浙江省金丽衢十二校2019届高三第一次联考数学试题(含答案)

合集下载

浙江省金丽衢十二校高三数学第一次联考试题 理

浙江省金丽衢十二校高三数学第一次联考试题 理

数学理试题本试卷分第Ⅰ卷和第Ⅱ卷两部分.考试时间120分钟. 试卷总分为150分.请考生将所有试题的答案涂、写在答题纸上.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.已知集合{}a x x A <=,{}21<≤=x x B ,且()R B C A R =⋃,则实数a 的取值范围是 A .1≤a B .1<a C .2≥a D .2>a 2.已知,R a b ∈,下列命题正确的是 A .若a b >, 则ba 11>B .若a b >,则11a b< C .若a b >,则22a b >D .若a b >,则22a b >3. 已知{}n a 为等比数列,则“321a a a >>”是“{}n a 为递减数列”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.设n m ,为空间两条不同的直线,βα,为空间两个不同的平面,给出下列命题:①若βα//,//m m ,则βα//; ②若βα//,m m ⊥,则βα⊥; ③若n m m //,//α则α//n ; ④若βαα//,⊥m ,则β⊥m . 其中的正确命题序号是A .③④B .②④C .①②D . ①③5. 已知n S 为数列{}n a 的前n 项和,且满足11a =,32=a ,n n a a 32=+,则2014S =A .1007232⨯- B .100723⨯ C .2014312-D .2014312+6.函数()sin(2))f x x x θθ=++(2πθ<)的图像关于点(,0)6π对称,则()f x 的增区间A .5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ B .,,63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .5,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦ D .7,,1212k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦7. 已知()m x x x f x x ----+-=234234有两个不同的零点,则m 的取值范围是A.()3,∞-B. [)+∞,3C. ()3,0D.()+∞,3俯视图正视图侧视图5第14题图43A 1B 1C 1D 1ABCDE(第8题图)8. 长方体1111D C B A ABCD -的底面是边长为a 的正方形,若在侧棱1AA 上至少存在一点E ,使得︒=∠901EB C ,则侧棱1AA 的长的最小值为 A. a B. a 2 C. a 3 D. a 49.已知21,F F 分别为双曲线12222=-by a x ()0,0>>b a 的左右焦点,如果双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为 A. 3321<<e B. 332>e C. 3>e D. 31<<e 10.设实数c b a ,,满足,0)(252⎪⎩⎪⎨⎧>=+≥a ac b c a b 若b a c b a +++485的最大值和最小值分别为m M ,,则m M +的值为A. 9B.332C. 349D. 19第Ⅱ卷二、填空题:本大题有7小题,每小题4分,共28分.把答案填在答题卷的相应位置.11.设y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+3311y x y x y x ,则目标函数y x z +=4的最小值为 .12.已知,41)6sin(=+πx 则=-)3(sin 2x π . 13. 设直线062=++y ax 与圆04222=+-+y x y x 相交于点P ,Q 两点,O 为坐标原点,且OQ OP ⊥,则实数a 的值为 .14.某几何体的三视图(单位:cm )如图所示,则此几何体的体积为 3cm . 15.已知()()(),log ,log ,log 936241x x f x x f x x f === 若()()()n m f m f n f +==321,则=nm. 16.已知ABC ∆是边长为32的正三角形,EF 为ABC ∆的外接圆O 的一条直径,M 为ABC ∆的边上的动点,则⋅的最大值为 .17. 点P 为椭圆()0,012222>>=+b a by a x 在第一象限的弧上任意一点,过P 引x 轴,y 轴的平行线,分别交直线x aby -=于R Q ,,交y 轴,x 轴于N M ,两点,记OMQ ∆与ONR ∆的面积分别为21,S S ,当2=ab 时,2221S S +的最小值为 .三.解答题:本大题共5小题,满分72分.解答应写出文字说明,证明过程或演算步骤. 18.(本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c , 已知△ABC 的面积()22c b a S --=.(Ⅰ)求A sin 与A cos 的值; (Ⅱ)设a b λ=,若54cos =C ,求λ的值.19.(本题满分14分)设数列{}n a 的前n 项的和为n S ,且⎭⎬⎫⎩⎨⎧n S n 是等差数列,已知,11=a 12432432=++S S S . (Ⅰ)求{}n a 的通项公式n a ; (Ⅱ)当2≥n 时,1401-≥++λλnn a a 恒成立,求λ的取值范围.20. (本题满分14分) 如图,四边形ABCD 为菱形,ACFE 为平行四边形,且面ACFE ⊥面ABCD ,3,2===AE BD AB ,设BD 与AC 相交于点G ,H 为FG 的中点.(Ⅰ)证明⊥CH 面BFD ;(Ⅱ)若AE 与面ABCD 所成的角为︒60,求二面角D EF B --的平面角余弦值的大小.21.(本题满分15分)已知抛物线)0(2:2>=Γp px y 的焦点到准线的距离为2. (Ⅰ)求p 的值;(Ⅱ)如图所示,直线1l 与抛物线Γ相交于A ,B 两点,C 为抛物线Γ上异于A ,B 的一点,且⊥AC x 轴,过B 作AC 的垂线,垂足为M ,过C 作直线2l 交直线BM 于点N ,设21,l l 的斜率分别为21,k k ,且121=k k .(ⅰ)线段MN 的长是否为定值?若是定值,请求出定值;若不是定值,请说明理由; (ⅱ)求证N C B A ,,,四点共圆.22. (本题满分15分)已知二次函数()b ax x x f ++=22为偶函数,()m x x g +-=)13(,()()()212≠+=c x c x h .关于x 的方程()()x h x f =有且仅有一根21. (Ⅰ)求c b a ,,的值;(Ⅱ)若对任意的[]1,1-∈x ,()()x g x f ≤恒成立, 求实数m 的取值范围;(Ⅲ)令()()()x f x f x -+=1ϕ,若存在[]1,0,21∈x x 使得()()()m g x x ≥-21ϕϕ,求实数m 的取值范围.金丽衢十二校2014-2015学年第一次联合考试数学试卷(理科)参考答案一、选择题(5×10=50分)二、填空题(4×7=28分) 11. 1 12.1615 13. 2- 14. 20 15. 251+ 16. 3 17. 21三.解答题(72分)18解 (Ⅰ)由题意可得bc A bc bc c b a A bc 2cos 22sin 21222+-=+--= 所以4cos 4sin =+A A 又因为1cos sin 22=+A A 解方程组可得 ⎪⎪⎩⎪⎪⎨⎧==1715cos 178sin A A-----------------------------7分 (Ⅱ)易得53sin =C ()8577sin cos cos sin sin sin =+=+=C A C A C A B所以4077sin sin ===A B a b λ.-----------------------------7分19. 解 (Ⅰ)由题意可得12333=S ,∴433=S ,∴2123-=n n S n ∴=n S n n 21232- 231-=-=∴-n S S a n n n ()2≥n 当1=n 时也成立, 23-=∴n a n-----------------------------6分 (Ⅱ)1401-≥++λλnn a a ⇒λλ≥-++231413n n ⇒()()12347--+n n n λ≥-----------------------------10分 解法一: 设=n b ()()12347--+n n n=-+n n b b 1()()-++n n n 1348()()12347--+n n n ()11632---⨯=n n n n 当5≥n 时,n n n n b b b b >⇒>-++110当4≤n 时,n n n n b b b b <⇒<-++110∴n b 的最小值为1695=b ,169≤∴λ.-----------------------------14分 解法二: 设t n =-1 则()()12347--+n n n =169145483≥++tt (当4=t ,即5=n 时取最小值)20.(Ⅰ)证明:Θ四边形ABCD 为菱形 AC BD ⊥∴又Θ面ACFE ⊥面ABCD ACFE BD 面⊥∴CH BD ⊥∴ 即BD CH ⊥又ΘH 为FG 的中点,3==CF CGFG CH ⊥∴又ΘG BD FG =⋂ ∴⊥CH 面BFD ——————————5分(Ⅱ)过G 作EF 的垂线,垂足为M ,连接MD MG MB ,, 易证得EAC ∠为AE 与面ABCD 所成的角,EAC ∠=︒60 DMB ∠为二面角D EF B --的平面角213,1,2,23=====DM BM BG BD MG 所以由余弦定理可得:135cos =∠DMB .A BCDEG H第20题图 FM21.解 (Ⅰ)2=p ——————————4分(Ⅱ)设()()2211,,,y x B y x A ,则()()2111,,,y x M y x C -,直线1l 的方程为:b x k y +=1由⎩⎨⎧=+=xy b x k y 421消元整理可得:(221221+bk x k 所以 ⎪⎪⎩⎪⎪⎨⎧=-=+212212112124k b x x k bk x x 可求得:⎪⎪⎩⎪⎪⎨⎧+211y y y y ——————6分直线2l 的方程为:)(121x x k y y -=+⎪⎪⎭⎫ ⎝⎛++21221,y x k y y N 所以MN =221k y y +=214k k =4.——————9分 AB 的中点⎪⎪⎭⎫⎝⎛-12112,2k k bk E则AB 的中垂线方程为:⎪⎪⎭⎫ ⎝⎛---=-21111212k bk x k k y 与BC 的中垂线x 轴交点为:⎪⎪⎭⎫ ⎝⎛+-'0,2221121k bk k o 所以ABC ∆的外接圆的方程为: 2222211212221121)22(22y x k bk k y k bk k x +-+-=+⎪⎪⎭⎫ ⎝⎛+--——————12分 由上可知()21,4y x N +022********112121************=⨯+--++=+--++--+k bk k x x k bk k x k bk k x Θ2212122221121122(224bk k y k bk k x +-=+⎪⎪⎭⎫ ⎝⎛+--+∴所以N C B A ,,,四点共圆.解法二:易知ABC ∆的外接圆圆心o '在x 作B 关于o '的对称点B ',则B B '为直径,易知B '横坐标为221121222x k bk k -+-⨯ 022242112121=⨯+--++k bk k x x Θ 所以42221221121+=-+-⨯x x k bk k所以︒='∠90NB B 所以N C B A ,,,四点共圆. 22. 解 (Ⅰ) 由()()x f x f -=⇒0=a由()()x h x f =可得:()0222=-++-b c cx x c 代入21=x 得:2149-=c b ① ()()b c c c --=⇒=∆202 ②联立方程①②解得:32,1==c b ∴0=a ,32,1==c b .—————3分(Ⅱ)m x x +-≤+)13(122当0=x 时,1≥m ————————4分当1=m 时,[]()()=---=+--+x x x x 1321321)13()12(2222()()01132≤--x x∴1)13(122+-≤+x x ∴1≥m ——————————7分(Ⅲ)由题意可知()()m x x 3max 21≥-ϕϕ——————————9分由0=a ,32,1==c b 易证明()()2132+≥x x f 在[]1,0∈x 上恒成立, ∴()136122+≥+x x 在[]1,0∈x 上恒成立; 由(Ⅱ)知1)13(122+-≤+x x 在[]1,0∈x 上恒成立∴()()1)13(136+-≤≤+x x f x 在[]1,0∈x 上恒成立.又因为当[]1,0∈x 时, []1,01∈-x ∴()()1)1)(13(11136+--≤-≤+-x x f x∴()()()()11)13(1)13(1136136+--++-≤≤+-++x x x x x ϕ 即()136+≤≤x ϕ 621min=⎪⎭⎫⎝⎛ϕ, ()()1310max max +==ϕϕ∴()()613max 21-+=-x x ϕϕm 3≥∴2331-+≤m .————————15分 另解:]21)1(21[21)1(212)(2222+-++=+-++=x x x x x ϕ, 设)22,1(),22,0(),0,(-B A x P ,显然()PB PA x +=2)(ϕ,由下图易知: (),3min==+AB PB PA()2622max+=+=+OB OA PB PA , ∴31)(,6)(max min +==x x ϕϕ,∴()()613max 21-+=-x x ϕϕm 3≥∴2331-+≤m .。

2019年9月浙江省学考选考金丽衢十二校2019学年高三化学第一次联考试题高清版及参考答案

2019年9月浙江省学考选考金丽衢十二校2019学年高三化学第一次联考试题高清版及参考答案

化学参考答案 第1页 (共1页) 2019学年金丽衢十二校高三第一次联考化学参考答案 一、单项选择题(共18小题,1-8每小题2分,9-18每小题3分,共46分) 1-5 B B C A C 6-10 B C D D D 11-15 C C C B B 16-18 B C D二、非选择题(本大题共5小题,共54分)19.(每空2分,共10分)(1)(2)4 F -H …F 或F -H …O 或O -H …F 或O -H …O (3)Fe 3++3SCN -===Fe(SCN)3(配比1~6均可,用亚铁氰化钾也可,但不能用OH -)(4)Al 2Cl 620.(第2小题4分,其余每空2分,共10分)(1)S 2O 32-+2H +===S ↓+ SO 2↑+H 2O (2)根据生成3.2克S 沉淀判断出固体C 为Na 2S 2O 3,且物质的量为0.1mol (1分) 根据生成4.48LSO 2,可判断出固体D 为Na 2SO 3,且物质的量也为0.1mol (1分) 根据质量、元素守恒推断出A 的最简式为NaSO 2(1分)根据摩尔质量推断出A 的化学式Na 2S 2O 4(1分)(3)BD (4)2Na 2S 2O 4+3O 2+2H 2O =4NaHSO 421.(每空2分,共12分)(1)①高温 ②>< (2)①3.6 ②-41.8 (3)N 2O 4-2e -+2HNO 3=2N 2O 5+2H + 22.(每空2分,共10分)(1)A (2)8.38~8.42g 之间均可(3)①关闭侧门,待数据稳定后 ②溶液有强碱性,会腐蚀滤纸 ③e →g →d →e23.(共12分)(1)CD (2分) (2)(2分)(3) (2分)(4) (3分,写出1个不给分,2个1分,3个2分)(5)(3分)(写出1步不给分,2步1分,3步2分)。

浙江金丽衢十二校2019届高三第一次联考数学试题解析卷

浙江金丽衢十二校2019届高三第一次联考数学试题解析卷

cos∠ADE=
3 2


∠ADE
=
π 6
故答案为π
6
【点睛】本题考查直线与平面所成角,线面垂直的应用,二面角的定义,考查空间想象能力,熟练作辅助线找角 是关键,是中档题
9.五人进行过关游戏,每人随机出现左路和右路两种选择.若选择同一条路的人数超过 2 人,则他们每人得 1 分; 若选择同一条路的人数小于 3 人,则他们每人得 0 分,记小强游戏得分为ξ,则 Eξ=( )
2π 4
B. BC ≥
2
C. ∠AMO + ∠MAO = 90° D. OM取值范围为0, 2 【答案】D
6
【解析】 【分析】
作出图形,对于
A,ΔAOC
为直角三角形,ON
为斜边
AC
上的中线,ON
=
1 2
AC
为定长,推理
NO
扫过的面积
为圆锥的侧面,即 A 正确;对于 B,由基本不等式求解即可;对于 C.∠AMO + ∠MAO = 90°,正确;对于 D, 由 A 可知,点 O 的轨迹是圆弧,即 D 正确;
对于 C.∵ AO⊥面 BCD,故∠AMO + ∠MAO = 90°,正确;
对于 D,OM < AM = 1, 故 D 错误 故选:D.
【点睛】本题命题真假判断,空间的线面位置关系,考查推理及空间想象能力,属于难题
二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)
11.已知 n ∈ N∗ ,x2 − 51x3n的展开式中存在常数项,则 n 的最小值为__________,此时常数项为__________.
4 3
【答案】C 【解析】
由题设中三视图提供的图形信息与数据信息可知该几何体是一个三棱柱与一个等高三棱锥的组合体,其中三棱柱

浙江省金丽衢十二校2019-2020学年高三第一次联考数学试题

浙江省金丽衢十二校2019-2020学年高三第一次联考数学试题

2019学年淅江金丽衢十二第一次联考1.设集合{}{}|(3)(2)0,,|13,M x x x x R N x x x R =+-<∈=≤≤∈,则M N ⋂=( )A. [)1,2B. [1,2]C. (]2,3D. [2,3]2.已知双曲线2222:1(0,0)x y C a b a b-=>>一条渐近线与直线2420x y -+=垂直,则该双曲线的离心率为( )A.B.C.D.3.若实数x ,y 满足约束条件22022x y x y y +-≥⎧⎪+≤⎨⎪≤⎩,则x y -的最大值等于( ) A. 2 B. 1 C. -2 D. -44.已知一几何体的三视图如图所示,则该几何体的体积为( )A. 163π+ B. 112π+ C. 1123π+ D. 143π+ 5.己知a ,b 是实数,则“2a >且2b >”是“4a b +>且4ab >”( ) A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件6.口袋中有5个形状和大小完全相同的小球,编号分别为0,1,2,3,4,从中任取3个球,以ξ表示取出球的最大号码,则()E ξ=( )A 3.55 B. 3.5 C. 3.45 D. 3.47.如图,在正四棱柱1111ABCD A B C D -中, 13,4,AB AA P ==是侧面11BCC B 内的动点,且1,AP BD ⊥记.AP 与平面1BCC B 所成的角为θ,则tan θ的最大值为A. 43B. 53C. 2D. 259 8.己知函数()()21,043,0x e x f x x x x +⎧≤⎪=⎨+->⎪⎩,函数()y f x a =-有四个不同的零点,从小到大依次为1x ,2x ,3x ,4x ,则1234x x x x -++的取值范围为( )A. [)3,3e +B. [)3,3e +C. ()3,+∞D. (]3,3e + 9.函数()21ln f x x x=-+的图像大致为( ) A. B.C. D.10.设等差数列1a ,2a ,…,n a (3n ≥,*N n ∈)的公差为d ,满足1211n a a a a ++⋅⋅⋅+=-2121122n a a a a +-+⋅⋅⋅+-=+++2n a m +⋅⋅⋅++=,则下列说法正确的是( )A. 3d ≥B. n 的值可能为奇数C. 存在*i N ∈,满足21i a -<<D. m 的可能取值为1111.《算法统宗》中有如下问题:“哑子来买肉,难言钱数目,一斤少三十,八两多十八,试问能算者,合与多少肉”,意思是一个哑子来买肉,说不出钱数目,买一斤(16两)还差30文钱,买八两多十八文钱,求肉数和肉价,则该问题中,肉价是每两_____文,他所带钱共可买肉_____两.12.若()34i 5z +=(i 为虚数单位),则z =_____,z 的实部_____13.在291()2x x-的展开式中,常数项为_____,系数最大的项是_____ . 14.设平面向量a ,b 满足,,[1,5]a b a b -∈,则a b ⋅的最大值为_____,最小值为_____.15.已知1F ,2F 是椭圆1C :2213x y +=与双曲线2C 的公共焦点,P 是1C ,2C 的公共点,若1OP OF =,则2C 的渐近线方程为______.16.如图,在四边形ABCD 中,90BAC ∠=︒,4BC =,1CD =,2AB AD =,AC 是BCD ∠的角平分线,则BD =_____.17.设函数4()()i i i f x x x -=-+(,0,1)x R i ∈=,若方程10()()0a f x f x +=在区间1[,3]2内有4个不同的实数解,则实数a 的取值范围为_____.18.设函数()sin cos f x x x =+,x ∈R(Ⅰ)求()()f x f x π⋅-的最小正周期;(Ⅱ)求函数()33sin cos g x x x =+最大值.19.在数列{}n a 中,12a =,1431n n a a n +=-+,*N n ∈.(Ⅰ)证明:数列{}n a n -是等比数列; 的.(Ⅱ)记()n n b a n n =-,求数列{}n b 的前n 项和n S .20.如图,在四棱锥S ABCD -中,2AD BC ==3AB =,SA SC =,AD BC ∥,AD ⊥平面SAB ,E 是线段AB 靠近B 的三等分点.(Ⅰ)求证:CD ⊥平面SCE ;(Ⅱ)若直线SB 与平面SCE 所成角的正弦值为13,求SA 的长. 21.过抛物线()220y px p =>上一点P 作抛物线的切线l 交x 轴于Q ,F 为焦点,以原点O 为圆心的圆与直线l 相切于点M .(Ⅰ)当p 变化时,求证:PF QF为定值. (Ⅱ)当p 变化时,记三角形PFM 的面积为1S ,三角形OFM 的面积为2S ,求12S S 的最小值. 22.已知函数()xf x x ae b =-+,其中,a b ∈R . (1)讨论函数()f x 的单调性;(2)设1a =,k ∈R ,若存在[]0,2b ∈,对任意的实数[]0,1x ∈,恒有()1x xf x ke xe ≥--成立,求k 的最大值。

2019届浙江省金丽衢十二校高三第一次联考数学试题Word版含解析

2019届浙江省金丽衢十二校高三第一次联考数学试题Word版含解析

2019届浙江省金丽衢十二校高三第一次联考数学试题一、单选题1.若集合,,则()A.B.C.D.【答案】D【解析】根据补集和并集的定义进行求解即可.【详解】,故选:.【点睛】本题主要考查集合的基本运算,结合补集并集的定义是解决本题的关键.2.已知向量,,则与的夹角为()A.B.C.D.【答案】C【解析】利用夹角公式进行计算.【详解】由条件可知,,,所以,故与的夹角为.故选:.【点睛】本题考查了运用平面向量数量积运算求解向量夹角问题,熟记公式准确计算是关键,属于基础题.3.等比数列的前项和为,己知,,则()A.7 B.-9 C.7或-9 D.【答案】C【解析】等比数列{a n}的前n项和为S n,己知S2=3,S4=15,可求得公比,再分情况求首项,进而得到结果.【详解】等比数列{a n}的前n项和为S n,己知S2=3,S4=15,代入数值得到q=-2或2,当公比为2时,解得,S3=7;当公比为-2时,解得,S3=-9.故答案为:C.【点睛】本题考查等比数列的通项公式,是基础的计算题,对于等比等差数列的小题,常用到的方法,其一是化为基本量即首项和公比或者公差,其二是观察各项间的脚码关系,即利用数列的基本性质.4.双曲线的渐近线方程为()A.B.C.D.【答案】C【解析】根据题意,将双曲线的方程变形为标准方程,得、的值,由双曲线的渐近线方程分析可得答案.【详解】根据题意,双曲线的标准方程为,其焦点在轴上,且,,则其渐近线方程为;故选:.【点睛】本题考查双曲线的几何性质,涉及双曲线渐近线方程的计算,注意双曲线的焦点位置,是基础题5.已知一个几何体的三视图如图所示,则该几何体的体积为()A .323B .163C .83D .43【答案】C【解析】由题设中三视图提供的图形信息与数据信息可知该几何体是一个三棱柱与一个的等腰直角三角形,所以其体积221118223223V =⨯⨯⨯+⨯⨯=,应选答案C 。

2019届浙江省金丽衢十二校高三(上)第一次联考化学试卷及解析

2019届浙江省金丽衢十二校高三(上)第一次联考化学试卷及解析

2019届金丽衢十二校高三上学期第一次联考
化学试卷
一、选择题(本大题共25小题,每小题2分,共50分.每个小题列出的四个备选项中只有个是符合题目要求的,不选、多选、错选均不得分)
1.按照物质的组成分类,SO 2属于( )
A .单质
B .酸性氧化物
C .碱性氧化物
D .混合物 2.下列仪器不能直接受热的是( )
A .
B .
C .
D . 3.下列属于电解质的是( )
A .铜
B .葡萄糖
C .食盐水
D .氯化氢 4.下列物质溶于水后溶液因电离而呈酸性的是( )
A .KCl
B .Na 2O
C .NaHSO 4
D .FeCl 3 5.下列能源中不属于化石燃料的是( )
A .石油
B .生物质能
C .天然气
D .煤 6.下列说法不正确的是( )
A .Na 2CO 3可用于治疗胃酸过多
B .蓝绿藻在阳光作用下,可使水分解产生氢气
C .CusO 4可用于游泳池池水消毒
D .SiO 2导光能力强,可用于制造光导纤维
7.反应Fe 2O 3+3CO 2Fe+3CO 2,作氧化剂的是( )
A .Fe 2O 3
B .CO
C .Fe
D .CO 2 8.下列表示正确的是( )
A .氯化镁的电子式:
B .氘(2H )原子的结构示意图:
C .乙烯的结构式:CH 2=CH 2。

2019金衢十二校联考数学参考答案

2019金衢十二校联考数学参考答案

参考答案一、选择题1-5、CCBBA 6-10、 CACDB二、填空题11、(2)(2)x x x +- 12、80° 13、23 14、(31)n + 15、154 16、(1)1 (2)135,,244 三、解答题17、518、1a a - 0,1a ≠± 19、解:(1)∵∠ABC=∠DEB=45°,∴△BDE 为等腰直角三角形,∴DE=BE=×6=3.答:最短的斜拉索DE 的长为3m ;(2)作AH ⊥BC 于H ,如图2,∵BD=DE=3,∴AB=3BD=5×3=15, 在Rt △ABH 中,∵∠B=45°,∴BH=AH=AB=×15=15,在Rt △ACH 中,∵∠C=30°,∴AC=2AH=30.答:最长的斜拉索AC 的长为30m .20、解:(1)本次调查的学生总人数为24÷40%=60人,扇形统计图中C 所对应扇形的圆心角度数是360°×=90°.故答案为:60、90°;(2)D 类型人数为60×5%=3,则B 类型人数为60﹣(24+15+3)=18,补全条形图如下:(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;(4)画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为=.21、解:(1)如图,连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)如图,作OG⊥AE于点G,连接BD,则AG=CG=AC=2,∠OGE=∠E=∠ODE=90°,∴四边形ODEG是矩形,∴OA=OB=OD=CG+CE=2+2=4,∠DOG=90°,∵∠DAE=∠BAD,∠AED=∠ADB=90°,∴△ADE∽△ABD,∴=,即=,∴AD2=48,在Rt△ABD中,BD==4,在Rt△ABD中,∵AB=2BD,∴∠BAD=30°,∴∠BOD=60°,则的长度为=.22、解:(1)由题意得:,解得:.故y与x之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50时,w随x的增大而增大,﹣10(46﹣50)2+4000=3840,∴x=46时,w大=答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.23、(1)①证明:如图1中,∵CA=CB,BN=AM,∴CB﹣BN=CA﹣AM即CN=CM,∵∠ACN=∠BCM∴△BCM≌△ACN.②解:如图1中,∵△BCM≌△ACN,∴∠MBC=∠NAC,∵EA=ED,∴∠EAD=∠EDA,∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°﹣90°=90°,∴∠BDE=90°.(2)解:如图2中,当点E在AN的延长线上时,易证:∠CBM=∠ADB=∠CAN,∠ACB=∠CAD,∵EA=ED,∴∠EAD=∠EDA,∴∠CAN+∠CAD=∠BDE+∠ADB,∴∠BDE=∠ACB=α.如图3中,当点E 在NA 的延长线上时, 易证:∠1+∠2=∠CAN +∠DAC , ∵∠2=∠ADM =∠CBD =∠CAN , ∴∠1=∠CAD =∠ACB =α,∴∠BDE =180°﹣α.综上所述,∠BDE =α或180°﹣α. 故答案为α或180°﹣α.(3)解:如图4中,当BN =BC =时,作AK ⊥BC于K .∵AD ∥BC ,∴==,∴AD =,AC =3,易证△ADC 是直角三角形,则四边形ADCK 是矩形,△AKN ≌△DCF , ∴CF =NK =BK ﹣BN =﹣=. 如图5中,当CN =BC =时,作AK ⊥BC 于K ,DH ⊥BC 于H .∵AD ∥BC ,∴==2,∴AD =6,易证△ACD 是直角三角形,由△ACK ∽△CDH ,可得CH =AK =, 由△AKN ≌△DHF ,可得KN =FH =, ∴CF =CH ﹣FH =4.综上所述,CF 的长为或4.24、(1)A ()3,0- B ()1,0 C ((2)14,05O ⎛⎫- ⎪⎝⎭+-(322。

浙江省金丽衢十二校2020届高三数学第一次联考试题(含解析)(1)

浙江省金丽衢十二校2020届高三数学第一次联考试题(含解析)(1)
n
项和为
n
,己知
2=3,
4=
S
S
S
15,
可求得公比,再分状况求首项,从而得
到结果.
【详解】等比数列{
a
n}的前
n
项和为
n,己知
2=3,4=15,
S
S
S
代入数值获得q=-2或2,当公比为2时,解得,S3=7;当公比为-2时,解得,S3=-9.故答案为:C.
【点睛】此题考察等比数列的通项公式,是基础的计算题,关于等比等差数列的小题,常用到的方法,其一是化为基本量即首项和公比或许公差,其二是察看各项间的脚码关系,即利用数列的基天性质.4.双曲线的渐近线方程为()
【分析】
【剖析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】由,得,,则 在复平面内对应的点的坐标位于第一象限.
浙江省金丽衢十二校2020届高三第一次联考
数学试题
一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项是切合题目要求的.1.若会合,,则()A.B.C.D.【答案】D
【分析】
【剖析】依据补集和并集的定义进行求解即可.
【详解】,应选: .
【点睛】此题主要考察会合的基本运算,联合补集并集的定义是解决此题的重点.2.已知向量,,则 与的夹角为()A.B.C.D.【答案】C
【分析】【剖析】
利用夹角公式进行计算.【详解】由条件可知,,,
因此,故 与的夹角为.
应选:.
【点睛】此题考察了运用平面向量数目积运算求解向量夹角问题,熟记公式正确计算是重点,属于基础题.
3.等比数列的前 项和为 ,己知,,则()
A.7
B.-9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金丽衢十二校2018学年高三第一次联考
数学
一、选择题
1、若集合A =(-∞,5)。

B =[3,+∞),则
A 、R
B 、∅
C 、[3,5)
D 、(-∞,5)U [5,+∞)
2、已知向量(4,3),(1,53)a b ==,则向量,a b 的夹角为( )
A 、30°
B 、45°
C 、60°
D 、90°
3、等比数列{a n }的前n 项和为Sn ,己知S 2=3,S 4=15,则S 3=( )
A. 7 B 、-9 C 、7或-9 D 、
638 4、双曲线9y 2一4x 2=1的渐近线方程为()
A 、49y x =±
B 、94y x =±
C 、23y x =±
D 、32
y x =± 5.己知一个几何体的三视图如图所示,则该几何体的体积为( )
A 、43
B 、83
C 、163
D 、323
6.己知复数z 满足zi 5=(π+3i )2,则z 在复平面内对应的点位于()
A 、第一象限 B.第二象限 C.第三象限 D 、第四象限
7.设函数f (x)的定义域为D ,如果对任惫的x ∈D ,存在y ∈D ,使得f (x)=-f (y )成立,则称 函数f (x)为“H 函数”,下列为“H 函数”的是( )
A 、y = sinxcos+cos 2x
B 、y=lnx+e x
C 、y=2x
D 、y=x 2-2x
8.如图,二面角BC αβ--的大小为
6π,AB α⊂,CD β⊂,且AB ,BD =CD =2, ∠ABC =4π,∠BCD =3
π,则AD 与β所成角的大小为( ) A 、4π B 、3π C 、6
π D 、12π
9.五人进行过关游戏,每人随机出现左路和右路两种选择.若选择同一条路的人数超过2 人,则他们每人得1分:若选择同一条路的人数小于3人,则他们每人得0分。

记小强 游戏得分为ξ,则E ξ=( )
A 、516
B 、1116
C 、58
D 、12
10.在等腰直角△ABC 中,AB ⊥AC, BC=2. M 为BC 中点,N 为AC 中点,D 为BC.边上一 个动点,△ABD 沿AD 向纸面上方或著下方翻折使BD ⊥DC ,点A 在面BCD 上的投影为 O 点。

,当点D 在BC 上运动时,以下说法错误的是( )
A.线段NO
B .|B
C |≥ C .∠AMO+∠MAO=90°
D. |OM |取值范围为[0)
二、填空题(本大题共7小题,多空题每题6分,单空题每题4分.共36分)
11·己知
的展开式中存在常数项,则n 的最小值为___ 此时常数项为____.
12.偶函数f (x)满足f (x 一1)=f(x +1),且当x ∈[0,1]时,f (x)=x,则f (43
)=__ 若在区间[1,3]内,函数g(x)=f (x)-kx 一k 有4个零点,则实数k 的取值范围是_.
13.若实数x, y 满足x>y>0,且log 2x+ log 2y =1,则21x y
+的最小值是_______ 22
x y x y -+的最大值为____ 14.在从100到999的所有三位数中,百位、十位、个位数字依次构成等理数列的有___ 个;构成等比数列的有 个.
15.若等边△ABC 的边长为23,平面内一点M 满足:__
16.已知函数y =是由y =向左平移((0,2])ϕϕπ∈个单位得到 的,则ϕ=_____
17.已知P 是椭圆22
221(0)x y a b a b
+=>>上的动点,过P 作椭圆的切线l 与x 轴、y 轴分别 交于点A 、B ,当△AOB(O 为坐标原点)的面积最小时,是椭圆的 两个焦点),则该椭国的离心率为 .
三、解答题(本大题共5小题,共74分。

解答应写出文字说明、证明过程或演算步骤)
18、如图,在△ABC 中,已知点D 在边AB ,AD =3DB ,54cos =
A ,13
5cos =∠ACB ,BC =13. (1)求B cos 的值;
(2)求CD 的长
19、如图,在四棱锥P -ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =2
π,PA =AD =2,AB =BC =1,点M ,E 分别是PA ,PD 的中点 (1)求证:CE//平面BMD
(2)点Q 为线段BP 中点,求直线PA 与平面CEQ 所成角的余弦值
20、已知数列{}n a ,21=a ,62=a ,且满足
2111=++-+n n n a a a (2≥n 且*N n ∈) (1)求证:{}n n a a -+1为等差数列;
(2)令()2
1110-+=
n n a n b ,设数列{}n b 的前n 项和为n S ,求{}n n S S -2的最大值
21、已知椭圆12
:22
=+y x C 左顶点为A ,O 为原点,M ,N 是直线t x =上的两个动点,且MO ⊥NO ,直线AM 和AN 分别与椭圆C 交于E ,D 两点。

(1)若1-=t ,求△MON 的面积的最小值;
(2)若E ,O ,D 三点共线,求实数t 的值
22、已知函数()272692
3+-+-=x x x x f (1)若()x f 在1x x =,2x (21x x ≠)处导数相等,证明:()()21x f x f +为定值,并求出该定值
(2)已知对于任意0>k ,直线a kx y +=与曲线()x f y =有唯一公共点,求实数a 的取值范围。

相关文档
最新文档