异步电动机的接线连接上,可以采用正反转两个主接触器分别连接正序和逆序的电源线,通过控制两个主接触器的吸合和断开,实现对电动机的正反转控制。
3.2.2 软件方面软件方面的实现主要通过编写控制程序来实现。
控制程序可以采用逻辑控制或者编程控制的方式进行编写,根据输入信号的状态,控制输出信号来实现对电动机的正反转控制。
在控制程序中,可以设置状态监测、故障检测以及相序保护等功能,以确保电机的安全运行。
3.3 双重连锁控制的应用场景双重连锁控制广泛应用于对电动机正反转要求较高的场景,如起重机、卷扬机、机床等。
三相异步电动机正反转工作原理

三相异步电动机正反转工作原理三相异步电动机是工业生产中常见的一种电动机,它具有结构简单、运行可靠、维护方便等优点,因此被广泛应用于各种机械设备中。
在实际工程中,三相异步电动机的正反转控制是非常重要的,本文将介绍三相异步电动机正反转的工作原理。
首先,我们来了解一下三相异步电动机的基本结构。
三相异步电动机主要由定子和转子两部分组成。
定子上布置有三组对称的绕组,分别为A、B、C相绕组,而转子上则有导体材料制成的绕组。
当定子绕组通以三相交流电源时,会在定子内产生旋转磁场,而转子绕组中感应出的电动势会使转子产生转动,从而带动负载实现工作。
在正转工作时,三相异步电动机的工作原理是这样的,当三相电源接通后,定子绕组中产生的旋转磁场会带动转子旋转,从而带动负载实现正转。
此时,定子绕组中的电流方向和转子绕组中感应出的电流方向是一致的,从而使得转子受到的转矩方向与旋转磁场方向一致,实现了正转工作。
而在反转工作时,三相异步电动机的工作原理又有所不同,当需要实现反转时,我们可以通过改变定子绕组的电流方向来改变旋转磁场的方向,从而改变转子受到的转矩方向,使得转子产生反向转动,实现了反转工作。
这一过程中,需要注意的是及时调整定子绕组的电流方向,以确保旋转磁场的方向和负载的要求一致。
除了改变定子绕组的电流方向外,我们还可以通过改变转子绕组的电流方向来实现反转。
在实际工程中,常用的方法是采用变频调速器来控制三相异步电动机的转速和转向,通过调整变频调速器的输出频率和相序,来实现正反转控制。
总的来说,三相异步电动机的正反转工作原理是通过控制定子绕组和转子绕组的电流方向,来改变旋转磁场的方向,从而实现正反转控制。
在实际应用中,我们可以根据具体的工作要求,选择合适的控制方法来实现正反转功能。
希望本文的介绍能够帮助大家更好地理解三相异步电动机的正反转工作原理。
三相异步电动机的自动正反转

三相异步电动机的自动正反转
三相异步电动机的自动正反转是通过改变三相电源的相序来实现的。
有多种方法可以实现三相异步电动机的自动正反转,下面是其中一些常见的方法:
- 配置两个交流接触器分别以不同的相序接线,通过控制切换两个交流接触器的吸合来控制电机的正反转。
- 安装顺反开关,可直接实现电机的正反转切换。
- 安装逆变器和逆变接触器,也可实现电机的正反转。
- 使用三相倒顺开关代替原先的负荷开关,可以实现电机的正反转。
这些方法都可以实现三相异步电动机的自动正反转,但具体的应用场景和实现方式可能会因电动机的型号和应用需求而有所不同。
在实际应用中,需要根据具体情况选择合适的方法。
如果你需要更详细的信息或技术支持,建议咨询专业的电气工程师或设备制造商。
三相异步电动机正反转控制及应用实例

三相异步电动机正反转控制及应用实例1.引言三相异步电动机是广泛应用于工业领域的重要设备,其正反转控制在各种应用场景中起着重要作用。
本文将介绍三相异步电动机的正反转控制原理以及其中涉及到的相关技术,同时给出一个应用实例,帮助读者更好地理解和应用这一技术。
2.三相异步电动机的基本原理三相异步电动机是一种基于电磁感应原理工作的电动机,通过交变电压和磁场交互作用实现运转。
它由定子和转子两部分组成。
定子为三个相互位移120度的绕组,通过输入的三相交流电源形成旋转磁场。
转子则利用磁场的相对运动产生感应电流,进而受到电磁力的作用产生转矩,从而带动负载工作。
3.三相异步电动机的正反转控制原理3.1正常运行状态三相异步电动机在正常运行状态下,通过与电源的相位同步,使得定子旋转磁场与转子的运动同步,并保持一定的转速。
此时,电动机处于正转状态。
3.2正反转控制原理为了实现三相异步电动机的正反转控制,我们需要根据实际需求改变电动机的输入电压和相位关系。
3.2.1正转控制原理正转控制是指将电动机从停止状态转为正常运行状态。
实现正转控制的关键在于改变电动机的输入电压和相位关系,使得定子旋转磁场与转子的运动同步,从而带动电动机旋转。
3.2.2反转控制原理反转控制与正转控制相反,是指将电动机从正常运行状态转为反转状态。
实现反转控制的关键也在于改变电动机的输入电压和相位关系。
3.3正反转控制方法3.3.1定频正反转控制定频正反转控制是一种传统的控制方法,通过改变相应的开关状态来改变电动机的输入电压和相位关系,从而实现正反转控制。
在该方法中,控制单元通过控制电源连接方式来改变电动机的输入电压,并通过控制定时器来改变相位关系。
3.3.2变频正反转控制变频正反转控制是一种现代的控制方法,通过改变电源的频率和相位来改变电动机的输入电压和相位关系,从而实现正反转控制。
在该方法中,控制单元通过控制变频器来改变电源的频率和相位。
4.应用实例在某工厂的生产线上,需要对一个三相异步电动机进行正反转控制。
三相异步电动机的正反转控制线路

一、接触器联锁旳正反转控制线路
3.接触器联锁旳正反转控制线路旳工作原理如图3所示
4.接触器联锁旳正反转控制线路旳特点: (1)优点:工作安全可靠 (2)缺陷:操作不便 (想一想,为何?)
因为电动机从正转变为反转时,必须先按下停 止按钮后,才干按反转开启按钮,不然因为接触器 旳联锁作用,不能实现反转。
图6 接触器联锁正反转控制线路板
该线路旳工作原理与接触器联锁旳正反 转控制线路旳工作原理基本相同,请同学 们自行分析。
二、按钮联锁旳正反转控制线路
按钮联锁旳正反转控制线路特点 优点:操作以便 缺陷:轻易产生电源两相短路故障。
思索题:
想一想,为何轻易产生电源两相短 路故障?
三、按钮、接触器双重联锁旳正反转控制线路 双重联锁旳正反转控制线路如下图所示:
★技能训练
●安装与检修正反转控制线路
1.根据三相异步电动机旳技术数据和正反转控制 线路旳电路图,选用工具、仪表及器材,填入 书中表内;
2.根据布置图、接线图,按照训练环节,进行安 装训练,完毕后旳接触器联锁正反转控制线路 板如图6所示;
3.按要求把安装好旳接触器联锁正反转控制线路 板改装成双重联锁正反转控制线路板;
图5-2 双重联锁控制线路旳工作原理
反转控制 按下SB2
2
SB2常闭触头先分断 KM1线圈失电 2
SB2常开触头后闭合
KM1联锁触头恢复闭合 KM2线圈得电 3
KM1M2自锁触头闭合自锁
电动机M启动连续反转
3
KM2主触头闭合
KM2联锁触头分断对KM1联锁(切断正转控制电路)
4.检修双重联锁正反转控制线路;
5.全部训练应在要求时间内完毕,同步做到安全 操作和文明生产。
三相异步电动机的正反转控制线路

FU1
FU2 KH
KM1 SB3
KM2
M 3~
KM1
KM2
三、按钮、接触器双重联锁正反转控制线路
QS L1 L2 L3 SB1 KM1 KM1动合辅助触头 闭合,对KM1自锁 KM1动合主触头闭 合,电机正转 KM1动断触头断开 对KM2联锁 U V W KH
KM2 KM1
FU1
FU2 KH
SB1 KM1 KM2 SB2 KM2 KH U V M 3~ W KM1 SB3 KM1 KM2
KM1
KM2
二、接触器联锁正反转控制线路
QS L1 L2 L3 SB1 FU1 FU2 KH
松开SB1
KM1
KM2 SB2 KM2 KH U V M 3~ W KM1 SB3 KM1 KM2
KM1
KM2
2.3
三相异步电动机的可逆运转控制线路
工作原理:
若改变电动机转动方向,将接至交流电动机 的三相交流电源进线中任意两相对调,电动机就 可以反转。
一、 倒顺开关正反转控制线路
倒顺开关,又叫可 逆转换开关,利用 改变电源相序来实 现电动机手动正反 转控制。
一、倒顺开关正反转控制线路
L1 L2 L3
熔断器 倒顺开关
KM2 KM1
FU1
FU2 KH
KM1 SB3
KM2
M 3~
KM1
KM2
三、按钮、接触器双重联锁正反转控制线路
QS L1 L2 L3 SB1 也可直接按下SB3, SB3动断触头断开, 对KM1联锁,使 KM1线圈失电, SB3动合触头闭 合,KM2线圈得电 KM1 KM2 SB2 KH U V W
KM2
三、按钮、接触器双重联锁正反转控制线路
三相异步电动机的正反转控制

电动机的启停,要通过刀开关、控制 按钮、接触器等,接通或断开定子绕 组的三相交流电源来实现。
★常用低压电器:万能转换开关
• 万能转换开关简称转换开关,是由多组相同结构的触头组 件叠装而成的多档位、多回路的主令电器。
• 因触头档位多、换接电路多、用途广,而得名“万能” 转换开关。
2)反转
先按下SB3,反转接触器KM2动作,一方面其互锁触头切断KM1线 圈电路,另一方面其主触头接入反序电,且自锁触头闭合,保证电 动机连续反向运转。
此时若再按下SB2,在电气互锁的作用下,正转接触器KM1线圈不 会得电,同样能避免电源短路事故的发生。
★电气互锁正反转的控制规律
若要求甲、乙两个接触器不能同时工作,应在各自的线圈 电路中互串对方的辅助常闭触头。
★电气互锁正反转控制的工作过程
1)正转
按下SB2 KM1线圈通电
KM1辅助常闭触头先断开,切断KM2线圈电路 KM1主触头后闭合,电动机接入正序电,正转 KM1辅助常开触头后闭合,实现自锁
按下SB2后若再按下SB3,因KM1的互锁触头已切断KM2的线圈电 路,所以KM2线圈不会得电,其主触头不会闭合,主电路中仍然只 有KM1主触头接入的正序电,避免了电源短路事故的发生。
电气互锁正反转控制的缺点:
1)正转过程中若要求反转,必须先按下停止按钮,让正转接触 器线圈断电,电气互锁触头复位(闭合)后,再按下反转按钮, 反转接触器线圈才能得电,通入反序电使电动机反转。
2)反转过程中若要求正转,也必须先按下停止按钮,待电气互 锁触头复位(闭合)后,再按下正转按钮,正转接触器线圈才能 得电,通入正序电使电动机正转。
双重互锁正反转控制的工作过程
M正转过程 中按下SB3
三项异步电动机的正反转控制

三项异步电动机的正反转控制原理电机要实现正反转控制,将其电源的相序中任意两相对调即可(我们称为换相),通常是V 相不变,将U相与W相对调,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。
由于将两相相序对调,故须确保二个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。
为安全起见,常采用按钮联锁(机械)与接触器联锁(电气)的双重联锁正反转控制线路(如下图所示);使用了按钮联锁,即使同时按下正反转按钮,调相用的两接触器也不可能同时得电,机械上避免了相间短路。
另外,由于应用的接触器联锁,所以只要其中一个接触器得电,其长闭触点就不会闭合,这样在机械、电气双重联锁的应用下,电机的供电系统不可能相间短路,有效地保护了电机,同时也避免在调相时相间短路造成事故,烧坏接触器。
实验步骤实验过程图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。
当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。
当接触器KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。
电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。
为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两正向启动过程对辅助常闭触头就叫联锁或互锁触头。
正向启动过程按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。
停止过程按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。