友谊水库大坝模型渗流分析

合集下载

水库大坝渗流分析论文

水库大坝渗流分析论文

水库大坝渗流分析论文水库大坝渗流分析论文摘要:某水电站为砼面板砂砾—堆石坝,最大坝高157m,下闸蓄水以后坝后渗流量随库水位上升而增大。

现对可能导致坝后渗流的主要原因进行分析,对大坝安全作出综合评价。

关键词:大坝;渗流;渗透压力;流量;孔隙水压力计;绕渗1、水库渗漏原因分析坝后出现较大的渗流水量基于以下几个主要原因:挡水结构发生破坏;沿构造产生集中渗漏;库水绕过两坝肩的防渗体系产生绕坝渗漏;外水补给。

现对坝后渗流原因进行分析,对大坝安全作出综合评价。

1.1挡水结构破坏坝体主要受力结构由砂砾石构成,目前坝体应力和变形观测成果表明,大坝整体的变形和位移均不大,面板应力水平不高,各接缝位移也远小于止水结构的变形适应能力;而趾板是锚固于坚硬、完整的弱风化基岩上,面板、趾板及其接缝止水结构不会受到结构应力破坏。

沿面板周边布设的11支孔隙水压力计,仅有5支测得了明显的渗透水头,位于河床部位及附近的3支(P-1-05~P-1-07)测得的坝下最高水位为1292.6~1293.1m,较为一致;两岸趾板转角处的P-1-04和P-1-09这2支孔隙水压力计埋设高程分别为1300.040m和1319.250m,最高渗透压力分别为:3.1m和3.677m(相应水位1303.140m和1322.927m)。

估计是由于该两处均位于趾板转角处,存在趾板结构缝和面板周边缝的连接,接缝结构复杂,现场搭接粘结和焊接的质量控制难度较大,因而存在渗漏现象。

但从P-1-04渗透压力随库水位升高而增大后又减小,这应与周边缝止水结构和上游铺盖料的自愈作用有关。

随着库水位的进一步升高P-1-04渗透压力又有所增大,但未超过最高压力值,增大趋势明显小于库水位的变化。

P-1-09的渗透压力变化与P-1-04基本相同。

鉴于此两处的水头压力并不大,因此可以认为这两处的渗漏量亦应该不会很大,且接缝止水结构的自愈作用正在得到发挥。

通过以上分析,可以肯定坝体的主挡水结构处于正常的工作状态,不会产生较大的渗漏。

大坝工程的渗流与渗透性分析

大坝工程的渗流与渗透性分析

大坝工程的渗流与渗透性分析大坝是一种重要的水利工程,用于治理河流、储存水源和发电等多种目的。

在大坝工程中,渗流与渗透性是一项重要的考虑因素。

渗流是指水在土壤或岩石中的渗透和流动过程,而渗透性是指材料通过水的能力。

本文将对大坝工程的渗流与渗透性进行分析和探讨。

首先,大坝工程中的渗流问题是非常重要的。

由于大坝的主要功能是储存和利用水资源,渗流会导致大量的水资源损失。

渗流还可能引发大坝破坏和溃坝等危险情况。

因此,渗流问题必须得到有效的解决和控制。

其次,渗透性是影响渗流的一个关键因素。

渗透性是指土壤或岩石通过水的能力,也是不同材料的一种性质。

渗透性的大小决定了水在土壤或岩石中的渗透速率和流动性。

渗透性与材料的孔隙度、孔隙结构和渗透介质的颗粒分布等因素密切相关。

在大坝工程中,渗透性的分析与评估是非常重要的。

通过对大坝渗透性的评估,可以确定渗透路径和渗透速率,为后续的渗流控制和防护措施提供依据。

同时,在大坝的设计和施工过程中,也需要根据渗透性进行适当的调整和改进,以确保大坝的安全性和稳定性。

为了解决大坝工程中的渗流与渗透性问题,科学方法和技术手段得到了广泛应用。

其中,地质勘探和水文地质调查是最基础的工作。

通过对地质构造和地质层系的研究,可以初步了解大坝周围的地质情况,包括渗透性较高的地质体和渗透阻力较大的地质体。

水文地质调查可以通过水文地质探针、水位监测和地下水位等手段,来评估地下水位和地下水流动情况,为渗透性分析提供数据支持。

此外,也可以通过实地试验和数值模拟的方法进行渗透性分析。

实地试验通常是利用模型坝进行,通过模拟真实的渗透情况,研究渗透路径和渗透速率。

数值模拟是利用计算机模拟方法,基于已知的地质和水文地质数据,模拟渗透过程,以预测和分析不同场景下的渗透行为。

在大坝工程中,渗流与渗透性分析是非常重要的一环。

通过对渗透性的评估和分析,可以为渗流问题的解决提供技术支持和决策依据。

同时,在大坝的设计和施工过程中,应根据渗透性的要求,采取相应的措施和技术,确保大坝的安全性和稳定性。

友谊水库大坝模型渗流分析

友谊水库大坝模型渗流分析
0 7 5 0 0 0 3 、 张家 1 : 7 市 水务 局 , 河北 张家口 0 7 5 0 0 0 )
摘 要 : 大坝渗流是水库大坝常见病 害之一 , 大坝渗流不仅造成水资源流失甚至影响大坝的稳定性 。文章利 用 A N S Y S软件 对河 北省友谊 水库 大坝建立了有限元模 型, 进行 了渗流模拟计算 , 并将计算结果与实测结果进行 比较分析 , 为大坝的除险加固提供
理论 依 据 。
关键 词 : 土石 坝 ; A N S Y S软件 ; 渗 流 计 算 截至 2 0 0 3 年底 , 全 世 界共 建 1 5 m 高 度 以上 大 坝 4 1 4 1 3座 , 其 中 列入 表 2 、 表3 。 土石坝 3 3 9 5 8 座, 占8 2 . 7 %; 目前 , 我国已建水库 8 . 6 万余座 , 大 中型 表 2工况 1 、 2的 实测值 、 计 算值 、 误 差表 水闸 7 . 6万余座l 1 l , 其 中坝高 1 5 m以上 的土石坝近 2万座 , 占世界土 观 测 日期 1 9 9 4年 8月 1 5日 1 9 8 3 年 5月 3 O日 石坝总数 4 8 . 3 %。这些水库在不同程度上均存 在一定 的安全 隐患 , 上游水位 1 1 9 3 m 1 l 8 5 m 除 了 防洪 标 准偏 低 以外 , 有些 土 坝 的 变形 稳 定 和 渗 流稳 定 得 不 到 保 下游 水位 1 1 6 0 m 1 1 6 0 m 证, 这是影响水利枢纽工程安全运行的主要 因素目 。大坝蓄水后 , 在 测 压管位置 实测值 计算值 误差 实测值 计算值 误差 上 下 游水 头差 的作 用 下 , 坝 体 和 坝基 会 出现 渗 流 现 象 , 这将 导致 坝 1 # 2 5 . 4 4 2 5 . 0 6 4 0 . 37 6 l 8 . 3 8 1 7 . 5 6 2 O . 8 2 体出现各种不利 因素导致其功能降低 , 或使大坝存在一定 的安全隐

水库大坝渗流问题及防渗措施

水库大坝渗流问题及防渗措施

《河南水利与南水北调》2023年第7期工程建设与管理水库大坝渗流问题及防渗措施郝雷,庄作义(临沂市水利工程处,山东临沂276000)摘要:渗流一直以来是影响水库大坝安全的重要问题,主要影响因素包括地质条件差、坝基岩体不连续或是坝体填筑材料。

目前主要的处理措施包括在基础下设置灌浆帷幕、在黏土芯接触面设置反滤层、坝体下游设置排水沟、坝址处设置防渗墙等。

由于基础材料力学性能不同、水力压裂、不均匀沉降等问题,坝体易形成裂缝并进一步加剧渗流问题,形成渗流通道,故预防水库大坝渗流的关键点就在于排水。

关键词:渗流;水库大坝;水力压裂;排水中图分类号:TV697.3文献标识码:B文章编号:1673-8853(2023)07-0101-02Seepage Problems and Seepage Control Measures of Reservoir DamHAO Lei,ZHUANG Zuoyi(Linyi Water Conservancy Engineering Office,Linyi276000,China)Abstract:Seepage has always been an important problem affecting the safety of reservoir dams.The main influencing factors include poor geological conditions,discontinuity of dam foundation rock mass or dam filling materials.At present,the main treatment measures include setting up the grouting curtain under the foundation,setting up inverted filter layer on the contact surface of clay core,setting up drainage ditch downstream of the dam body,and setting the anti-seepage wall at the dam site.Due to the different mechanical properties of basic materials,hydraulic fracturing,uneven settlement and other problems,the dam body is prone to form cracks and further aggravate the seepage problem,forming seepage channels.Therefore,the key point to prevent seepage of the reservoir dam is drainage.Key words:seepage;reservoir dam;hydraulic fracturing;drainage0引言水库大坝运行期间可能会出现水力问题,从而威胁其安全。

河道大坝渗流模型与仿真分析

河道大坝渗流模型与仿真分析

- 105 -工 程 技 术兴建河道大坝是重要的水利工程[1]。

通过兴建河道大坝,可以对上下游水位进行有效干预和调控,从而达到枯水期蓄水和丰水期泄洪的目的。

河道大坝在发挥防汛泄洪重要作用的同时,还是储水蓄能、水力发电的重要基础设施[2]。

河道大坝对人们具有重要意义,但经常面临各种潜在威胁。

与地震、暴雨和飓风等直接灾害不同,河道大坝受到水面以下的持续冲击和压力,可能导致隐蔽的渗漏风险。

在河道大坝的底部,因渗漏导致的持续渗流循环会影响河道大坝的地基强度和整体强度,轻则出现缝隙和裂纹,重则可能导致河道大坝出现横移和垮塌,对河道大坝的安全造成极大威胁[3]。

同时,因为渗漏具有隐蔽性和持久性的特点,给河道大坝的安全检查带来很大的难度。

因此,该文通过分析河道大坝渗漏风险,构建两种渗流模型进行仿真分析。

1 河道大坝渗漏分析河道大坝的根基和整体结构分别位于水上和水中其底部的根基部分位于水下的土壤内,持续受到地下水系的侵蚀,因此存在安全隐患。

地下水系和地表水系是一体的,因为在土壤下,所以无法有效地进行观察。

地下水系保持一定速度流动,并非是静止的。

虽然大坝底部和根基结构是密实的整体,但周边的土质结构会因岩石、砂砾等形成孔隙,从而满足地下水系的流动条件。

经过常年冲刷和侵蚀,大坝底部和根基结构会出现孔隙,这些孔隙会随着侵蚀时间增加逐渐深入并贯通。

该过程体现了地下水系的巨大侵蚀作用,从大坝结构表面逐渐侵蚀大坝结构内部。

渗漏是地下水系经过大坝结构内部孔隙流动的过程。

渗漏不断扩大会降低大坝底部和根基的结构强度。

渗流流经的孔隙会逐渐变大,严重影响大坝底部和根基的结构稳定性。

随着侵蚀时间不断增长,这种破坏程度会导致大坝整体滑移甚至坍塌,造成极大的安全隐患。

因此,有效地观测渗漏现象就成为保障河道大坝安全的技术手段。

然而,被侵蚀部分深入水面和水底,无法持续观察,现在通常采用模拟法复现大坝底部和根基部分的渗漏情况。

例如制作一个密闭的容器,用同样的结构材料和土质材料模拟大坝和大坝周围的基土土质,注入水模拟河水的流速和相关的自然环境条件,经过长时间地观察和统计,发现大坝可能出现的渗漏情况。

大坝渗流分析范文

大坝渗流分析范文

大坝渗流分析范文大坝渗流分析是指对大坝渗流进行定量分析和定性分析的过程。

渗流是指水从大坝中穿过土体或岩石孔隙流动的现象。

大坝渗流的分析对于确保大坝的安全性和稳定性非常重要,因为大坝渗流可能会导致土体侵蚀、渗流作用下的孔隙水压力增大、大坝滑移等问题,进而威胁到大坝的稳定性。

1.渗流路径分析:通过地质勘察和现场观测等手段,确定大坝渗流的可能路径。

这是分析大坝渗流的基础,能够为后续的渗流计算和分析提供依据。

2.渗流方程:根据多孔介质流动理论,建立适合大坝渗流的渗流方程。

一般情况下,可以使用达西定律或者均值流模型等经典渗流方程进行分析。

但是,对于非饱和土壤和岩石等特殊情况,需要考虑更为复杂的渗流方程。

3.渗流参数测定:确定渗流方程中的参数值,如孔隙度、渗透系数、土体吸力等。

这些参数值可以通过室内试验或野外试验进行测定,也可以通过现场观测和监测来获取。

4.初始和边界条件设定:根据实际情况,确定渗流计算中的初始条件和边界条件。

初始条件包括土体的初始饱和度和初始应力状态等,边界条件包括渗流入口和渗流出口的水头变化、大坝表面和岸坡等处的雨量入渗等。

5.数值模拟和计算:利用数值模拟方法对大坝渗流进行计算和分析。

可以使用有限元法、边界元法等数值方法进行渗流计算。

通过计算得到的渗流速度、渗流通量等参数可以用来评估渗流对大坝的影响。

6.渗流控制措施:根据分析结果,针对大坝渗流可能存在的问题,制定相应的渗流控制措施。

这些措施可能包括加固大坝的堤体和基础、改善大坝周围的排水系统、降低渗流通量等。

总之,大坝渗流分析是一个复杂而关键的工作,能够为大坝的设计和施工提供理论依据和技术支持。

通过合理的分析和控制,可以有效地降低大坝渗流带来的风险,确保大坝的安全运行。

(优选)大坝渗流分析详解.

(优选)大坝渗流分析详解.

心墙土料的渗透系数很小,比坝壳小10E4倍以上,可不
考虑上游楔形体降落水头的作用。下游坝壳的浸润线也较平
缓,水头主要在心墙部位损失。下游有排水时,可假定浸润
线的出逸点为下游水位与堆石内坡的交点A。
将心墙简化为等厚的矩形,δ=(δ1+δ2)/2,则可求通 过心墙段的单宽流量q1和心墙下游坝壳的单宽流量q2,联立
q1
k[( H12
(a0 2L'
t)2 ]
第二段B’B’’ N,可以下游水面为界,分为水上和水下两部
分,应用达西定律,可得通过第二段的渗流量为:
q2
ka 0 m2
(1
ln
a0 t
t)
根据水流连续条件q=q1=q2,联立以上两式,可求得a0 和q。浸润线方程可以用(△)求得,求出后还应对浸润线进 口进行修正:自A点引与坝坡AM正交的平滑曲线,曲线下端 与计算所得的浸润线相切于A’。
连续条件:
k x
H x
H vy k yJ k y y
vx vy 0 x y
二维渗流方程:
kx
2H x 2
ky
2H y2
0
分析法:流体力学法、水力学法、图解法和试验法,最常 用的是水力学法和流网法(图解法)。
二、水力学法
基本假定: 土料均一,各向同性 渗流属稳定流 看作平面问题 渗流看作层流 渗流符合连续定律
对1、2级坝和高坝应采用数值法计算确定渗流场各因素, 其它可采用公式计算。
岸边的绕坝渗流和高山峡谷的高土石坝应按叁维渗流用 数值法计算。
土石坝的渗流为无压渗流,有浸润面,可视为稳定层
流,满足达西定律,简化为平面问题。水位急降时产生不
稳定流,需考虑浸润面随时间变化对坝坡稳定的影响。

大坝渗流分析讲义

大坝渗流分析讲义

大坝渗流分析讲义
大坝渗流分析是针对大坝在长期运行中可能出现的渗漏问题进行的一
种技术分析。

大坝作为一种重要的水利工程结构,其稳定性和安全性对水
利工程的正常运行至关重要。

渗流问题的发生会影响大坝的稳定性,甚至
会导致大坝破坏,给下游区域造成严重的水灾危害。

因此,大坝渗流分析
是评估和解决渗流问题的重要手段。

2.渗流量计算:通过渗流量的计算,可以评估大坝渗流的强度和规模。

渗流量的大小直接影响到大坝的稳定性,因此,需要合理地评估和控制渗
流量。

3.渗流速度分析:渗流速度是渗流问题的另一个重要参数。

通过渗流
速度的分析,可以评估渗流的速度和渗流的扩散范围。

在设计和施工过程中,需要根据渗流速度的分析结果,来判断可能出现渗漏的情况,并采取
相应的措施来防止渗漏的发生。

4.渗流压力分析:渗流压力是渗流问题的关键指标之一、渗流压力的
大小和分布直接影响到大坝结构的稳定性。

通过对渗流压力的分析,可以
评估渗流压力的大小和分布,确定可能出现渗漏的位置和程度,并采取相
应的措施来减小渗流压力的影响。

在大坝渗流分析中,一般采用数值计算的方法来进行渗流场的模拟。

数值计算可以更加准确地模拟大坝渗流场的分布和特征,并可以考虑各种
影响因素对渗流的影响。

在进行数值计算时,需要对大坝的结构和渗透条
件进行合理的模拟和假设,以获得准确的分析结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

友谊水库大坝模型渗流分析
大坝渗流是水库大坝常见病害之一,大坝渗流不仅造成水资源流失甚至影响大坝的稳定性。

文章利用ANSYS软件对河北省友谊水库大坝建立了有限元模型,进行了渗流模拟计算,并将计算结果与实测结果进行比较分析,为大坝的除险加固提供理论依据。

标签:土石坝;ANSYS软件;渗流计算
截至2003年底,全世界共建15m高度以上大坝41413座,其中土石坝33958座,占82.7%;目前,我国已建水库8.6万余座,大中型水闸7.6万余座[1],其中坝高15m以上的土石坝近2万座,占世界土石坝总数48.3%。

这些水库在不同程度上均存在一定的安全隐患,除了防洪标准偏低以外,有些土坝的变形稳定和渗流稳定得不到保证,这是影响水利枢纽工程安全运行的主要因素[2]。

大坝蓄水后,在上下游水头差的作用下,坝体和坝基会出现渗流现象,这将导致坝体出现各种不利因素导致其功能降低,或使大坝存在一定的安全隐患,从而影响大坝下游安全。

目前,渗流计算的方法有很多种,归纳起来主要有两大类。

即理论分析方法和试验分析法[3]。

其中,理论分析法包括:解析法、数值法、图解法;由于实际工程边界条件复杂,且渗流介质并非是单一介质,利用近似求解法计算往往不能得到满意结果,因此,目前大多采用有限单元法对大坝渗流进行模拟计算。

ANSYS是美国ANSYS软件公司开发的大型通用有限元计算软件,具有强大的求解器和前、后处理功能。

该软件可以进行热、电、磁、声、流体和结构等有限元分析,并可以进行多物理场偶合分析。

由于渗流场和温度场可以相互比拟,本文采用ANSYS的温度场分析功能进行渗流场计算,取得了较满意的结果。

1 友谊水库大坝渗流场分析
1.1 水库基本情况
友谊水库位于河北省尚义县与内蒙古自治区兴和县交界处,是永定河支流东洋河上游的主要水利枢纽工程,控制流域面积2250km2,总库容1.16亿m3,是一座以防洪、灌溉为主,兼顾养殖的大(Ⅱ)型水利枢纽工程,工程等级为Ⅱ级,控制灌溉面积36万亩。

水库设计洪水标准为100年一遇,校核洪水标准为2000年一遇。

水库枢纽工程主要有拦河坝、溢洪道、输水洞等,水库拦河坝为均质土坝,最大坝高40m,坝顶高程1200m,坝顶长287m,坝顶宽7m,防浪墻高程1201.2m。

上游坡由1:2.5、1:3、1:3.5三段组成,下游坝坡为1:2.5、1:3.5、1:3.5。

下游坝坡高程1187m和1175m处增设两级马道,高程1187m马道宽度为2m,在高程1175m处马道宽5.0m。

坝基为砂砾石,厚5~7m,未清基。

坝前采用水平防渗,下游设排水反滤体,高6m。

溢洪道堰型为驼峰堰,堰顶高程1190m,设五孔钢闸门控制,单孔净宽9m,下设差动式挑流鼻坎消能,全长208m,最大泄量2384 m3/s。

输水洞为压力遂洞,进口高程1173.00m,洞径2.2m变1.8m,
洞长245m,出口高程1162.5m,最大泄量39m3/s[4]。

1.2 渗流场分析
本文采用了ANSYS软件的生死单元功能,将处于浸润线上部的单元网格“杀死”,只“激活”浸润线下部的单元网格,然后设定相应边界条件进行分析,并根据计算结果调整单元,相应修正边界条件重新计算直到达到计算精度。

本计算根据掌握资料情况,分别选取了历史最高水位、最低水位及设计水位、07年最高蓄水位来进行渗流场分析。

计算工况如表1所示:
2 结果分析
将ANSYS计算结果与观测资料进行对比,发现软件模拟计算的渗透压力值与实测值相差不大,压力水头曲线与测压管水头曲线吻合较好,这说明利用ANSYS软件计算得到的渗流场基本上反映了大坝渗流的实际情况。

另一方面也说明水库观测资料较为准确,观测仪器工作正常。

由水库主坝的分析计算结果可以看出,1#、2#、3#测压管利用软件计算所得结果与实测结果基本一致,误差最大为0.71m,最小误差仅为0.143m。

计算结果与实测值不能完全相同,这说明在定义边界条件时存在缺陷。

如果将排水棱体地面设为逸出点,排水棱体内部定义渗透系数,将可以有效的减小这类误差。

然而4#、5#的观测数值与计算值相差较大,可能是是由于定义下游水位时排水管具体位置不准确,定义排水棱体各个面为逸出点,导致5#测压管的观测数值与计算值相差较大,而且还影响到上游管4的计算数值,使其误差较大。

研究表明ANSYS用温度场模块模拟渗流场是可行的。

今后将利用ANSYS 软件来分析大坝的抗震性能,为大坝的维修加固提供依据。

参考文献
[1]潘家铮,柯.中国大坝50年[M].中国水利水电出版社,1998.
[2]郦能惠.土石坝安全监测分析评价预报系统.北京:中国水利水电出版社,2003.
[3]长江流域规划办公室.第十一届国际大坝会议译文选集[C].水利电力出版社,1976:99-101.
[4]水利部河北水利水电勘测设计研究院.友谊水库除险加固工程设计工作报告[M].2006.。

相关文档
最新文档