用Ansys分析有浸润线的土石坝平面渗流问题

合集下载

anays渗流

anays渗流

第2章水工流体力学问题的ANSYS模拟ANSYS软件具有专门针对流体的计算模块,可以模拟理想流体的流动、稳定和非稳定渗流。

本章主要介绍利用ANSYS进行简单的渗流分析和流体分析。

2.1 水工渗流场模拟需要指出的是,在ANSYS中并不存在专门的渗流分析模块,但由于渗流场与温度场的有限元计算公式相同,因此可以利用ANSYS中的热分析模块进行分析,只需相应参数对应采取即可。

鉴于问题的复杂性,这里仅用一个重力坝的例子进行分析。

2.1.1 数值模拟对象考虑混凝土大坝下水的渗流。

假定坝下土壤的渗流系数K约为每天15米,即K=15m/天,试确定该土壤的渗流速度分布。

本问题为一个稳态渗流问题,可以利用ANSYS的稳态热传导进行分析。

2.1.2 有限元模型本问题中,考虑混凝土坝体不透水,渗流主要发生在坝基部分,因此,模型仅涉及坝基,具体建模过程如下:1.模型的定义启动ANSYS,设置好文件夹及文件名;2.设置分析类型点击Preferences,在弹出的对话框中选择Thermal,选择热分析,点击OK;随后进入前处理模块:Main Menu>PreProcessor;3.设置单元类型对于二维渗流(热)分析,采用Plane55单元。

Element Type>Add/Edit/Delete…,弹出对话框:4.定义材料参数稳态渗流分析中,主要设置材料的渗透系数(本问题中,坝基材料的渗透系数为K =15m/天,其对应热分析中的热传导系数)。

设置方法如下:Material Props>Material Models …,弹出对话框中:5.建立数学模型本问题中,通过创建关键点,再由关键点直接生成二维(坝基)面。

●在命令行中,分别输入关键点命令,生成关键点:K,1,0,0;K,2,5,0;K,3,9,0;K,4,16,0;K,5,16,4;K,6,16,5;K,7,9,5;K,8,9,4;K,9,5,4;K,10,5,5;K,11,0,5;K,12,0,4●连接关键点生成面Modelling>Creat>Areas>Arbitary>Throuth KPs…,弹出点选择对话框:8,9)、(3,4,5,8)、(8,5,6,7)、(12、9,10,11),生成其它四个面。

ANSYS软件在土坝渗流稳定计算中的应用_许玉景

ANSYS软件在土坝渗流稳定计算中的应用_许玉景

文章编号:0559-9342(2003)04-0069-03ANSYS软件在土坝渗流稳定计算中的应用许玉景1,孙克俐2,黄福才1(1.天津市水利勘测设计院,天津 300204;2.天津大学建工学院,天津 300072)关键词:ANSYS软件;温度场;渗流场;死活单元;浸润线;渗流稳定计算;土坝摘 要:根据基本方程及定解条件的比较分析,将ANSYS软件的温度场分析功能应用于渗流场的分析,并采用死活单元技术,通过迭代算法计算自由水面位置(浸润线),解决了土坝渗流稳定问题的求解。

该方法可以解决复杂边界、多种介质的渗流问题,为工程应用提供极大的便利。

Applicatio n of ANSYS in the Earth dam seepage flow stability computatio nXU Yu-jing1,SUN Ke-li2,HUANG Fu-cai1(1.Tianjin Water Conservancy Survey&Design Institute,Tianjin300204;2.Civil Engineering School of the Tianjin University,Tianjin300072)Key Words:ANSYS software,temperature field,seepage flow field,element birth or death,saturation line,seepage flow stability calculation,earth damA bstract:According to comparison of the fundamental equations and boundary conditions,the ANSYS function of temperaturefield analysis is applied to that of seepage flow field,the element birth or death technique with overlap method is adopted to calculate the free water surface site(saturation line),in order to solve the problem of Earth dam seepage flow stability.This method can solve the seepage flow problem of complex boundaries and mediums.中图分类号:TV139.14;TV641 文献标识码:B渗流会对土坝稳定产生严重的危害。

浅谈基于ANSYS的土石坝渗流场模拟

浅谈基于ANSYS的土石坝渗流场模拟

介 质 的分界线应 该与 非均质 岩层 的分界 线也 要保 持

情况 , 由于 A S S软件 没有 提供模 拟 图的给水 度 的 NY 功能 , 不能直接 分析 非 稳 定 渗 流 的情 况 和渗 流 问题
本身 的复杂性 , 采用 数值 模拟方 法 , 如何真 实准确 的 模 拟实 际渗流是 一个 需要 不断完 善 的过 程 。从 而研
参考文 献 :
[ ] 毛昶熙 . 流计算分析与控制 [ . 1 渗 M] 北京 : 中国水利水
电 出 版社ห้องสมุดไป่ตู้,o3 2o.
4 工 程 实例 分 析
本 文利用 西安市 金盆水 利枢 纽工 程为例 。该 工 程 为大 型二等工 程 , 于黏 土心墙 土石 坝 , 址位 于 属 坝
西安 市 的周至县境 内 , 周至 县城 约 1 k 距 3 m。该 枢纽
有重要 地位 。对 土石 坝 而 言 , 透水 流 除浸 湿 土 体 渗 降低其 强度指 标外 , 当渗 透 力大 到 一定 程 度 时将 导 致坝坡 滑动 、 防渗 体 被击 穿 、 坝基 管 涌 、 土 等重 大 流 渗流事 故 , 接 影 响大 坝 的运 行安 全 。对 于 混凝 土 直
受力安 全 ; 岸坝 肩渗透 压力 ( 下水 位 ) 两 地 的高 地关 系到坝 肩岸坡 岩体 的抗 滑稳定安 全 。带 有浸蚀 性 的
渗流对 建筑 物和 坝基 的可溶 性 物质 造 成 浸蚀 , 响 影
结构安 全 问题 。此 外 , 大 的渗 透 损 失也 将 减少 工 过
程效益 。
( ) 散化 : 求 解 域 划 分 为具 有 一 定 几 何形 2离 将 状 的单元 进行单 元 编号 并 确定 插 值 函数 , 对结 点 进 行 总体 编号和单元 上 的局部 编号并 给 出结 点局部 标

基于ANSYS的复杂地质条件下大型渗流场计算

基于ANSYS的复杂地质条件下大型渗流场计算

基于ANSYS的复杂地质条件下大型渗流场计算水电站设计DHPS第26卷第4期2010年12月基于ANSYS的复杂地质条件下大型渗流场计算段斌,何江达,王瑶(1.国电大渡河流域水电开发有限公司,四川成都610041;2.四川大学水利水电学院,四川成都610065;3.四川电力进出口公司,四川成都610061)摘要:利用ANSYS温度场分析模块计算大岗山水电站复杂地质条件下的大型渗流场,取得了较好的效果.关键词:ANSYS软件;渗流场;计算方法;应用软件;大岗山水电站中图法分类号:TV223.6文献标识码:B文章编号:1003—9805(2010)04—0042—04 1ANSYS进行渗流分析的理论基础1.1ANSYS软件基本情况ANSYS软件是融结构,热,流体,电磁,声学于一体的大型通用有限元分析软件.该软件具有强大的前处理及后处理功能,它的图形界面和交互式操作大大简化了计算模型的创建过程,同时在计算之前,可通过图形显示来验证模型的几何形状,材料及边界条件;在后处理中,其计算结果可以采用多种方式输出,比如计算结果排序和检索,彩色云图,等值线,动画显示等等.与其他通用软件比较,其前,后处理功能优于同类型的软件.ANSYS为我们提供了一个优良的工作环境,使我们从繁琐,单调的常规有限元编程中解脱出来.该软件可以进行热,电, 磁,流体和结构等有限元分析,并可以进行多物理场耦合分析.由于渗流场和温度场可以互相比拟,故采用ANSYS的温度场分析功能进行渗流场的计算,可以取得很好的效果¨.1.2ANSYS温度场分析模块分析渗流场理论基础温度场与渗流场之间具有理论基础相似,微分方程相似,初始条件与边界条件的相似等特点. ANSYS中渗流场与温度场各种相应量比较见表1[一422ANSYS参数化设计语言及其在本文中的运用ANSYS参数化设计语言(ANSYSParameter DesignLanguage,简称APDL)是一种可用来自动完成有限元常规分析或通过参数化变量方式建立分析模型的脚本语言,用建立智能化分析的手段为用户提供自动完成有限元分析过程,即程序的输入可设定为根据制定的函数,变量以及选用的分析类型来做决定,是完成优化设计和自适应网格的最主要的基础_5J.APDL允许复杂的数据输入,使用户实际上对任何设计或分析属性有控制权,例如尺寸,材料,荷载,约束位置和网格密度等...APDL有以下功能:(1)参数;(2)表达式和函数;(3)分支和循环;(4)重复功能和复写;(5)宏;(6)用户子程序.APDL有很多优点,其中之一是可以利用AP-DL从事二次开发.本文借助APDL编制了相应的APDL模块来自动迭代计算出渗流边界和自由面.为了便于与结构计算网格相对应,计算中采取了固定网格法(不变网格法).其中干燥区(自由面以上的区域)的渗透系数取很低的值(本文在具体计算时,干燥区渗透系数取1.0X10cm/s),从而可以实现干燥区和饱和区进行联立统一求解,避免了干燥区渗透系数取为0时导致渗透矩阵奇异而无法进表1ANSYS中渗流场与温度场各种相应量的比较收稿日期:2009一O2—25作者简介:段斌(1980一),男,四川绵阳人,工程师,主要从事水电工程技术和管理工作.行求解.具体计算时,首先将整个计算域视为饱和区,已知的边界条件以实际作用范围输入到计算模型中,通过反复迭代便可最终确定自由面位置.3工程应用3.1工程概况大岗山水电站是大渡河干流规划中的第十四级电站,位于四川省雅安市石棉县境内.工程等级为一等大(1)型工程,开发任务以发电为主,电站总装机容量2600MW,设计多年平均发电量114.3亿kW?h.水库正常蓄水位1130m,总库容7.42亿Ill,调节库容1.17亿IIl,具有日调节能力.电站枢纽工程由最大坝高210m的混凝土双曲拱坝,左岸地下厂房,右岸泄洪洞等组成.3.2地质条件大岗山水电站坝址区河段呈"Q"形嵌入河曲,两岸山体雄厚,谷坡陡峻,河谷狭窄且对称.坝址区地层岩性较为单一,主要为澄江期酸性花岗岩,辉绿岩脉(13)等穿插发育于花岗岩中.厂坝区发育的岩脉,断层众多,其产状以近河流向(NE,SN或NW向)中陡倾角发育为主,垂河流方向(近EW向)发育较少.另外,坝址区还发育有多组裂隙.坝址区发育的岩脉(断层)和多组裂隙共同构成了厂坝区地下水的渗流通道.3.3天然渗流场反演天然渗流场反演分析的目的主要为了确定大岗山水电站三维渗流场的边界水位及岩体的渗透参数, 作为运行期渗流场研究的依据.大岗山水电站天然渗流场反演分析的方法和主要结论参见文献[7].通过反演分析,厂坝区各类岩体的渗透张量见表2.3.4运行期渗流场计算3.4.1计算模型根据大岗山水电站厂坝区主要水工枢纽布置,防渗帷幕布置,排水幕和排水廊道布置情况以及地质地形条件,并考虑计算域的边界效应,三维渗流场有限元计算范围上游取至导流洞进El位置,下游取至导流洞出口位置,顺河向长度约883.0m;横河向左侧边界取至地下厂房洞室群所在的地形分水岭附近,右侧边界取至靠近地形分水岭位置,横河向长度约1423.8m;垂直方向底面取至海拔615.0m.有限元计算坐标定义为:轴:顺河流方向,从上游指向下游为正,轴向方位为SW238.;y轴:垂直河流方向,从右岸指向左岸为正,轴向方位为SE148.;z轴:与x和y垂直,且Z=x×Y,铅直向上.表2厂坝区各向异性岩体的渗透张量雾[芝主.../萎cm~曩s一-1.01×10_41.一等透水组裂隙【对称L822.96.L56m.:3.57x10-4:2.04x10-5.圳.,圳一弱透水组裂隙【对称…;:J………s整个计算域大部分采用空间八节点等参单元进行离散,局部考虑材料介质过渡和地形变化等因素退化为三棱柱和四面体单元,其中运行期计算域共离散为53959个单元和54957个节点.运行期三维网格图见图1,2.3.4.2排水洞(廊道),排水幕的模拟及有关材料的渗透系数在计算模型中,排水洞(廊道)的位置和范围都以节点形式详细模拟.由于排水洞(廊道)在正常运行工况基本不存在失效和出现阻塞的情况,因此其水头按排水洞(廊道)所在高程约束,在迭代计算时,根据排水洞(廊道)是否有排水流量和其水头与位置势是否相等这两个条件来计算渗流自由面. 排水幕的排水效果是通过等效结构面的等效渗透系数来体现的,等效结构面在计算模型中被准确模拟出来,排水幕的等效渗透系数,见表3,主要图1大岗山厂坝区运行期渗流场三维有限元网格43图2大岗山厂坝区运行期坝体+灌浆帷幕+地下厂房三维网格受排水孔尺寸,间距和排数的影响.防渗帷幕在计算模型中以单元形式模拟,有关材料的渗透系数见表4.表3各渗控方案排水幕的等效渗透系数表4设计提供运行期厂坝区部分材料的渗透系数cm/s3.4.3运行期厂区渗流场分析厂区典型剖面的地下水位等势线图,渗透压力等值线图和厂坝区枢纽整体模型的地下水水位(自由面)等值线分别见图3,4.经分析可知:(1)从图3可以看出,由于厂区顺河向防渗帷幕,帷幕后的排水幕(两排)和4层排水廊道(高程1032m,987m,957m,931.4m)的"前堵后排"作用,库水向厂区渗流的自由面在防渗帷幕之后附近显着降低.另外,由于B岩脉的渗透系数远大于周围岩体的渗透系数,防渗帷幕在靠近库水一侧的自由面也有一定的降低.厂区三大洞室中,地下厂房,主变室周边地下水位线较低;对应的外水压力较小,而调压室周边地下水位线相对较高;外水压力相对较大,主要受靠山内一侧的边界水位和运行期调压室水位影响所致.(2)从图4可以看出,靠山内侧的调压室,由于防渗帷幕没有延伸至调压室,而仅有987m高程的排水廊道排水作用,在山体内较高的天然地下水渗流作用,调压室上游侧的地下水位线较高;渗透压力较大,而主变室和地下厂房所在区,虽然山体天然地下水位较高,但是由于上游侧的防渗帷幕,灌浆廊道和4层排水廊道(1032m,987m,957m,931.4m)的"前堵后排"作用,在主变室和地下厂房上游侧地下水位线显着降低,渗透压力也较小.(3)计算成果表明,设计方案的防渗,排水措施能有效地降低厂区三大洞室(尤其是地下厂房和主13t512i51Il5鲁1015\9159157l56I50lO02002004005006007008009000lO0200300400500600700800900 图3运行期厂区三大洞室横剖面水位/渗压等值线∞撕∞啪鲁\13151215llt5吕]015\,158I57】56佰埘5I£l5【llj蛊i.15\N翱58巧7156】5图4运行期厂区主机间纵剖面水位/渗压等值线变室)周边的地下水位线,厂区三大洞室周边承受的外水压力不大,调压室底部最大压力水头约50m, 地下厂房最大压力水头约10m,而主变室基本位于干燥区,表明设计方案的渗控效果显着.(4)计算成果还表明,厂区1032m高程的排水廊道基本处于干燥区,其对厂区高高程的排水作用不大,可以考虑取消.3.4.4运行期坝区渗流场分析坝区典型剖面的地下水位等势线和渗透压力等值线见图5.经分析可知:(1)由于坝基防渗帷幕对岩体,尤其是坝肩较高高程的弱透水岩体段的阻渗作用,以及帷幕之后排水幕和坝肩排水洞的强排水作用,坝基帷幕前后的水头损失很大,排水幕之后的坝底扬压力很小,坝基建基面925m高程排水幕处扬压力水头减小约90m,位于两岸坝肩中部的坝底扬压力水头减小约120~150m,位于两岸坝肩上部的坝底扬压力水头O10O啪300枷5006o0700800减小约80—100m.(2)坝后水垫塘左岸抗力体排水洞区的自由面位置较低,右岸抗力体排水洞区的自由面位置较高. 由于坝体部位的帷幕,排水幕和排水洞的"前堵后排"作用,使得坝后水垫塘两岸抗力体所在区域的地下水渗流主要受两岸岩体中天然地下水位(右岸高,左岸低)控制.3.4.5运行期厂坝区渗流量通过厂坝区三维渗流场计算,可以获得前述不同计算方案通过厂区排水廊道,地下洞室,防渗帷幕,坝区排水廊道,抗力体排水洞的渗流量,见表5. 4结论(1)本文以大型通用有限元计算软件ANSYS为平台,使用ANSYS温度场分析模块,并用APDL 编制了相应的计算程序,计算了三维渗流场.该方11151015g们5\B157l66150lo0瑚300400500600700800X/mX/m(a)渗压等值线(b)水位等势线图5运行期坝体最大横剖面水位和渗压等值线表5运行期厂坝区各部位渗流量m./d(下转第54页)45图5材料赋值,施加约束和荷载后的有限元模型(a)主压应力等值线p0¨E~zaphic£图6典型等值线esel,S,elem,,1,1081单元选择sfgrad,pres,,Z,2520.00,一9810.001水荷载施加sfe,all,1,pres(7)计算成果检查.根据已经建好的三维拱坝模型进行线弹性有限元计算,典型的位移,应力等值线见图6.,经与拱梁分载法计算成果比较,其分布规律和拱梁分载法吻合良好,极值差别不大,有限元计算结果可靠.5结语根据ANSYS有限元软件的内在规定,用编程语言编制大坝ANSYS---维模型自动建立的方法和(b)顺河向位移等值线p.'地0r●phjc●思路,能大幅节约建模时间,提高工作效率.(1)直接进行节点,单元建立的三维模型建立方法,节点,单元可根据需要随意调整,且不易发生单元奇异,有利于后面的计算收敛,减少奇异单元检查工作.(2)合理的单元规划很重要,根据建筑物的重要性和受力特点进行单元划分分组,并以每一组单元的交界作为单元控制面进行不同组单元的衔接, 单元的疏密能满足计算的要求,单元编号有序,更易控制.(3)前处理采用生成ANSYS命令流文件的方式进行模型材料的赋值,约束及荷载的施加,方便,准确,且便于修改.(上接第45页)法将ANSYS软件与复杂渗流场计算结合起来,方便人们进行大型复杂模型的建模和后处理工作,所建立的有限元计算模型不仅适用于渗流场的计算,还可用于应力场的计算.(2)大岗山水电站地质情况复杂,运行期厂坝区渗流场计算模型复杂,单元众多,渗控措施模拟难度大,采用ANSYS温度场分析模块后,由于其强大的前处理,后处理,二次开发的功能,可以较方便地对大岗山水电站厂坝区渗流场进行模拟计算,并取得较好的效果.参考文献:54[1]ANSYS中国公司.ANSYS高级技术分析指南[M].北京:美国ANSYS北京办事处,2005.[2]任辉启.ANSYS7.0工程分析实例详解[M].北京:人民邮电出版社,2004.[3]李景涌.有限元法[M].北京:北京邮电大学出版社,1999.[4]李军华.大坝渗流监测系统设计及渗流计算机模拟[D].郑州:郑州大学,2004.[5]龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].北京: 机械工业出版社,2004.[6]刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社,20o5.[7]唐正州,段斌,何江达,等.大岗山水电站厂坝区三维天然渗流场反演分析[J].四川水利,2007,(1).。

基于ANSYS二次开发的心墙堆石坝渗流分析

基于ANSYS二次开发的心墙堆石坝渗流分析
的功 能 。
确定 复合单 元 的等效渗 透矩 阵 。该方 法需要 判 断 自由 面与 复合单 元 的交截情 况 , 对于 交截情 况较 多 的问题 ,
程序 处理上 有 些不便 。 本文基 于 A N S Y S热分 析 模 块 进 行 二 次 开发 应 用
前人 基于 A N S Y S热 分析 模 块 进 行 二 次 开 发 用 于 渗 流稳定 分析 开展 了很多 研究 。许玉 景运 用死 活单元
第4 4卷 第 1 9期
2 0 1 3年 1 0月
人 民 长 江
Ya ng t z e Ri v e r
Vo 1 . 4 4. NO .1 9
0e t .. 2 01 3
文章编号 : 1 0 0 1 — 4 1 7 9 ( 2 0 1 3 ) 1 9— 0 0 1 2— 0 4
关 键 词: 浸润线 ; A N S Y S二 次 开 发 ; 渗 流 稳 定 ;心墙 堆石 坝 文献标志码 : A
中 图 法分 类 号 : T V 6 4 1 . 4 1
据不 完全 统计 , 我 国已建 大坝有 8 . 7万 余 座 , 9 5 % 以上为 土石坝 , 且在 我 国高坝 中所 占的 比重 呈 逐 渐增
的权 系数 , 然 后按 加权 平均确 定单 元 的等效渗 透 系数 , 从 而计 算 出相 关 渗 流 物 理 量 。这 种 方 法 的 核 心 是
坝 渗流稳 定进 行分 析和评 价 。 A N S Y S作为一 种 大型通 用 数值 分 析 软件 , 拥 有 强 大 的分 析及 前后处 理 功 能 , 但 在水 工 结 构 方 面 的实 际 运用 中缺乏 处理具 有 自由面 的无 压 渗 流 问题 的能 力 ,

基于ANSYS的大坝渗流分析研究

基于ANSYS的大坝渗流分析研究

总体而言,ANSYS在大坝渗流分析中具有重要的应用价值和潜力。未来可以 进一步探索ANSYS在解决实际工程问题中的其他应用,为水利工程领域的科学研 究和技术发展提供更全面的支持。
谢谢观看
然而,ANSYS在应用于大坝渗流分析时也存在一定的局限性。例如,对于复 杂的三维模型,网格划分和计算量可能会变得非常大,需要较高的计算资源和时 间成本。此外,ANSYS的数值计算结果也会受到许多因素的影响,如模型的简化 程度、参数设置是否合理等。因此,在使用ANSYS进行大坝渗流分析时,需要充 分考虑这些因素,并进行必要的实验验证和对比分析,以确保分析结果的准确性 和可靠性。
结论
本次演示介绍了基于ANSYS的大坝渗流分析方法及其应用。通过文献综述, 总结了ANSYS在水利工程领域的应用及研究现状,指出了现有研究的不足之处。 在此基础上,阐述了ANSYS进行大坝渗流分析的基本原理、方法和流程,并通过 实例分析展示了ANSYS在解决实际工程问题中的应用。最后,对实例分析的结果 进行了讨论和评价,总结了ANSYS在大坝渗流分析中的优势和适用性,并指出了 其局限性。
结果表明,ANSYS作为一种强大的数值计算和可视化工具,在应用于大坝渗 流分析时能够有效地模拟渗流场的分布情况和影响因素。同时,ANSYS还具有广 泛的适用性和灵活性,可以针对不同的工程实际问题进行模型的灵活调整和优化 计算。然而,对于复杂的三维模型和特定的工程问题,仍需充分考虑ANSYS的局 限性,并进行必要的实验验证和对比分析。
实例分析
以某实际大坝渗流问题为例,运用ANSYS进行渗流分析。首先,根据大坝的 结构特征和实际运行环境,建立大坝及周围区域的几何模型;然后,根据工程实 际情况,将模型划分为适当的计算网格;接着,设定合理的边界条件和材料属性, 进行数值计算;最后,根据计算结果进行后处理,得到渗流场的分布情况。

基于ANSYS软件的堤防渗流分析

基于ANSYS软件的堤防渗流分析

的渗透 系数 , 坐标轴 方向与渗透主 方向一致 ; 为 渗流 区域 ; S 为已知水头值 的边 界 曲面 ; S 2 为给定
流量边界曲面 ; S , 为浸润面 ; S . 为逸 出段 ; g为边界
上 的单 位 面积 流 量 ,这 里 q = O表 示 为 无流 量交 换
由于有 限元法能够建立各 种复杂 的几 何模 型 、 具 有强大的前 、 后处理 功能等特点 , 其越来越 多的被
堤防前后均取 2 0 m, 沿堤防轴线方 向取 3 0 m。模 拟 中依次建立管道 、 回填土体 ( 形状按开挖尺寸定
头及等势线云 图, 根据计算结果 , 堤防 的最大渗透
比降为 0 . 4 7 6 , 管道 穿越处筑堤材料 的允许 渗透 比 降为 0 . 5 O . 8 o , 即发 生 5 O 年 一遇洪水 时 , 堤 防的
1 计算原 理
对于各 向异性 、 非均质的连续介质 , 服从 达西
定律 的稳定渗流问题 , 可归结为下列定 解问题 :
軎 鲁 a ( k , 等) + 軎 誓) = 0 在 以上的单元 的渗透系数 ,来调 整这 部分单元 对总

单元渗透矩阵调整法的原理 上 ,通过 改变 自由面
【 摘 要】 某管道 穿越 西里尼 西 河的计 算 实例表 明, A N S Y S 软件 中的热分析模 块 ,可以 用来进
行堤防的渗流分析。对计算结果的分析发现 , 回填土体的渗透系数, 可以作为衡量管道穿越 工
程对堤 防影响的 工程 质量控 制指标 。
【 关键词 】 /  ̄ N S Y S 堤 防; 渗 流分析 【 中图分类号 】 T V 2 2 3 . 4
后 c 0 n ( ) + 后 c o n ( n, ) +

ANSYS有限元生死单元技术在砼面板堆石坝渗流计算中的研究与应用

ANSYS有限元生死单元技术在砼面板堆石坝渗流计算中的研究与应用
2011 年 6 月 第 3 期 142~146
甘 肃 农 业 大 学 学 报 J OU RNAL O F GANSU A GRICUL TU RAL UN 单元技术在砼面板堆石坝 渗流计算中的研究与应用
吴建东 ,许健
(甘肃农业大学工学院 ,甘肃 兰州 730070)
WU J ian2do ng , XU J ian
(College of Engineering , Gansu Agricult ural U niversity , Lanzho u 730070 , China)
Abstract :Based o n t he basic t heory of seepage and co nt rol equatio ns , a new finite2element seepage cal2 culatio n mat hematical model of co ncrete face rockfill dam was p ropo sed. By utilizing t he similarit y of tem2 perat ure and seepage field and large2scale finite2element co mp utatio n soft ware AN S YS , ekill and ealive technology co uld be used to kill t he unit above t he infilt ratio n line and activate t he unit below t he infilt ra2 tio n line while impo sing correspo nding bo rder co nditio n , and finally o btained t he infilt ratio n line and t he seepage speed of t he dam t hro ugh simulatio n. The result s suggested t hat t he model accuracy meet t he p ro2 ject requirement s , at t he same time t he model was simple and t he result s were int uitive.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用Ansys分析有浸润线的土石坝平面渗流问题
土石坝渗流分析,采用非饱和土渗流参数,迭代计算浸润线,根据前次计算结果,不断修改单元的渗透系数和浸润线出口位置,直到满足精度要求。

本算例的土石坝体型比较简单.采用非饱和渗流计算.即渗透系数为空隙压力的函数.首先建立一个数据文件PPPP.TXT,存储渗透系数函数关系,如下。

第一列为空隙压力值(水头M),第二列为渗透系数指数,渗透系数等于10^A(M/D)。

-10.00 -4.0E+00
-9.00 -3.6E+00
-8.00 -3.2E+00
-7.00 -2.8E+00
-6.00 -2.4E+00
-5.00 -2.0E+00
-4.00 -1.6E+00
-3.00 -1.2E+00
-2.00 -8.0E-01
-1.00 -4.0E-01
0.00 0.0E+00
土坝顶宽4M,上下游坡比均为1:2,总高12M,底宽52M。

上游水深8M,下游无水。

FINI
/TITLE, EARTHDAM SEEPAGE
/FILNAME,SEEPAGE5
/PLOPTS,DATE,0
*DIM,TPRE,TABLE,11,1,1,PRESS,KKPE ! 定义水压与渗透系数的关系数组
*TREAD,TPRE,PPPP,TXT ! 读入数组
*DIM,NCON,ARRAY,4 ! 定义数组,用于存贮单元四个节点号
/PREP7
SMRT,OFF
ANTYPE,STATIC ! THERMAL ANALYSIS
ET,1,PLANE55
MP,KXX,1,1 ! 饱和状态下的渗透系数
MP,KXX,2,1E-4 ! 完全干燥下的渗透系数,假设空隙水压力小于-10M时
K,1,24,12
K,2,24,0
K,3,0,0
K,4,28,12
K,5,28,0
K,6,52,0
L,1,3
L,3,2
L,1,2
L,4,5
L,5,6
L,4,6
LESIZE,ALL,,,24
A,1,3,2
A,1,2,5,4
A,4,5,6
MSHK,2 ! MAPPED AREA MESH IF POSSIBLE
MSHA,0,2D ! USING QUADS
AMESH,ALL ! MESH AREAS
NUMMRG,NODE ! MERGE NODES AT BOTTOM OF CAISSON
*GET,N_MAX,NODE,,NUM,MAX ! 获得最大节点号
*GET,E_MAX,ELEM,,NUM,MAX ! 获得最大单元号
*DIM,N_TEMP,ARRAY,N_MAX ! 定义节点温度变量-总水头
*DIM,N_PRE,ARRAY,N_MAX ! 定义节点压力水头变量
!定义上游面总水头值
LSEL,S,LINE,,1
NSLL,S,1
NSEL,R,LOC,Y,0,8
D,ALL,TEMP,8 !定义上游面总水头值
!定义下游面总水头值
LSEL,S,LINE,,6
NSLL,S,1
*GET,N_NUM2,NODE,,COUNT
*DIM,N_NO2,ARRAY,N_NUM2
II=0
*DO,I,1,N_MAX
*IF,NSEL(I),EQ,1,THEN ! 判断节点是否选中
II=II+1
N_NO2(II)=I ! 存储渗流可能出口节点编号
*ENDIF
*ENDDO
NSEL,R,LOC,Y,0,8 ! 第一次计算,仅假设浸润线出口在8M高位置,与上游同高*GET,N_NUM,NODE,,COUNT ! 获得渗流出口节点总数
*DIM,N_NO,ARRAY,N_NUM ! 定义变量,存储渗流出口节点编号
II=0
*DO,I,1,N_MAX
*IF,NSEL(I),EQ,1,THEN ! 判断节点是否选中
II=II+1
N_NO(II)=I ! 存储渗流出口节点编号
*ENDIF
*ENDDO
*DO,I,1,N_NUM
D,N_NO(I),TEMP,NY(N_NO(I)) ! 定义下游面总水头值
*ENDDO
ALLSEL,ALL
FINISH
/SOLU
SOLVE
FINISH
!!!第一次计算完毕
!-------------------------------------------------------------------------
!迭代计算
CONUTT=20 ! 最大循环次数
DD_HEAT=0.001 ! 前后两次计算,总水头最大允许计算差
CHUK_ST=3 ! 出口边界条件重新设定的起始点
CHUK_MAXY2=10E5 ! 临时变量,用于存储浸润线出口坐标
*DO,COM_NUM,1,CONUTT
DD_H=0
/POST1
SET,1
*DO,I,1,N_MAX
*IF,COM_NUM,GT,CHUK_ST+1,THEN
DD1=N_TEMP(I)
*IF,ABS(DD1-TEMP(I)),GT,DD_H,THEN
DD_H=ABS(DD1-TEMP(I))
*ENDIF
*ENDIF
N_TEMP(I)=TEMP(I) ! 计算节点温度(总水头)
N_PRE(I)=N_TEMP(I)-NY(I) ! 计算节点压力,总水头-Y坐标
*ENDDO
*IF,COM_NUM,GT,CHUK_ST+1,THEN
*IF,DD_H,LE,DD_HEAT,THEN
*EXIT
*ENDIF
*ENDIF
/PREP7
! 重新给每个单元设定材料
MATNUM=2
*DO,I,1,E_MAX
*DO,KK,1,4
*GET,NCON(KK),ELEM,I,NODE,KK ! 获取单元四个节点编号
*ENDDO
TEMP_Y=(N_TEMP(NCON(1))+N_TEMP(NCON(2))+N_TEMP(NCON(3))+N_TEMP(NCON(4)))/4 !计算单元中心点平均温度
RESS_T=TEMP_Y-CENTRY(I)
*IF,PRESS_T,GT,0,THEN
RESS_T=0
MPCHG,1,I
*ELSEIF,PRESS_T,LT,-10,THEN
RESS_T=-10
MPCHG,2,I
*ELSE
MP,KXX,MATNUM+1,10**TPRE(PRESS_T)
MPCHG,MATNUM+1,I
MATNUM=MATNUM+1
*ENDIF
*ENDDO
! 重新设定出口边界条件
*IF,CONUTT,GT,CHUK_ST,THEN !前CHUK_ST次采用原边界条件
LSEL,S,LINE,,6
NSLL,S,1
DDELE,ALL,TEMP ! 删除原边界条件
II=0
CHUK_MAXY=0
*DO,JJ,1,N_NUM2
*IF,N_TEMP(N_NO2(JJ)),GE,NY(N_NO2(JJ)),THEN
D,N_NO2(JJ),TEMP,NY(N_NO2(JJ)) ! 总水头=Y坐标
*IF,NY(N_NO2(JJ)),GT,CHUK_MAXY,THEN
CHUK_MAXY=NY(N_NO2(JJ))
*ENDIF
*ENDIF
*ENDDO
*IF,CHUK_MAXY2,NE,CHUK_MAXY,THEN ! 判断前后两次计算的浸润线出口位置是否相同 NSEL,R,LOC,Y,CHUK_MAXY ! 选择最高节点
*IF,CHUK_MAXY,GT,0,THEN
DDELE,ALL,TEMP ! 删除出口最高节点边界条件
*ENDIF
CHUK_MAXY2=CHUK_MAXY
*ENDIF
*ENDIF
ALLSEL,ALL
FINI
/SOLU
SOLVE
FINISH
*ENDDO
SAVE
!迭代计算完毕,进入后处理
FINISH
/POST1
/CLABEL,,1
/EDGE,,0
/CONTOUR,,8,0,1,8
PLNSOL,TEMP ! 显示总水头云图
PLVECT,TF, , , ,VECT,ELEM,ON,0
PLVECT,TF, , , ,VECT,NODE,ON,0
LSEL,S,LINE,,6
NSLL,S,1
PRRSOL,HEAT ! PRINT FLOWRATE THROUGH SOIL FSUM,HEAT ! 计算渗流量
*GET,Q_DAY,FSUM,0,ITEM,HEAT
ALLSEL,ALL
SAVE
*DO,I,1,N_MAX
N_TEMP(I)=TEMP(I) ! 计算节点总水头(温度)
N_PRE(I)=N_TEMP(I)-NY(I) ! 计算节点压力,总水头-Y坐标
DNSOL,I,TEMP,,N_PRE(I) ! 将压力水头值复制到节点
*ENDDO
PLNSOL,TEMP ! 显示压力水头云图
FINI。

相关文档
最新文档