新人教版数学七年级下册周考试卷四
新课标人教版七年级数学下册 周末试卷

个三角形,BD是三角形
中
边上的中线,BE是三角形
中 边上的中线;
图1 4
A 图25
E
1
B DE C A
C3
图6
D
23
BB
A D E
C
12.如图 7,在⊿ABC中,AD是中线,则⊿ABD的面积 ⊿ACD的面积(填“>”“<”“=”)。
13.如图 8,⊿ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于 D,DF⊥CE,则∠
D.∠C 的对边是 DE
5.如图C 3 所示,在△ABC中,已知点 D,E,F分别为边 BC,AD,CE 的中点, 且 S △ABC=4cm2
影等于( )
A.2cm2
B.1cm2
C. 1cm2 2
D. 1 cm2 4
,则 S 阴
6.下列长度的三条线段中,能组成三角形的是 ( )
A、 3cm,5cm ,
A、5
B、6
C、7
D、8
二、填空题
9.如图 4,图中所有三角形的个数为 ,在△ABE中,AE所对的角是
,∠ABC所对的边
是 ,AD在△ADE中,是 的对边,在△ADC中,是
的对边;
10.如图 5,已知∠1=0.5∠BAC,∠2 =∠3,则∠BAC的平分线为
,∠ABC的平分线
为
;
11.如图 6,D、E 是边 AC的三等分点,图中有
CDF =
度。
A
C
B
D
CA
F E
D
B
图7
图8
14.等腰三角形的高线、角平分线、中线的总条数为________.
图9
15.如图 9,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条(图
人教版七年级下学期第四次月考数学测试卷及答案

七年级下学期第四次月考数学测试卷(本试卷满分150分,考试用时120分钟)范围:第五章《相交线与平行线》~第九章《不等式与不等式组》班级 姓名 得分 一、选择题(本大题共10小题,共40.0分) 1. 如图,直线l l //12,直角三角板的直角顶点C 在直线l 1上,一锐角顶点B 在直线l 2上,若∠1=35°,则∠2的度数是( )A. 65°B. 55°C. 45°D. 35° 2. 下列实数是无理数的是( )A. −2B. 16C. √9D. √113. 若点M(2−a,3a +6)到两坐标轴的距离相等,则点M 的坐标( )A. (6,−6)B. (3,3)C. (−6,6)或(−3,3)D. (6,−6)或(3,3)4. 某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( )A. {x +7y =16x +13y =28 B. {x +(7−2)y =16x +13y =28C. {x +7y =16x +(13−2)y =28 D. {x +(7−2)y =16x +(13−2)y =28 5. 已知a <b ,下列式子不一定成立的是( )A. a −1<b −1B. −2a >−2bC. 12a +1<12b +1D. ma >mb6. 将一幅三角板按如图放置,其中∠D =30∘,则下列结论中, ①∠1=∠3; ②如果∠2=30∘,则有AC//DE; ③如果∠2=30∘,则有BC//AD; ④如果∠2=30∘,则必有∠4=∠C .其中结论正确的序号有( )A. ① ② ③B. ① ② ④C. ③ ④D. ① ② ③ ④7. 下列说法中,正确的有( )①只有正数才有平方根;②a 一定有立方根;③√−a 没有意义;④√−a 3=−√a 3;⑤只有正数才有立方根. A. 1个 B. 2个 C. 3个 D. 4个8. 如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,−1),⋯,根据这个规律探索可得,第100个点的坐标为( )A. (14,0)B. (14,−1)C. (14,1)D. (14,2)9. 用加减法解方程组{3x −2y =3 ①4x +y =15 ②时,如果消去y ,最简捷的方法是( )A. ①×4−②×3B. ①×4+②×3C. ②×2−①D. ②×2+①10. 小明去商店购买A 、B 两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( ) A. 5种 B. 4种 C. 3种 D. 2种 二、填空题(本大题共10小题,共30.0分)11. 如图,已知11//l 2,∠C =90°,∠1=40°,则∠2的度数是______.12. 已知:若√3.65≈1.910,√36.5≈6.042,则√365000≈________.13. 在平面直角坐标系中,点A 的坐标为(−1,3),线段AB // y 轴,且AB =4,则点B 的坐标为_____________________.14. 若{x =1y =−1{x =2y =2和{x =3y =c 都是方程ax +by +2=0的解,则c =______.15. 若关于x 的不等式组{x−24<x−132x −m ≤2−x有且只有三个整数解,则m 的取值范围是______.16. 如图所示,AB // CD ,EC ⊥CD.若∠BEC =30°,则∠ABE 的度数为 .17. 定义新运算“△”:(x △y)=|x −y|,其中x ,y 为实数,则(√5△4)+√5=______.18. 如图,在平面直角坐标系中,从点P 1(−1,0),P 2(−1,−1),P 3(1,−1),P 4(1,1),P 5(−2,1),P 6(−2,−2),…依次扩展下去,则P 2020的坐标为______.19. 某磨具厂共有六个生产车间,第一、二、三、四车间毎天生产相同数量的产品,第五、六车间每天生产的产品数量分別是第一车间每天生产的产品数量的34和83.甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是______.20. 用不等式表示“x 的相反数与3的差是一个非负数”:________. 三、解答题(本大题共6小题,共80.0分)21. (12分)(1)解不等式:5(x −2)+8<6(x −1)+7;(2)解不等式组{x+13>0,①2(x +5)≥6(x −1),②并在数轴上表示其解集.22. (14分)如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C =∠EFG ,∠CED =∠GHD . (1)求证:AB//CD ;(2)若∠EHF =75°,∠D =42°,求∠AEM 的度数.23. (12分)已知a 是√8的整数部分,b 是√8的小数部分,求(−a)3+(b +2)2的值.24.(14分)如图,已知三角形ABC在单位长度为1的方格纸上.(1)请画出三角形ABC向上平移3个单位长度,再向右平移2个单位长度所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,点B′的坐标:B,B′.25.(12分)4月9日上午8时,2017徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.26.(16分)市政府建设一项水利工程,某运输公司承担运送总量为106m3的土石方任务,该公司有甲、乙两种型号的卡车共100辆,甲型车平均每辆每天可以运送土石方80m3,乙型车平均每辆每天可以运送土石方120m3,计划100天恰好完成运输任务.(1)该公司甲、乙两种型号的卡车各有多少辆?(2)如果该公司用原有的100辆卡车工作了40天后,由于工程进度的需要,剩下的所有运输任务必须在50天内完成,在甲型卡车数量不变的情况下,公司至少应增加多少辆乙型卡车?答案1.B2.D3.D4.D5.D6.B7.B8.D9.D10.C11.50°12.604.213.(−1,−1)或(−1,7)14.515.1<m≤416.120°17.418.(505,505)19.18:1920.−x−3≥021.解:(1)去括号,得5x−10+8<6x−6+7,移项,得5x−6x<10−8−6+7,合并同类项,得−x<3.系数化为1,得x>−3 (2)解不等式①,得:x>−1,解不等式②,得:x≤4,∴不等式组的解集为:−1<x≤4,将不等式表示在数轴上如下:22.(1)证明:∵∠CED=∠GHD(已知),∴CE//FG(同位角相等,两直线平行), ∴∠C =∠DGF(两直线平行,同位角相等), ∵∠C =∠EFG(已知), ∴∠DGF =∠EFG(等量代换),∴AB//CD.( 内错角相等,两直线平行 ). (2)解:∵AB//CD(已证),∴∠BED =∠D =42°(两直线平行,内错角相等), ∵CE//FG(已证),∴∠CED =∠EHF =75°(两直线平行,内错角相等), ∴∠BEC =∠BED +∠CED =42°+75°=117°, ∴∠AEM =∠BEC =117°(对顶角相等).23.解:∵4<8<9,∴2<√8<3,∴√8的整数部分和小数部分分别为a =2,b =√8−2. ∴(−a)3+(2+b)2=(−2)3+(√8)2=0.24.解:(1)如图:.(2)(1,2),(3,5).25.解:设今年妹妹的年龄为x 岁,哥哥的年龄为y 岁,根据题意得:{x +y =163(x +2)+(y +2)=34+2,解得:{x =6y =10.答:今年妹妹6岁,哥哥10岁.26.解:(1)设该公司甲种型号的卡车有x 辆,乙种型号的卡车有y 辆.根据题意得{x +y =100,100(80x +120y)=106,解得{x =50,y =50.∴该公司甲种型号的卡车有50辆,乙种型号的卡车有50辆. (2)设公司增加z 辆乙型卡车,依题意有40×(80×50+120×50)+50×[80×50+120(50+z)]≥106,解得z ≥1623.∵z 为整数,∴公司至少应增加17辆乙型卡车.。
七年级下册数学第四周周考试卷

4321DCBA七年级下册数学第四周周考试卷姓名:_________ 班级:__________ 家长签字:__________ 一、 选择题(每题3分,共36)1、若x 是9的算术平方根,则x 是( )A 、3B 、-3C 、9D 、81 2、下列说法不正确的是( ) A 、251的平方根是15± B 、-9是81的一个平方根 C 、0.2的算术平方根是0.04 D 、-27的立方根是-3 3、如右图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ; ③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180°, 能判定AB ∥CD 的有( ). A.3个B.2个 C.1个D.0个4、在下列各式中正确的是( )A 、2)2(-=-2B 、9±=3C 、16=8D 、22=2 5、下列各组数中,互为相反数的组是( ) A 、-2与2)2(- B 、-2和38- C 、-21与2 D 、︱-2︱和2 6、在-2,4,2,3.14, 327-,5π,这6个数中,无理数共有( ) A 、4个 B 、3个 C 、2个 D 、1个 7、如右图,AB DE ∥,那么BCD ∠=( ).8、将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2; (2)∠3=∠4; (3)∠2+∠4=90°;(4)∠4+∠5=180° 其中正确的个数是( ) A.1 B.2 C.3D.49.以下四个结论:①绝对值等于它本身的实数只有0;②相反数等于它本身的实数只有0,;③倒数等于它本身的实数只有1,;④算术平方根等于它本身的实数只有1.其中正确结论的个数是( )A.0B.1C.2D.310.下列命题:①两直线相交,一个角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直.其中正确的个数为( )21BAC A.21∠-∠ B.12∠+∠ C.18012︒+∠-∠ D.180221︒+∠-∠21l 2l 1DCBAA.4B.3C.2D.111. 若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,则2b -︱a -b ︱ 等于( )A 、aB 、-aC 、2b +aD 、2b -a 12.如图,已知AB ∥CD ,BF 平分∠ABE ,DF 平分∠CDE ,∠BED=75°,则∠BFD 的度数为( ) A.37.5° B.35° C.38.5° D.36°二、填空题(每小题3分,共18分)13、1.44的算术平方根是__________,√81的平方根是__________.14、把“同角的补角相等”改写成“如果…,那么…”的形式:__________________________. 15、比较大小:(1)5√6_______6√5; (2)√50_______√1003;(2)√2-1_______√3−√2; (4)−√2003_______-√8016、如图直线l 1∥l 2,AB CD ⊥,134∠=︒,那么2∠的度数是______. 17、把一张长方形纸条按图⑤中,那样折叠后,若得到∠AOB′= 70° 则∠OGC = .18、已知√a +3与√(b −2)²3的值互为相反数, 则a b =__________.三、解答题(19、20每题8分,21题6分,22、23每题7分,24题10分,共46分) 19、计算题 577352-+--- 33364631125.041027-++---20、求下列各式中的x 4x 2-16=0 27(x -3)3=-64AFDE21、已知2a-1的立方根是3,3a+b+5的平方根是±7,c 是√13的整数部分. 求a+2b-c ²的平方根.22.如图,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD 的过程填写完整. 因为EF∥AD,所以∠2= ( ), 又因为∠1=∠2,所以∠1=∠3( ),所以AB∥ ( ),所以∠BAC+ =180°( ), 因为∠BAC=80°,23. 已知:如图,AD ∥BE ,∠1=∠2,求证:∠A=∠E .31BCA ED224.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.。
七年级下学期数学第4周周测卷

初一数学第四周周测卷(满分:120分)班级________座号_______姓名___________评分_____________一、选择题(每小题3分,共30分) 1. 计算23-的结果是( )A.-9B.9C.-6D.62. 某种原子的直径为0.000 000 000 2米,用科学记数法表示为( )A .10102.0-⨯ B. 10101-⨯ C. 10102-⨯ D. 10101.0-⨯3. 下列运算正确的是( )A .43x x x =• B. 623x x x =• C. 6332a a a =• D. 426a a a =⨯ 4. 下列运算中 ,不正确的是( )A .743x x x =• B. 1243)(x x = C. 632)(a a = D. 532)(a a =5. 计算: 32)21(ab -的结果正确的是( )A .4241b a B. 6381b a C. 6381b a - D. 5381b a -6. 下列运算正确的是( )A .333a a a =÷ B. a a a =÷23 C. 033=÷a a D. 326a a a =÷ 7、下列各式中能用平方差公式计算的是( )。
A 、(a+b)(b-a)B 、(1-5m)(5m-1)C 、(3x-5y)(-3x+5y)D 、(-x+2y)(x-2y) 8、下列计算正确的是( )。
A 、(a+b)2=a 2+b 2B 、(a-b)2=a 2+2ab-b 2C 、(-a+b)2=a 2-2ab+b 2D 、(-a-b)2=a 2-2ab+b 29、若m,n 是整数,那么(m+n)2-(m-n)2的值一定是( )。
A 、正数 B 、负数 C 、非负数 D 、4的倍数10.将n 个边长都为1cm 的正方形按如图所示的方法摆放点A 1,A 2,…,A n 分别是正方形的中心,则n 个这样的正方形重叠部分(阴影部分)的面积和为( )A .241cm B. 24cm n C. 241cm n - D. 241cm n⎪⎭⎫⎝⎛二、填空题(每小题3分,共15分) 11.把310065.2-⨯写成小数是 . 12.计算:()=÷632y y .13. 计算: 23)2(a -= .14.如果()922+-+x m x是一个完全平方公式,则m= 。
人教版七年级(下)学期4月份质量检测数学试卷含解析

人教版七年级(下)学期4月份质量检测数学试卷含解析一、选择题1.16的算术平方根是( ) A .2B .2±C .4D .4±2.下列各数-(-3),0,221(-)--2--42π,,,中,负数有( ) A .1个 B .2个 C .3个 D .4个 3.下列选项中的计算,不正确的是( )A 2=±B 2=-C .3=±D 4=4.0=,则x y +的值为( )A .10B .-10C .-6D .不能确定 5.若一个正数x 的平方根为27a -和143a -,则x =( ) A .7 B .16 C .25 D .49 6.某数的立方根是它本身,这样的数有( ) A .1 个B .2 个C .3 个D .4 个7.若一个数的平方根与它的立方根完全相同.则这个数是()A .1B .1-C .0D .10±,8.已知m 是整数,当|m |取最小值时,m 的值为( ) A .5B .6C .7D .89.下列判断中不正确的是( )AB .无理数都能用数轴上的点来表示C 4D10.2的平方根是a ,﹣125的立方根是b ,则a ﹣b 的值是( ) A .0或10B .0或﹣10C .±10D .0二、填空题11.一个数的平方为16,这个数是 .12.+(y+2)2=0,则(x+y)2019等于_____. 13.观察下列各式:5=;11=;19=;a =,则a =_____.14.观察下列算式:①246816⨯⨯⨯+=2(28)⨯+16=16+4=20; ②4681016⨯⨯⨯+=2(410)⨯+16=40+4=44;… 根据以上规律计算:3032343616⨯⨯⨯+=__________ 15.用⊕表示一种运算,它的含义是:1(1)(1)xA B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________. 16.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.17.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数. 例如:[]2.32=,[]1.52-=-. 则下列结论:①[][]2.112-+=-;②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有_____(写出所有正确结论的序号).18.利用计算器,得0.050.2236,0.50.7071,5 2.236,507.071≈≈≈≈,按此规律,可得500的值约为_____________19.若一个正数的平方根是21a +和2a +,则这个正数是____________.20.如图所示的运算程序中,若开始输入的x 值为7,我们发现第1次输出的结果为10,第2次输出的结果为5,……,第2019次输出的结果为_____.三、解答题21.化简求值:()1已知a 是13的整数部分,3b =,求54ab +的平方根.()2已知:实数a ,b 在数轴上的位置如图所示,化简:22(1)2(1)a b a b ++---.22.探究:()()()211132432222122222222-=⨯-⨯=-==-== ……(1)请仔细观察,写出第5个等式; (2)请你找规律,写出第n 个等式; (3)计算:22018201920202222-2++⋅⋅⋅++.23.(1的一系列不足近似值和过剩近似值来估计它的大小的过程如下:因为2211,24==,所以12,<<因为21.4 1.96=,21.5 2.25=,所以1.4 1.5,<<因为221.41 1.9881,1.422.0164==,所以1.41 1.42<<因为221.414 1.999396,1.4152.002225==,所以1.414 1.415,<<1.41≈(精确到百分位),(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣①按此规定2⎤⎦= ;a ,b 求a b -的值. 24.计算(1)+|-5|1)2020 (22|25.计算:(1)()2320181122⎛⎫-+- ⎪⎝⎭(2326.“比差法”是数学中常用的比较两个数大小的方法,即:0,?0,?0,?a b a b a b a b a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则;2与2的大小∵224-=<<则45<<∴2240-=>∴22>请根据上述方法解答以下问题:比较2-与3-的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】本题是求16的算术平方根,应看哪个正数的平方等于16,由此即可解决问题. 【详解】 ∵(±4)2=16, ∴16的算术平方根是4. 故选:C . 【点睛】此题主要考查了算术平方根的运算.一个数的算术平方根应该是非负数.2.C解析:C 【分析】根据相反数的定义,有理数的乘方,绝对值的性质分别化简,再根据正负数的定义进行判断即可得解 【详解】解:-(-3)=3;211()24-=;224-=-;44--=-; 所以2-2-4π--,,是负数,共3个。
人教版七年级(下)学期4月份段考数学试题含答案

人教版七年级(下)学期4月份段考数学试题含答案一、选择题1.有一个数阵排列如下:1 2 4 7 11 16 22 3 5 8 12 17 23 6 9 13 18 2410 14 19 2515 20 2621 2728则第20行从左至右第10个数为( ) A .425B .426C .427D .4282.下列说法中正确的是( ) A .若a a =,则0a > B .若22a b =,则a b = C .若a b >,则11a b> D .若01a <<,则32a a a <<3.下列各式正确的是( ) A .164=±B .1116493= C .164-=- D .164=4.若15的整数部分为a ,小数部分为b ,则a-b 的值为() A .615-B .156-C .815-D .158-5.有下列说法:①在1和2之间的无理数有且只有2,3这两个;②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④ B .①②④C .②④D .②6.下列命题是假命题的是( )A .0的平方根是0B .无限小数都是无理数C .算术平方根最小的数是0D .最大的负整数是﹣17.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12B 21C .22D 228.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根.其中正确的有( ) A .0个B .1个C .2个D .3个9.若a 、b 为实数,且满足|a -2|2b -0,则b -a 的值为( )A .2B .0C .-2D .以上都不对10.在下列实数中,无理数是( ) A .337B .πC .25D .13二、填空题11.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).12.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…; (2)f (12)=2,f (13)=3,f (14)=4,f (15)=5,… 利用以上规律计算:1(2019)()2019f f ____. 13.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___14.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.15.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 16.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____. 17.27的立方根为 .1846________. 19.下列说法: ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________ 20.若一个正数的平方根是21a +和2a +,则这个正数是____________.三、解答题21.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:①31000100==,又1000593191000000<<,10100∴<<,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3 因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空. ①它的立方根是_______位数. ②它的立方根的个位数是_______. ③它的立方根的十位数是__________. ④195112的立方根是________. (2)请直接填写....结果:=________.=________. 22.下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)观察发现:1n(1)n =+__________1111122334n(1)n ++++=⨯⨯⨯+ .(2)初步应用:利用(1)的结论,解决以下问题“①把112拆成两个分子为1的正的真分数之差,即112= ;②把112拆成两个分子为1的正的真分数之和,即112= ;( 3 )定义“⊗”是一种新的运算,若1112126⊗=+,11113261220⊗=++,111114*********⊗=+++,求193⊗的值.23.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f =根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 . ②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值. 24.阅读理解:计算1111234⎛⎫+++ ⎪⎝⎭×11112345⎛⎫+++ ⎪⎝⎭﹣111112345⎛⎫++++ ⎪⎝⎭×111234⎛⎫++ ⎪⎝⎭时,若把11112345⎛⎫+++ ⎪⎝⎭与111234⎛⎫++ ⎪⎝⎭分别各看着一个整体,再利用分配律进行运算,可以大大简化难度.过程如下:解:设111234⎛⎫++ ⎪⎝⎭为A ,11112345⎛⎫+++ ⎪⎝⎭为B , 则原式=B (1+A )﹣A (1+B )=B+AB ﹣A ﹣AB=B ﹣A=15.请用上面方法计算: ①11111123456⎛⎫+++++ ⎪⎝⎭×111111234567⎛⎫+++++ ⎪⎝⎭-1111111234567⎛⎫++++++ ⎪⎝⎭×1111123456⎛⎫++++ ⎪⎝⎭②111123n ⎛⎫++++ ⎪⎝⎭111231n ⎛⎫+++⎪+⎝⎭-1111231n ⎛⎫++++⎪+⎝⎭11123n ⎛⎫+++ ⎪⎝⎭. 25.化简求值:()1已知a 是13的整数部分,3b =,求54ab +的平方根.()2已知:实数a ,b 在数轴上的位置如图所示,化简:22(1)2(1)a b a b ++---.26.“比差法”是数学中常用的比较两个数大小的方法,即:0,?0,?0,?a b a b a b a b a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则; 192与2的大小 ∵1922194-= 161925<< 则4195<< ∴19221940-=> ∴1922>请根据上述方法解答以下问题:比较2-与3-的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题解析:寻找每行数之间的关系,抓住每行之间的公差成等差数列, 便知第20行第一个数为210,而每行的公差为等差数列, 则第20行第10个数为426, 故选B.2.D解析:D 【分析】根据绝对值的性质、平方根的性质、倒数的性质、平方和立方的性质对各项进行判断即可. 【详解】若a a =则0a ≥,故A 错误; 若22a b =则a b =或=-a b ,故B 错误; 当0a b >>时11b a<,故C 错误; 若01a <<,则32a a a <<,正确, 故答案为:D . 【点睛】本题考查了有理数的运算,掌握有理数性质的运算是解题的关键.3.D解析:D 【分析】根据算术平方根的定义逐一判断即可得解. 【详解】4=,故原选项错误;=,故原选项错误;D. 4=,计算正确,故此选项正确. 故选D. 【点睛】此题主要考查了算术平方根,解题的关键是掌握算术平方根的定义.4.A解析:A 【分析】先根据无理数的估算求出a 、b 的值,由此即可得. 【详解】91516<<,<<34<<,3,3a b ∴==,)336a b ∴-=-=,故选:A . 【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.5.D解析:D 【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得. 【详解】①在1和2之间的无理数有无限个,此说法错误; ②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误;④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②, 故选:D . 【点睛】本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键.6.B解析:B 【分析】分别根据平方根的定义、无理数的定义、算术平方根的定义、负整数逐一判断即可. 【详解】解:A 、0的平方根为0,所以A 选项为真命题; B 、无限不循环小数是无理数,所以B 选项为假命题;C 、算术平方根最小的数是0,所以C 选项为真命题;D 、最大的负整数是﹣1,所以D 选项为真命题. 故选:B . 【点睛】本题考查平方根的定义、无理数的定义、算术平方根和负整数,掌握无理数指的是无限不循环小数是解题的关键.7.D解析:D 【分析】设点C 的坐标是x ,根据题意列得12x=-,求解即可. 【详解】解:∵点A 是B ,C 的中点. ∴设点C 的坐标是x ,则12x=-,则2x =-+∴点C 表示的数是2-+ 故选:D . 【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.8.B解析:B 【详解】解:①实数和数轴上点一一对应,本小题错误; ②π不带根号,但π是无理数,故本小题错误; ③负数有立方根,故本小题错误;④17的平方根,本小题正确, 正确的只有④一个,故选B .9.C解析:C 【详解】根据绝对值、算术平方根的非负性得a-2=0,20b -=, 所以a=2,b=0. 故b -a 的值为0-2=-2. 故选C.10.B解析:B 【分析】分别根据无理数、有理数的定义即可判定选择项. 【详解】解:337,13是有理数, π是无理数, 故选B . 【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.二、填空题11.③,④ 【分析】①[x) 示小于x 的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可, ②由定义得[x)x 变形可以直接判断, ③由定义得x≤[x)+1,变式即可判断, ④由定义解析:③,④ 【分析】①[x) 示小于x 的最大整数,由定义得[x )<x≤[x )+1,[385-)<385-<-8,[385-)=-9即可, ②由定义得[x )<x 变形可以直接判断, ③由定义得x≤[x )+1,变式即可判断,④由定义知[x )<x≤[x )+1,由x≤[x )+1变形的x-1≤[x ),又[x )<x 联立即可判断. 【详解】由定义知[x )<x≤[x )+1, ①[385-)=-9①不正确,②[x )表示小于x 的最大整数,[x )<x ,[x ) -x <0没有最大值,②不正确 ③x≤[x )+1,[x )-x≥-1,[x )–x 有最小值是-1,③正确, ④由定义知[x )<x≤[x )+1, 由x≤[x )+1变形的x-1≤[x ), ∵[x )<x , ∴x 1-≤[x )<x , ④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算,阅读题给的定义,理解其含义,掌握性质[x)<x≤[x)+1,利用性质解决问题是关键.12.-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f()=2,f()=3,f()=4,f()解析:-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f(12)=2,f(13)=3,f(14)=4,f(15)=5,…,∴1()2019f2019,∴1(2019)()2019f f2018-2019=-1.故答案为:-1.【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键.13.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,∵1994493÷=……,即1中第三个数故答案为. 【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.14.-1. 【分析】根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1, ∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1. 【分析】根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】解:(x +1)5=x 5+5x 4+10x 3+10x 2+5x +1, ∵(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5, ∴a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1,把a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1代入﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5中, 可得:﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5=﹣32+80﹣80+40﹣10+1=﹣1, 故答案为:﹣1 【点睛】本题考查了代数式求值,解题的关键是根据题意求得a 0,a 1,a 2,a 3,a 4,a 5的值.15.【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1, ∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…, ∴第n 个数的分母为n2+3,∴第n 个数 解析:2213n n -+ 【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1, ∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…, ∴第n 个数的分母为n 2+3,∴第n 个数是2213n n -+,故答案为:2213n n -+. 16.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.17.3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算18.6【分析】求出在哪两个整数之间,从而判断的整数部分.【详解】∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.19.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】①10=,故①错误;②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误; ④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数. 20.1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1解析:1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1,∴这个正数是22(2)11a +==,故答案为:1.【点睛】此题考查平方根的性质:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根. 三、解答题21.(1)①两;②8;③5;④58;(2)①24;②56.【分析】(1)①根据例题进行推理得出答案;②根据例题进行推理得出答案;③根据例题进行推理得出答案;④根据②③得出答案;(2)①先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论; ②先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论.【详解】(1)①31000100==,10001951121000000<< ,∴10100<<,∴能确定195112的立方根是一个两位数,故答案为:两;②∵195112的个位数字是2,又∵38512=,∴能确定195112的个位数字是8,故答案为:8;③如果划去195112后面三位112得到数195,<<∴56<<,可得5060<<,由此能确定195112的立方根的十位数是5,故答案为:5;④根据②③可得:195112的立方根是58,故答案为:58;(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,∴13824的立方根是24,故答案为:24;②175616的立方根是两位数,立方根的个位数是6,十位数是5,∴175616的立方根是56,故答案为:56.【点睛】此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键.22.(1)111n n -+;1n n +;(2)①1341-;②112424+;( 3 )14. 【分析】(1)利用材料中的“拆项法”解答即可; (2)①先变形为111234=⨯,再利用(1)中的规律解题;②先变形为121224=,再逆用分数的加法法则即可分解; (3)按照定义“⊗”法则表示出193⊗,再利用(1)中的规律解题即可. 【详解】 解:(1)观察发现:()11n n =+111n n -+, 1111122334(1)n n ++++⨯⨯⨯+ =11111111223341n n -+-+-+⋯+-+=111n -+ =1n n +; 故答案是:111n n -+;1n n +. (2)初步应用: ①111234=⨯=1134-; ②121112242424==+; 故答案是:1134-;112424+. ( 3 )由定义可知:193⊗=11111111112203042567290110132++++++++ =455111111611311412-+-+-+⋯+- =13211- =14. 故193⊗的值为14. 【点睛】 考查了有理数运算中的规律型问题:数字的变化规律,有理数的混合运算.本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.23.(1)①21,②6,m n +;(2)35b =;(3)65a =【分析】(1)①由“奇异数”的定义可得;②根据定义计算可得;(2)由f (10m+n )=m+n ,可求k 的值,即可求b ;(3)根据题意可列出等式,可求出x 、y 的值,即可求a 的值.【详解】解:(1)①∵对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.∴“奇异数”为21;②f (15)=(15+51)÷11=6,f (10m+n )=(10m+n+10n+m )÷11=m+n ;(2)∵f (10m+n )=m+n ,且f (b )=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根据题意有()f a x y =+∵()510a f a -=∴()10510x y x y +-+=∴5410x y -=∵x 、y 为正数,且x≠y∴x=6,y=5∴a=6×10+5=65故答案为:(1)①21,②6,m n +;(2)35b =;(3)65a =【点睛】本题考查了新定义下的实数运算,能理解“奇异数”定义是本题的关键.24.(1)17;(2)11n +. 【解析】【分析】①根据发现的规律得出结果即可;②根据发现的规律将所求式子变形,约分即可得到结果.【详解】(1)设1111123456⎛⎫++++ ⎪⎝⎭为A ,111111234567⎛⎫+++++ ⎪⎝⎭为B , 原式=(1+A )B ﹣(1+B )A=B+AB ﹣A ﹣AB=B ﹣A=17; (2)设11123n ⎛⎫+++ ⎪⎝⎭为A ,111231n ⎛⎫+++ ⎪+⎝⎭为B , 原式=(1+A )B ﹣(1+B )A=B+AB ﹣A ﹣AB=B ﹣A=11n +. 【点睛】 考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(1)±3;(2)2a +b ﹣1.【解析】分析:(1)由于34a =3,根据算术平方根的定义可求b(2)利用数轴得出各项符号,进而利用二次根式和绝对值的性质化简求出即可.详解:(1)∵34,∴a =3.=3,∴b =993; (2)由数轴可得:﹣1<a <0<1<b ,则a +1>0,b ﹣1>0,a ﹣b <0,则+|a ﹣b | =a +1+2(b ﹣1)+(a ﹣b )=a +1+2b ﹣2+a ﹣b=2a +b ﹣1.点睛:本题考查了算术平方根与平方根的定义和估算无理数的大小,熟记概念,先判断所给的无理数的近似值是解题的关键.26.23>-【分析】根据例题得到2(3)5--=-5.【详解】解:2(3)5--=- ∵<,∴45<<, ∴2(3)50-=->, ∴23>-.【点睛】此题考查实数的大小比较方法,两个实数可以利用做差法比较大小.。
广东省佛山市南海区石门实验学校2020﹣2021学年七年级第二学期第四周周测数学试卷(含答案)

2020﹣2021石门实验学校七年级下第四周周测(1)(说明:考试时间90分钟,总分120分;答案写在答题卡上,填在原题上不给分)一、选择题(本大题10个小题,每小题3分,共30分)1.某种原子的直径为0.0000000002米,用科学记数法表示为()A.0.2×10﹣10B.2×10﹣10C.1×10﹣10D.0.1×10﹣102.下列运算正确的是()A a3 +a4=a7 B. a5﹣a3=a2 C.a2·a2=2a2 D.(a5)2=a103.下列等式一定成立的是()A.(3x2)2=6x 4B. (a+b)2=a2+b2C.(a2)3= a5D.(x﹣a)(x﹣b)= x2﹣(a+b)x+ab4.(﹣a2)3·(﹣a3)2的结果是()A.a12B. ﹣a12C. ﹣a l0D.﹣a365.下列多项式的乘法中可用平方差公式计算的是()A.(2a+b)(b﹣2a)B.(x2﹣y)(y2+x)C.(﹣a+b)(a﹣b)D.(1+x)(x+1)6.下列说法中正确的是()A.﹣a n与(﹣a)n互为相反数B.当n为奇数时,﹣a n与(﹣a)n相等C.当n为偶数时,﹣a n与(﹣a)n相等D.﹣a n和(﹣a)n一定不相等7.计算(8·2n+1)(8·2n﹣1)等于()A.8·22nB.82·22n+1C.22n+6D.8·42n8.若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为()A.m=5,n=6B.m=1,n=﹣6C.m=1,n=6D.m=5,n=﹣69.x2+2ax+16是一个完全平方式,则a的值为()A.4或﹣4B.8C.4D.8或一810.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a 2﹣b 2=(a+b )(a ﹣b )B.(a+b )2=a 2+2ab+b 2C.(a ﹣b )2=a 2﹣2ab+b 2D.(a+2b )(a ﹣b )=a 2+ab+b 2二、填空题:(本大题7个小题,每小题4分,共28分)11.计算:20210=_________12.若a m =a 3a 4,则m=_________13.一个边长为a 的正方形边长增加2后,面积增加了_________14.已知x m =a ,x n =b ,x ≠0,则x 3m+2n 的值等于_________15.已知2x+y+1=0,则52x ·5y =_________16.已知x+y=3,xy=2,则|x ﹣y |的值为_________17.已知a ﹣b=4,则代数式a 2﹣b 2﹣8b 的值为_________三、解答题一(本题共三题,每题6分,共18分)18.(1)22021×(0.5)2020; (2)(23x 2y ﹣6xy )·12xy 219.﹣32+|﹣3|+(﹣1)2016×(π﹣3)0﹣(12)﹣120.先化简,再求值:3x 2+2x ·(﹣32x+13y 2),其中x=﹣13,y=23.四.解答题二(本题共三题,每题8分,共24分)21.计算如图阴影部分面积:22.(1)观察:4×6=24,14×16=224,24×26=624,34×36=1224……你发现其中的规律了吗?你能借助代数式表示这一规律吗?(2)利用(1)中的规律计算:124×12623.已知实数a,b,c,满足|a+1|+(b﹣c)2+(25c2+10c+1)=0,求a2021·(25a2b2c)2.五、解答题三(本题共两题,每题10分,共20分)24.如图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积.方法1:________________________________方法2:________________________________(2)观察图②请你写出下列三个代数式:(a+b)2、(a﹣b)2、ab之间的等量关系:______________________________________(3)根据(2)题中的等量关系解决如下问题:如果a+b=7,ab=﹣5,求(a﹣b)2的值.25.观察以下等式(x+1)(x2﹣x+1)=x3+1(x+3)(x2﹣3x+9)=x3+27(x+6)(x2﹣6x+36)=x3+216……(1)按以上等式的规律,填空:(a+b)(________)=a3+b3.(2)利用多项式的乘法法则,说明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2﹣xy+y2)﹣(x+2y)(x2﹣2xy+4y2).参考答案:1-5 BDDA 6-10 BCBAA二、填空题:(本大题7个小题,每小题4分,共28分)11.1 12.7 13.4a+4 14. a 3b 2 15.15 16.±1 17.16三、解答题一(本题共三题,每题6分,共18分)18.(1)22021×(0.5)2020 =2 (2)(23x 2y ﹣6xy )·12xy 2=﹣83x 3y 319.﹣32+|﹣3|+(﹣1)2016×(π﹣3)0﹣(12)﹣1=﹣720.先化简,再求值:3x 2+2x ·(﹣32x+13y 2),其中x=﹣13,y=23.原式=23xy 2=﹣881四.解答题二(本题共三题,每题8分,共24分)21.S=4a 2+3b 2+2ab22.(1)对形如X4、X6的两个数的积 ,结果等于X*(X+1)开头,后跟24。
人教版数学七年级下册第五章《相交线与平行线》周练习含答案

人教版数学七年级下册第五章《相交线与平行线》周练习第五章相交线与平行线周周测1一选择题1. 如图:下列四个判断中,正确的个数是().①的内错角只有②的同位角是③的同旁内角是..④图中的同位角共有个A. 个B. 个C. 个D. 个2.如图,已知于点,点..在同一直线上,且,则为().A.B.C.D.3.如图,直线相交于点 ,射线平分 , ,若,则的度数为().A.B.C.D.4.如图,直线.被直线所截,则的同旁内角是()A.B.C.D.5.如图,与是内错角的是()A.B.C.D.6.如图,与是()A. 对顶角B. 同位角C. 内错角D. 同旁内角7.已知两条平行线被第三条直线所截,则以下说法不正确的是()A. 一对同位角的平分线互相平行B. 一对内错角的平分线互相平行C. 一对同旁内角的平分线互相平行D. 一对同旁内角的平分线互相垂直8.如图,直线相交于点,于,若,则不正确的结论是()A.B.C.D.9.如果点在直线上,也在直线上,但不在直线上,且直线..两两相交符合以上条件的图形是()A.B.C.D.10.如图两条非平行的直线被第三条直线所截,交点为,那么这条直线将所在平面分成()A. 个部分B. 个部分C. 个部分D. 个部分11.如图,若两条平行线,与直线,相交,则图中共有同旁内角的对数为()A.B.C.D.12.若点到直线的距离为,点到直线的距离为,则线段的长度为()A.B.C. 或D. 至少13.如图,在平面内,两条直线,相交于点,对于平面内任意一点,若,分别是点到直线,的距离,则称为点的“距离坐标”.根据上述规定,“距离坐标”是的点共有()个.A. 个B. 个C. 个D. 个14.如图,两条直线,交于点,射线是的平分线,若,则等于()A.B.C.D.15.如图,点是直线外的一点,点在直线上,且,垂足是,,则下列不正确的语句是()A. 线段的长是点到直线的距离B. 线段的长是点到直线的距离C. 三条线段中,最短D. 线段的长是点到直线的距离二填空题16.如图,与相交于点,,,则度.17.如图,在菱形中,点是对角线上的点,于点,若,则到的距离为.18.如图,标有角号的个角中共有对内错角,对同位角,对同旁内角.19.四条直线两两相交,至多会有个交点.20.如图,,,,则度.三解答题21.如图,图中共有多少对同位角,多少对内错角,多少对同旁内角.22.如图,用数字标出的八个角中,同位角.内错角.同旁内角分别有哪些?请把它们一一写出来.23.如图,直线..两两相交,射线平分,已知,,求的度数.第五章相交线与平行线周周测1 参考答案与解析一、选择题1.C2.B3.C4.C5.D6.B7.C8.C9.D 10.C 11.D 12.D13.D 解析:依题意,作与l1平行且距离为2的直线两条,作与l2平行且距离为1的直线两条,两组平行线的交点即为所求,共4个点符合题意.14.C 15.B二、填空题16.36 17.3 18.4 2 4 19.6 20.55三、解答题21.解:有6对同位角,4对内错角,4对同旁内角.22.解:同位角:∠2与∠8,∠3与∠7,∠4与∠6;内错角:∠1与∠4,∠2与∠6,∠3与∠5,∠4与∠8,;同旁内角:∠2与∠4,∠2与∠5,∠3与∠6,∠4与∠5.23.解:∵BE平分∠ABD,∠2=75°,∴∠ABE=∠2=75°,∴∠1=180°-∠ABE=∠2=180°-75°-75°=30°.∵∠1=3∠3,∴∠3=25°.∵∠3与∠4是对顶角,∴∠4=∠3=25°.第五章相交线与平行线周周测2一选择题1.如图,已知直线a,b被直线所截,那么的同位角是()A.B.C.D.2. 如图,已知三条直线,,相交于一点,则等于().A. °B. °C. °D. °3.将一副三角板按图中方式叠放,则角的度数是().A.B.C.D.4.如图,下列叙述正确的是().A. 和是内错角B. 和是同位角C. 和是同位角D. 和是同旁内角5.如图,直线,被直线所截,则的同旁内角是()A.B.C.D.6.如图:下列四个判断中,正确的个数是().①的内错角只有②的同位角是③的同旁内角是,,④图中的同位角共有个A. 个B. 个C. 个D. 个7.甲.乙.丙.丁四个学生在判断时钟的分针与时针互相垂直的时,他们每个人都说两个时间,说对的是()A. 丁说时整和时整B. 丙说时整和时分C. 乙说点分和点分D. 甲说时整和点分8.如图,直线相交于点,于,若,则不正确的结论是()A.B.C.D.9.如图,若两条平行线,与直线,相交,则图中共有内错角的对数为()A.B.C.D.10.如图,能表示点到直线的距离的线段共有()A. 条B. 条C. 条D. 条11.在一个平面上任意画条直线,最多可以把平面分成的部分是()A.B.C.D.12.如图,点是直线外的一点,点在直线上,且,垂足是,,则下列不正确的语句是()A. 线段的长是点到直线的距离B. 线段的长是点到直线的距离C. 三条线段中,最短D. 线段的长是点到直线的距离二填空题13.如图,与相交于点,,,则度.14.如图,,于,图中共有_______个直角,图中线段______的长表示点到的距离,线段_________的长表示点到的距离.15.如图,的内错角有个.16.如图,,,,则度.三解答题17.如图,图中共有多少对同位角,多少对内错角,多少对同旁内角.18.如图,用数字标出的八个角中,同位角.内错角.同旁内角分别有哪些?请把它们一一写出来.19.如图,直线,,相交于点,平分,,.求的度数.第五章相交线与平行线周周测2 参考答案与解析一、选择题1.A2.C3.D4.A5.C6.C7.A8.C9.D 10.D 11.C 12.B二、填空题13.36 14.3 CD AC 15.3 16.55三、解答题17.解:有6对同位角,4对内错角,4对同旁内角.18.解:同位角:∠2与∠8,∠3与∠7,∠4与∠6;内错角:∠1与∠4,∠2与∠6,∠3与∠5,∠4与∠8,;同旁内角:∠2与∠4,∠2与∠5,∠3与∠6,∠4与∠5.19.解:∵,,∴∠DOE=180°-∠1-∠2=180°-30°-45°=105°.∵∠DOE与∠COF是对顶角,∴∠COF=105°.∵平分,∴∠3=∠FOG=105°÷2=52.5°.第五章相交线与平行线周周测3一选择题1. 如图,已知∠1=∠2,则下列结论一定成立的是()A.AB//CD B.AD//BC C.∠B=∠D D.∠3=∠42. 下列图形中,能由∠1=∠2得到AB//CD的是()A.B. C.D.3. 如图,能判定的条件是()A.B.C.D.4. 对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=180°5. 如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB∥CD的条件个数有()A.1个B.2个C.3个D.4个6. 如图,下列条件中,不能判断直线∥的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°7. 如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70° B.∠2=100° C.∠2=110° D.∠3=110°8. 如图,用两个相同的三角板按照如图方式作平行线,能解释其中道理的定理是()A.同位角相等两直线平行B.同旁内角互补,两直线平行C.内错角相等两直线平行D.平行于同一条直线的两直线平行9. 如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A+∠ACD=180°C.∠ACE=∠DCE D.∠A=∠ACE10. 如图,下列能判定AB∥CD的条件有().(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1个B.2个C.3个D.4个11. 过一点画已知直线的平行线,则( )A.有且只有一条B.有两条C.不存在D.不存在或只有一条12. 如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180 o D.∠3+∠4=180 o二填空题13. 如图,两直线a.b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a.b的位置关系是____________ .14. 在同一平面内,_____________________叫作平行线.15. 如图,直线a、b被直线c所截,若满足,则a、b平行(写出一个即可).16. 已知为平面内三条不同直线,若,,则与的位置关系是.三解答题17. 看图填空:如图,∠1的同位角是,∠1的内错角是,如果∠1=∠BCD,那么,根据是;如果∠ACD=∠EGF,那么,根据是.18. 如图,已知∠1=∠2,AC平分∠DAB,试说明DC∥AB.19.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.20.如图,已知:∠B=∠D+∠E,试说明:AB∥CD.第五章相交线与平行线周周测3 参考答案与解析一、选择题1.B2.D3.D4.D5.C6.B7.C8.C9.D 10. C 11.D 12.D二、填空题13.平行14.不相交的两条直线15.∠1=∠2(答案不唯一)16.平行三、解答题17.∠EFG ∠BCD,∠AED DE∥BC 内错角相等,两直线平行CD∥GF 同位角相等,两直线平行18. 解:∵AC平分∠DAB,,∴∠1=∠CAB.∵∠1=∠2,∴∠CAB=∠2,∴DC∥AB.19. 证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠CEF.∵∠C=∠D,∴∠D=∠CEF,∴BD∥CE.20..解:过点E向右作EM//CD,则∠D=∠DEM.∵∠B=∠D+∠E,第五章相交线与平行线周周测4一选择题1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等12第1题图第2题图第3题图2.如图,梯子的各条横档互相平行,若∠1=70°,则∠2的度数是()A.80°B.110°C.120°D.140°3.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( ) A .∠3=∠4B .∠1=∠2C .∠D =∠DCE D .∠D +∠ACD =180°4.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐130°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次左拐50° 5.如图,下列说法中,正确的是( ) A .因为∠A +∠D =180°,所以AD ∥BC B .因为∠C +∠D =180°,所以AB ∥CD C .因为∠A +∠D =180°,所以AB ∥CDD .因为∠A +∠C =180°,所以AB ∥CD 第5题图 二 填空题6.在同一平面内,如果直线b 和c 都与直线a 垂直,那么直线b 和c的位置关系是 . 7.如图,已知∠1=∠2,由此可得 ∥ .第7题图 第8题图8.如图,已知直线、被直线所截,∠1=60°, 则当∠2= °时,∥. 9.如图,小明利用两块相同的三角板,分别在三角板的边缘画直线和,这是根据________________,两直线平行.第9题图 第10题图10.如图,直线a 、b 与直线c 相交,给出下列条件:①∠1=∠2; ②∠4=∠6; ③∠4+∠7=180°; ④∠5+∠3=180°.其中能判断a ∥b 的条件是 (只填序号). 三 解答题11.如图,已知∠1=70°,∠2=110°,请用三种方法判定AB ∥DE.a b c a b AB CD12.已知:如图,CE平分∠ACD,∠1=∠2.求证:AB∥CD.第五章相交线与平行线周周测4 参考答案与解析一、选择题1.A2.B3.B4.D5.C二、填空题6.平行7.AD BC8.1209.内错角相等10.①③④三、解答题11. 解:(1)∵∠1=70°,∴∠AFC=180°-70°=110°.∵∠2=110°,∴∠AFC=∠2,∴AB//DE.(2)∵∠1=70°,∴∠BFD=180°-70°=110°.∵∠2=110°,∴∠BFD=∠2,∴AB//DE.(3)∵∠1=70°,∴∠AFD=70°.∵∠2=110°,∴∠AFD+∠2=180°,∴AB//DE.12.证明:∵CE平分∠ACD,,∴∠2=∠DCE.∵∠1=∠2,∴∠DCE=∠1,∴AB ∥CD.第五章 相交线与平行线周周测5一 选择题1.如果相等的两个角的一边在一条直线上,另一边互相平行,那么这两个角( ) A.相等 B.互补 C.相等或互补 D.不能确定2.如图,∠1和∠2互补,那么图中平行的直线是( ) A.b a // B.d c // C.e d // D.e c //第2题图 第4题图3.下列条件中,能得到互相垂直的是( )A.对顶角的平分线B.邻补角的平分线C.平行线的内错角的平分线D.平行线的同位角的平分线 4.如图,n m //,那么∠1.∠2.∠3的关系是( )A.∠1+∠2+∠3=360°B.∠1+∠2-∠3=180°C.∠1-∠2+∠3=180°D.∠1+∠2+∠3=180°5.一辆汽车在直路上行驶,两次拐弯后,仍按原来的方向行驶,那么这两次拐弯时( ) A.第一次向右拐30°,第二次向右拐30°B.第一次向右拐30°,第二次向右拐150°C.第一次向左拐30°,第二次向右拐150°D.第一次向左拐30°,第二次向右拐30° 6.下列命题中,是假命题的是( )A.同旁内角互补B.对顶角相等C.直角的补角仍然是直角D.两点之间,线段最短7.如图,在三角形ABC中,BC=5,∠A=70°,∠B=75°,把三角形ABC沿直线BC的方向平移到三角形DEF的位置.若CF=3,则下列结论中错误的是 ( ) A.DF=5 B.∠F=35°C.BE=3 D.AB∥DE8.如图,将周长为10个单位的三角形ABC沿边BC向右平移2个单位得到三角形DEF,则四边形ABFD周长为()A.12B.14C.16D.18第8题图第9题图第10题图9.如图是一块长方形ABCD的场地,AB=102m,AD=51m,从A.B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m210.如图,O是正六边形ABCDEF的中心,下列图形:三角形OCD;三角形ODE;三角形OEF;三角形OAF;三角形OAB.其中可由三角形OBC平移得到的有()A.1个B.2个C.3个D.4个二填空题11.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC周长为16cm,则四边形ABFD周长为.第13题图第14题图第15题图12.如图,长方形ABCD的边AB=10,BC=6,则图中四个小长方形的周长和为.13.如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/s的速度沿着A→B方向移动,则经过 s,平移后的长方形与原来长方形重叠部分的面积为24 . 14.如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF= .15.“两数之和始终是正数”是________命题(填“真”或“假”).16.把命题“平行于同一条直线的两条直线互相平行”改写成“如果……,那么……”的形式为_______________________________________________.17.如图,是我们生活中经常接触的小刀,刀片的外形是一个直角梯形,刀片上.下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=度.第17题图第18题图18.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论有(只填序号).三解答题19.如图,点A在直线MN上,且MN//BC.求证:∠BAC+∠B+∠C=180°.M A NB C20.如图,M,N,T和P,Q,R分别在同一直线上,且∠1=∠3,∠P=∠T.求证:∠M=∠R.21.如图,直线m⊥l,n⊥l,∠1=∠2.求证:∠3=∠4.22.已知,如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°,试判断BF与AC的位置关系,并说明理由.第五章相交线与平行线周周测5 参考答案与解析一、选择题1.C2.D3.D4.B5.D6.A7.A8.B9.C 10.B二、填空题11.20 12.32 13.3 14.30°15.假16.如果两条直线平行于同一条直线,那么这两条直线互相平行17. 90 18.①②③三、解答题19.证明:∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC.∵∠BAC+∠MAB+∠NAC=180°,∴∠BAC+∠B+∠C=180°.20.证明:∵∠1=∠3,∠1=∠2,∴∠2=∠3,∴PN∥QT,∴∠T=∠MNP.∵∠P=∠T,∴∠P=∠MNP,∴PR∥MT,∴∠M=∠R..21.证明:∵m⊥l,n⊥l,∴m∥n,∴∠1=∠4,∠,2=∠3.∵∠1=∠2,∴∠3=∠4.22.解:BF⊥AC.理由如下:∵∠AGF=∠ABC,∴FG∥BC,∴∠1=∠3.∵∠1+∠2=180°,∠3+∠2=180°,∴BF∥DE,∴∠BFC=∠DEC.∵DE⊥AC,∴∠DEC=90°,∴∠BFC=90°,∴BF⊥AC.第五章相交线与平行线周周测6一选择题1. 下列命题正确的是( )A.两直线与第三条直线相交,同位角相等B.两直线与第三条直线相交,内错角相等C.两直线平行,内错角相等D.两直线平行,同旁内角相等2.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=23°,则∠2的度数是()A.23°B.22°C.37°D.67°3.如图,AB∥CD,点E在CB的延长线上.若∠ABE=70°,则∠ECD的度数为()A.20°B.70°C.100°D.110°4.如图,∠B=∠C,AD∥BC,∠BAC=100°,则∠CAD的度数是()A.30°B.35°C.40°D.50°5.如图,已知AB∥CD,EA是∠CEB的平分线,若∠BED=40°,则∠A的度数是()A.40°B.50°C.70°D.80°6.如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A.40°B.45°C.50°D.60°7.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A.30°B.45°C.60°D.75°8. 如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140°D.170°9.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3 B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°10.如图,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A.45°B.40°C.35°D.30°11. 如图,点D是三角形ABC的边AB的延长线上一点,BE∥AC.若∠C=50°,∠DBE=60°,则∠CBD的度数等于()A.120°B.110°C.100°D.70°12.如图,AB∥ED,则∠A+∠C+∠D=( )A.180°B.270°C.360°D.540°二填空题13. 如图,已知AB//DE,∠ABC=75°,∠CDE=150°,则∠BCD的度数为.14.如图,已知AD∥BE,∠DAC=29°,∠EBC=45°,则∠ACB= °.15.如图,已知AB∥CD,∠1=130°,则∠2= .16.如图,AB∥CD,∠1=64°,FG平分∠EFD,则∠EGF= °.三解答题17. 如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H. ∠GFH+ ∠BHC=180°.求证:.18.如图,已知∠B=∠C,AD∥BC,求证:AD平分∠CAE.19.如图,已知AB//CD,分别写出下列四个图形中,∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以证明.20.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知),∠2=∠DGF(),∴∠1=∠DGF,∴BD∥CE(),∴∠3+∠C=180º().又∵∠3=∠4(已知),∴∠4+∠C=180º,∴∥DF(同旁内角互补,两直线平行),∴∠A=∠F().第五章相交线与平行线周周测6 参考答案与解析一、选择题1.C2.C3.D4.C5.C6.C7.D8.C9.D 10.D 11.B 12.C二、填空题13.45°14.74 15.50°16.32三、解答题17.证明:∵BD平分∠ABC,∴∠2=∠ABD.∵∠GFH+∠BHC=180°,∠FHD=∠BHC,∴∠GFH+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD.∵∠2=∠ABD,∴∠1=∠2.18.证明:∵AD∥BC,∴∠2=∠B,∠1=∠C.∵∠B=∠C,∴∠1=∠2,∴AD平分∠CAE.19.解:(1)∠P=360°-∠A-∠C.(2)∠P=∠A+∠C.(3)∠P=∠C-∠A.(4)∠P=∠A-∠C.若选(3),证明如下:过点P向左作PQ∥AB,则∠A=∠APQ.∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∴∠CPA=∠CPQ-∠APQ=∠C-∠A.20.对顶角相等同位角相等,两直线平行两直线平行,同旁内角互补AC 两直线平行,内错角相等第五章相交线与平行线周周测7一选择题1.将图①所示的图案通过平移后可以得到的图案是()A B C D 图①2.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A. 先向下移动1格,再向左移动1格B. 先向下移动1格,再向左移动2格C. 先向下移动2格,再向左移动1格D. 先向下移动2格,再向左移动2格第2题图第3题图3.如图,已知三角形ABC的面积为8,将三角形ABC沿BC的方向平移到三角形A’B’C’的位置,使B’和C重合,连结AC’交A’C于D,则三角形CAC’的面积为()A.4B.6C.8D.164.四根火柴棒形成如图所示的“口”字,平移火柴棒后,原图形能变成的汉字是()5.如图,面积为12cm²的三角形ABC沿BC方向平移至三角形DEF的位置,平移的距离是边BC的2倍,则图中四边形ACFD的面积为()A.24cm²B.36cm²C.48cm²D.60cm²第5题图第6题图6.如图,小明从家到学校有①②③三条路可走,每条路的长分别为a,b,c,则()A. B. C. D.7.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是()A.20 B.22 C.24 D.26第7题图第8题图8.如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,至少需要移动()A.8格B.9格C.11格D.12格二填空题9.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC周长为16cm,则四边形ABFD周长为.第9题图第10题图第11题图10.如图,将三角形ABC沿射线AC平移得到三角形DEF.若AF=17,DC=7,则AD= .11.如图,边长为8cm的正方形ABCD先向上平移4cm,再向右平移2cm,得到正方形A′B′C′D′,此时阴影部分的面积为_________.12.某小区的一块长26米,宽15米的草坪内要修一条如图所示宽度相同的通道.当通道的宽度为2米时,剩下的草坪面积是通道面积的倍.第12题图第13题图第14题图13.鑫都大酒店在装修时,准备在主楼梯(如图)上铺上红地毯,已知这种地毯每平方米售价35元.楼梯宽2米,则购买这种地毯至少需元.14.如图,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为cm2.三解答题15.如图,已知,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠AEF,∠1=40°,求∠2的度数.16.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中∠DEF=20°,则图③中∠CFE的度数是多少?(2)若图①中∠DEF=α,把图③中∠CFE的度数用α表示是多少?17.如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.求∠PAG的度数.第五章相交线与平行线周周测7 参考答案与解析一、选择题1.A2.C3.C4.B5.C6.C7.C8.A二、填空题9.20 10.5 11.24cm²12.4 13.630 14.168三、解答题15.解:∵AB∥CD,∠1=40°,∴∠AEG=∠1=40°.∵EG平分∠AEF,,∴∠AEF=2∠AEG=80°,∴∠2=180°-∠AEF=180°-80°=100°.16.解:图①中,∵AD∥BC,∴∠DEF=∠BFE,∴∠CFE=180°-∠DEF.图②中,由折叠得∠CEF=180°-∠DEF,∴∠CFB=∠CEF-∠BFE=180°-2∠DEF.图③中,由折叠得∠CFB=180°-2∠DEF,∴∠CFE=∠CFB-∠BFE=180°-3∠DEF.(1)若图①中∠DEF=20°,则图③中∠CFE=180°-3×20°=120°.(2)若图①中∠DEF=α,则图③中∠CFE=180°-3α.17.解:∵DB∥FG∥EC,∠ABD=60°,∠ACE=36°,∴∠BAG=∠ABD=60°,∠CAG=∠ACE=36°,∴∠BAC=∠BAG+∠CAG=60°+36°=96°.∵AP平分∠BAC,∴∠PAC=12∠BAC=12×96°=48°,∴∠PAG=∠PAC-∠CAG=48°-36°=12°.第五章相交线与平行线周周测8一选择题1.下列选项中能由左图平移得到的是()A. B. C. D.2.在四边形ABCD中,下列各图中∠1与∠2相等的是()3.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点4.将命题“对顶角相等”写成“如果……,那么……”的形式,正确的是()A.如果两个角相等,那么它们是对顶角B.如果两个角是对顶角,那么它们相等C.如果对顶角,那么相等D.如果两个角不是对顶角,那么这两个角不相等5.如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠56.如图,AB//CD,∠AGE=128°,HM平分∠EHD,则∠MHD的度数是()A.46°B.23°C.26°D.24°7.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠4=∠5C.∠2=∠3D.∠2+∠4=180°8.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()CA.60°B.65°C.70°D.80°9.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°10.如图,已知AB∥DE,∠ABC=70º,∠CDE=140º,则∠BCD的值为( )A.70ºB.50ºC.40ºD.30º二填空题11.如图,将三角形ABC沿BC’方向平移4cm,得到三角形A’B’C’,那么CC’= cm.12.将一个直角三角板和一把长方形直尺按如图放置,若∠α=54°,则∠β的度数是______.13.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=40°,则∠AEF=.14.如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直角边分别交直线b于B,C两点.若∠1=42°,则∠2的度数是.15.如图,AB∥CD,∠B=160°,∠D=120°,则∠E=_________16.如图①:MA1∥NA2,图②:MA1∥NA3,图③:MA1∥NA4,图④:MA1∥NA5,…,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1= °(用含n的代数式表示).三解答题17.完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF=90°.证明:∵HG∥AB(已知),∴∠1=∠3(______ ).又∵HG∥CD(已知),∴∠2=∠4.∵AB∥CD(已知),∴∠BEF+______=180°(______ ).又∵EG平分∠BEF(已知),∴∠1=∠______.又∵FG平分∠EFD(已知),∴∠2=∠______,∴∠1+∠2=(______ ),∴∠1+∠2=90°,∴∠3+∠4=90°(______ ),即∠EGF=90°.18.如图是一个汉字“互”字,其中,∥,∠1=∠2,∠=∠.求证:∠=∠.19.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°. (1)证明:∠B=∠ADG;(2)求∠BCA的度数.20.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.21.如图,已知DC∥FP,∠1=∠2,∠FED=28º,∠AGF=80º,FH平分∠EFG.(1)证明:DC∥AB;(2)求∠PFH的度数.22.如图,已知AB∥CD,C在D的右侧,BM平分∠ABC,DN平分∠ADC,BM,DN所在直线交于点E,∠ADC =70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.第五章相交线与平行线周周测8参考答案与解析一、选择题1.C2.B3.A4.B5.A6.C7.C8.C9.B 10.D二、填空题11.4 12.36° 13.110° 14.48° 15.40° 16.180n三、解答题17.两直线平行,内错角相等∠EFD 两直线平行,同旁内角互补 BEF EFD ∠BEF+∠EFD 等量代换18.证明:如图,延长交于点.∵∥,∴∠1=∠3.又∵∠1=∠2,∴∠2=∠3,∴∥HN,∴∠=∠.又∵∠=∠,∴∠=∠.19.(1)证明:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD,∴BC∥DG,∴∠B=∠ADG.(2)解:∵DG∥BC,∴∠3=∠BCA.∵∠3=80°,∴∠BCA=80°.20.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°.∵∠DAC=120°,∴∠ACB=60°.又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°.∵CE平分∠BCF,∴∠BCE=20°.∵EF∥BC,∴∠FEC=∠BCE=20°.21.(1) 证明:∵∠1=∠2,∴AB∥FP.∵DC∥FP,∴DC∥AB.(2)解:∵DC∥FP,∴∠EFP=∠FED=28º.∵AB∥FP,∴∠GFP=∠AGF=80º.∴∠EFG=∠EFP+∠GFP=28°+80°=108°.∵FH平分∠EFG,∴∠EFH=∠EFG=×108°=54°,∴∠PFH=∠EFH-∠EFP=54°-28°=26 º.22.解:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC=∠ADC=×70°=35°.(2)如图,过点E向左作EF∥AB.∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=n°+35°.(3)如图①,过点E向左作EF∥AB.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°.∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.图①图②如图②,过点E向左作EF∥AB.∵BM平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABM=∠ABC=n°,∠CDE=∠ADC=35°.∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠ABM=n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF-∠DEF=n°-35°.综上所述,∠BED的度数发生了改为,改变为215°-n°或n°-35°.第五章相交线与平行线周周测9一选择题1.点P为直线l外一点,点A,B,C为直线l上三点,P A=4cm,PB=5cm,PC=3cm,则点P到直线l的距离为()A.4cm B.5cmC.小于3cm D.不大于3cm2.如图,点E,F分别是AB,CD上的点,点G是BC的延长线上一点,且∠B=∠DCG=∠D,则下列判断中,错误的是()A.∠AEF=∠EFC B.∠A=∠BCFC.∠AEF=∠EBC D.∠BEF+∠EFC=180°第2题图第3题图3.如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,且∠ODE与∠ADC相等,则∠DEB的度数是()A.75°36′ B.75°12′ C.74°36′ D.74°12′4.下列图形中,可以由其中一个图形通过平移得到的是()5.如图①~④,其中∠1与∠2是同位角的有()A.①②③④B.①②③C.①③D.①第5题图第6题图6.如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠3=∠4C.∠1+∠3=180° D.∠3+∠4=180°7.有下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④内错角相等.其中假命题有()A.①②B.①③C.②④D.③④8.若∠1与∠2是对顶角且互补,则它们两边所在的直线()A.互相垂直B.互相平行C.既不垂直也不平行D.不能确定9.如图,BD∥AC,BE平分∠ABD,交AC于点E.若∠A=50°,则∠1的度数为() A.65° B.60° C.55° D.50°第9题图第10题图10.已知直线m∥n,将一块直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上.若∠1=20°,则∠2的度数为()A.20° B.30°C.45° D.50°二填空题11.如图,当剪刀口∠AOB增大21°时,∠COD增大________°.第11题图第12题图12.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=________°.13.如图,在线段AC,BC,CD中,线段________最短,理由是____________________.第13题图第14题图14.如图,直线AB,CD相交于点O,OE⊥AB,∠COE=68°,则∠BOD的度数为________.15.如图,直线l1∥l2,∠1=20°,则∠2+∠3=________°.第15题图第17题图16.平移变换不仅与几何图形有着密切的联系,而且在一些特殊结构的汉字中,也有平移变换的现象,如:“日”“朋”“森”等,请你再写两个具有平移变换现象的汉字_____ ___.17.如图是超市里购物车的侧面示意图,扶手AB与车底CD平行,∠2比∠3大10°,∠1是∠2的1911倍,则∠2的度数是________.18.以下三种沿AB折叠纸带的方法:(1)如图①,展开后测得∠1=∠2;(2)如图②,展开后测得∠1=∠2且∠3=∠4;(3)如图③,测得∠1=∠2.其中能判定纸带两条边线a,b互相平行的是________(填序号).三解答题19.如图,直线AB,CD相交于O,OE是∠AOD的平分线,∠AOC=28°,求∠AOE的度数.20.如图,在方格纸中,每个小方格的边长均为1个长度单位,三角形ABC的三个顶点和点P都在小方格的顶点上.要求:①将三角形ABC平移,使点P落在平移后的三角形内部;②平移后的三角形的顶点在方格的顶点上.请你在图甲和图乙中分别画出符合要求的一个示意图,并写出平移的方法.21.如图,已知AE⊥BC,FG⊥BC,∠1=∠2.求证:AB∥CD.22.如图,直线AB,CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠AOC的对顶角为________,∠BOE的邻补角为________;(2)若∠AOC=70°,且∠BOE∶∠EOD=2∶3,求∠AOE的度数.23.如图,现有以下3个论断:①AB∥CD;②∠B=∠C;③∠E=∠F.请以其中2个论断为条件,另一个论断为结论构造命题.(1)你构造的是哪几个命题?(2)你构造的命题是真命题还是假命题?请选择其中一个真命题加以证明.24.如图,已知AB∥CD,CE,BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3……第n次操作,分别作∠ABE n-1和∠DCE n-1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠B+∠C;(2)如图②,求证:∠BE2C=14∠BEC;(3)猜想:若∠E n=b°,求∠BEC的度数.第五章相交线与平行线周周测9 参考答案与解析一、选择题1.D2.C3.B4.B5.C6.D7.D8.A9.A 10.D二、填空题11.21 12.50 13.CD 垂线段最短14.22°15.20016.林晶(答案不唯一)17.55°18.①②三、解答题19.解:∵∠AOC=28°,∴∠AOD=180°-∠AOC=180°-28°=152°.∵OE是∠AOD的平分线,∴∠AOE=12∠AOD=12×152°=76°.20.解:如图,共有3种情况:图甲图乙图丙图甲:将三角形ABC向右平移4个单位长度;图乙:将三角形ABC先向右平移4个单位长度,再向上平移1个单位长度;图丙:将三角形ABC先向右平移3个单位长度,再向上平移1个单位长度.21.证明:∵AE⊥BC,FG⊥BC,∴AE∥FG,∴∠1=∠A.∵∠1=∠2,∴∠2=∠A,∴AB∥CD.22.解:(1)∠BOD ∠AOE(2)∵∠AOC=70°,∴∠BOD=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=25∠BOD=25×70°=28°,∴∠AOE=180°-∠BOE=180°-28°=152°.23.解:(1)命题一:如果AB∥CD,∠B=∠C,那么∠E=∠F.命题二:如果AB∥CD,∠E=∠F,那么∠B=∠C.命题三:如果∠B=∠C,∠E=∠F,那么AB∥CD.(2)三个命题都是真命题.若选择命题(1),证明如下:∵AB∥CD,∴∠B=∠CDF.∵∠B=∠C,∴∠CDF=∠C,∴AC∥BD,∴∠E=∠F.24.(1)证明:过点E向左作EF∥AB.∵AB∥CD,∴AB∥CD∥EF,∴∠BEC=∠B,∠CEF=∠C,∴∠BEC=∠BEF+∠CEF=∠B+∠C.(2)证明:同(1)理,可证∠BE1C=∠ABE1+∠DCE1,∠BE2C=∠ABE2+∠DCE2.∵∠ABE和∠DCE的平分线交于点E1,∠ABE1和∠DCE1交于点E2,∴∠ABE1=12∠ABE,∠DCE1=12∠DCE,∠ABE2=12∠ABE1,∠DCE2=12∠DCE1,∴∠BE1C=12∠ABE+12∠DCE=12∠BEC,∴∠BE2C=12×12∠ABE+12×12∠DCE=14∠BEC.(3)由(1)(2)知∠BE1C=12∠BEC,∠BE2C=14∠BEC,∴∠∠BE n C=12n⎛⎫⎪⎝⎭∠BEC,∴若∠E n=b°,∠BEC=2n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
D
E
C
A B
初七年级周考数学测试卷三
2009.4.9
班级姓名:分数
一、选择题(3′×12=36′)
1、如图, 直线AB、CD相交于O点, ∠AOD与∠BOC的和为240°, 则∠AOC等于()
A. 62°
B. 180°
C. 70°
D. 60°
2、如图, ∠1、∠2是哪两条直线被一条直线所截, 形成的内错角()
A. AD、BC被BD所截
B. AB、CD被BD所截
C. AB、AD被BD所截
D. CD、BC被BD所截
3、如果点P(x, y)在第二象限, 且|x|=3, |y|=2, 则点P的坐标是()
A. (-3, 2)
B.(―3, ―2)
C. (3, -2)
D. (3, 2)
4、在平面直角坐标系中, 点(3, 5)可以看作是点(1, 2)()
A. 先向左平移2个单位, 再向上平移3个单位后得到的
B. 先向右平移2个单位, 再向下平移3个单位后得到的
C. 先向右平移2个单位, 再向上平移3个单位后得到的
D. 先向左平移2个单位, 再向下平移3个单位后得到的
5、如图,在△ABC中,∠A=70°,∠B=60°,点D在BC的延长线上,则∠ACD=()°
A.140°B.130°C.120°D.110°
6、下列语句正确的是()
A. 过直线外一点不一定能作直线的垂线
B. 直线上的点到该直线没有垂线
C. 点到直线的距离就是这点到直线的垂线段的长度
D. 已知点到已知直线的距离不是一个常数
7、以下列各组线段为边,能组成三角形的是()
A.1cm, 2cm, 4cm
B.8cm, 6cm, 4cm
C.12cm, 5cm, 6cm
D.2cm, 3cm, 6cm.
8、如图, 有下列四种说法: ①∠1和∠3是同位角; ②∠4和∠1是同位角;
③∠2和∠5是内错角; ④∠2和∠3是同旁内角; 其中正确的个数是()
A. 0
B. 1
C. 2
D. 3
9、边长相同的两个正多边形不能镶嵌的是()
A、正三角形和正方形;
B、正三角形和正六边形;
C、正方形和正六边形;
D、正方形和正八边形
10、将原点向右平移3个单位,再向下平移2个单位得点R,且P、R关于原点对称,则P点坐标为()A、(3,-2)B、(-3,2)C、(-1,0)D、(1,0)
11、如图, 把一张平行四边形纸片ABCD沿BD对折, 使C点落在E点处,
BE与AD相交于点O, 若∠DBC=20°, 则∠BOD=()
A、60°
B、80°
C、120°
D、140°
12、如图,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥B C,
以下四个结论:①∠ADF=∠E;②∠E=∠ABE;
③∠BAH+2∠EFB=90°;④∠ADF-∠AFD=∠BAH-∠C其中正确的有()个。
A、1
B、2
C、3
D、4二、填空题(4′×3=12′)
13、如图直线AB分别交直线EF、CD于点M、N, 只需添一个
条件就可得到EF∥CD.
14、点M(m-1, n)与N(3+m, -3)关于y轴对称, 则m+n=.
15、三条直线a1、a2、a3相交于同一点O,对顶角有对;
n条直线a1、a2、……a n相交于同一点O,对顶角有对。
16、如图,△ABC中,∠A=36°,∠B=68°,CE平分∠ACB,
CD⊥AB于D,DF⊥CE于F,则∠CDF=________度
答题卡
题号 1 2 3 4 5 6 7 8 9 10 11 12 得分
13. 14. 15. 16.
三、解答题(6′×3=18′)
17、画出△ABC中AB边和BC边上的高CM和A N。
18、填空:
∵∠A= (已知),
∴AC∥ED()
∵∠A+ =180°(已知),
∴AB∥FD()
∵∥(已知),
∴∠2+∠AED=180°()
∵AC∥ED(已知),
∴∠C=()
A B
19、如图,已知:AB∥C D,∠B=∠D,求证:BC∥AD
D C
四、解答题:(8′×3=24′)
20、如图是植物园的平面示意图, 点O表示正大门, A、B、C、D、E是5个不同品种的花圃.
(1) 请你写出A、B、C这3个花圃的坐标;
(2) 若点F的坐标是(10,4),请你在图中指出点F的位置;
(3) 位于正大门北偏东45°的是哪个花圃? 其坐标是多少?
13
2
A
B C
D
F
E
E C B A 21、等腰三角形的两边长为3㎝和7㎝,求此等腰三角形的周长。
22、如图所示,在△ABC 中,∠C-∠B=80°,AE 是∠BAC 的平分线,求∠AEC 的度数.
五、解答题(8′+10′=18′)
23、如图, 已知: ∠FED=∠AHD, ∠GFA=40°, ∠HAQ=15°, ∠ACB=70°, 且AQ 平分∠FAC, 求证: BD ∥GE ∥AH.
24、如图, A 点坐标为(-2, 0), B 点坐标为(0, -3).
(1)作图, 将△ABO 沿x 轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C 点, 过O 点作OG ⊥CE , 垂足为G .
(2) 在(1)的条件下, 求证: ∠COG =∠EDF .
(3)求运动过程中线段AB 扫过的图形的面积。
六、解答题(12′)
25、如图,已知点A (-3,2)、B (2,0),点C 在X 轴上,将△ABC 沿X 轴折叠,使
点A 落在点D 处,
(1)写出D 点的坐标并求AD 的长;
(2)若EF 平分∠AED 交x 轴于F,且∠ACF -∠AEF=15°,求∠EFB 的度数;
(3)过点C 作QH ∥AB 交Y 轴于点H ,AB 交Y 轴于点G ,CP 、GP 分别平分∠BCQ 和∠AGY ,当
点C 在X 轴上运动时,∠CPG 的度数是否发生变化?若不变求其度数;若变化,求其变化范围。
A(-2,0)B(0,-3)
y
x。