激光焊接技术的研究现状与展望

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录

目录 (1)

摘要 (2)

引言 (2)

1 采用激光技术的焊接工艺 (3)

1.1 激光焊接的模式 (3)

1.2 激光焊接的焊缝形状及组织性能 (3)

1.3 激光焊接的优缺点 (3)

2 国内外激光焊接的研究现状 (4)

2.1 激光器的研究现状 (4)

2.2 等离子体控制的研究现状 (5)

2.3 焊接过程自动检测的研究现状 (5)

参考文献 (6)

激光焊接技术的研究现状与展望

摘要

激光技术在制造业中的应用是目前各国的研究重点, 随着工业发展对高效、环保、自动化的需要, 激光技术的应用迅速普及制造业的许多领域。在此基础上, 激光焊接工艺将成为激光应用的重要方面之一。本文概述了激光焊接的发展现状, 简单介绍了采用激光技术进行焊接的基本原理及其优缺点。详细描述了激光器的研发、等离子体控制、焊接过程的自动化检测和各种先进激光焊接技术。通过介绍激光焊接在具体领域( 如汽车业、造船业等) 的应用, 充分说明激光技术在焊接制造中的优越性, 并对激光焊接的发展前景做了具体的展望。

引言

激光焊接是激光加工技术应用的重要内容, 更是21世纪最受瞩目、最有发展前景的焊接技术。早在上世纪末, 欧美各国就已把激光焊接充分应用到工业生产中, 我国在加快对激光焊接技术的研究与开发的同时, 逐步建立起一个“产、学、研”相结合的发展体制, 并在个别领域有了较大的突破。随着工业制造的发展, 高效、敏捷、环保的加工技术将倍受青睐。激光焊接以其高能束的聚焦方式, 在焊接过程中能实现深熔焊、快速焊等其他焊接工艺较难实现的形式, 特别是激光焊接设备搭配灵活, 实时在线检测技术成熟, 使其能够在大批量生产中实现高度自动化, 目前已有大量的激光焊接生产线投入工业生产。实践证明, 激光焊接在加工业的应用范围十分广泛, 基本上传统焊接工艺可以使用的领域, 激光焊接都能胜任,并且焊接质量更高, 加工效率更快。

1 采用激光技术的焊接工艺

激光焊接是利用激光的辐射能量来实现有效焊接的工艺, 其工作原理是: 通过特定的方式来激励激光活性介质( 如CO2和其他气体的混合气体、YAG钇铝石榴石晶体等) , 使其在谐振腔中往复振荡, 从而形成受激辐射光束, 当光束与工件接触时, 其能量被工件吸收, 在温度达到材料熔点时便可进行焊接。

1.1 激光焊接的模式

激光焊接可分为热传导焊和深熔焊, 前者的热量通过热传递向工件内部扩散, 只在焊缝表面产生熔化现象, 工件内部没有完全熔透, 基本不产生汽化现象, 多用于低速薄壁材料的焊接; 后者不但完全熔透材料, 还使材料汽化, 形成大量等离子体, 由于热量较大, 熔池前端会出现匙孔现象。深熔焊能够彻底焊透工件, 且输入能量大、焊接速度快, 是目前使用最广泛的激光焊接模式。

1.2 激光焊接的焊缝形状及组织性能

由于激光器产生的聚焦光斑面积较小, 其作用在焊缝周围的热影响区也比普通焊接工艺的小得多, 且激光焊接一般不需填充金属, 因此焊缝表面连续均匀、成形美观, 无气孔、裂纹等表面缺陷, 非常适合于对焊缝外形要求严格的场合。虽然聚焦的面积比较小, 但激光束的能量密度大( 普遍达103~108W/cm2) 。焊接过程中, 金属被加热和冷却的速度非常快, 熔池周围温度梯度比较大, 使其接头强度往往高于母材,相反地接头塑性则相对较低。目前, 已经可以通过双焦点技术或复合焊接技术来改善接头质量。

1.3 激光焊接的优缺点

激光焊接之所以受到如此高的重视, 在于其特有的诸多优点: ①采用激光焊接可以获得高质量的接头强度和较大的深宽比, 且焊接速度比较快。②由于激光焊接不需真空环境, 因此通过透镜及光纤, 可以实现远程控制与自动化生产。③激光具有较大的功率密度, 对难焊材料如钛、石英等有较好的焊接效果,并能对不同性

能材料施焊。当然, 激光焊接也存在不足之处: ①激光器及焊接系统各配件的价格较为昂贵, 因此初期投资及维护成本比传统焊接工艺高,经济效益较差。②由于固体材料对激光的吸收率较低, 特别是在出现等离子体后(等离子体对激光具有吸收作用) , 因此激光焊接的转化效率普遍较低(通常为5%~30%) 。③由于激光焊接的聚焦光斑较小,对工件接头的装备精度要求较高, 很小的装备偏差就会产生较大的加工误差。

随着激光焊接的普及应用和激光器的商品化生产, 激光设备的价格明显下降。而大功率激光器的发展和新型复合焊接方式的研发与运用, 使激光焊接转化效率低的缺点也得到改善, 相信不久的将来, 激光焊接将逐步代替传统焊接工艺(如电弧焊和电阻焊) ,成为工业焊接的主要方式。

2 国内外激光焊接的研究现状

2.1 激光器的研究现状

现有的激光器多以CO2激光器、YAG激光器和半导体激光器为主, 特别是CO2激光器和Nd: YAG激光器, 由于研发较早, 技术较完善, 在各领域的应用已经相当广泛。其中, CO2激光器属于气体激光器, 其激光活性介质是碳酸气、氮气、氦气等的混合气体, 发射光的波长为10.6μm, 一般以连续方式工作,电-光转化效率为10%~30%, 其输出功率一般为0.5~50 kW;Nd: YAG激光器属于固体激光器, 其激光活性介质是掺有钕(Nd) 的钇- 铝- 石榴石(YAG) 晶体, 发射光的波长为1.06μm, 可以用脉冲和连续2种方式输出, 电- 光转化效率为3%~10%, 其输出功率主要为0.1~5 kW[1]。虽然Nd: YAG激光器的输出功率和电-光转化效率比CO2激光器低得多, 但由于其发射光波长较短, 材料对其光束的吸收率较高, 对高反射率的材料( 如铝合金与铜合金等) 具有较好的焊接效果,特别是Nd: YAG激光器可以采用光纤进行传输, 能够与机器人加工系统很好匹配, 有利于实现远程控制和自动化生产, 因此在激光焊接中占有重要的地位。

相关文档
最新文档