电子仿真实验报告doc

合集下载

电子电路仿真实验报告

电子电路仿真实验报告

电子电路仿真实验报告
本次实验是一次电子电路的仿真实验,旨在通过使用电路仿真软件进行电路实验的模拟,通过对模拟的数据和仿真结果进行分析和总结,进一步掌握电子电路的实验知识和技能,在理论和实践中加深对电子电路的理解和掌握。

实验一:开关电源
1.实验目的
掌握开关电源基本工作原理,理解电源的稳压和稳流的基本原理,掌握开关电源的设
计和布局方法。

2.实验步骤
(1)根据实验手册,搭建开关电源电路,包括开关电源 IC、滤波电感、电容、稳流
二极管和稳压二极管。

(2)进行仿真实验,记录各个参数数据。

(3)分析实验结果,了解电源电路的工作原理和性能。

3.实验结果分析
(1)开关频率:在实验中,我们通过改变开关频率,观察电路的输出。

结果表明,当开关频率增加时,电路的效果也增强。

(2)输出电压:在实验中,我们对电路的输出电压进行了测量,结果表明,当输入电压较高时,输出电压也较高;当输入电压较低时,输出电压也较低。

4.实验总结
开关电源是一种高效率、小体积、轻量化的电源,广泛应用于电子产品中,是电子领
域不可或缺的核心器件之一。

掌握开关电源的设计和布局方法,对于我们理解和掌握电子
电路的原理和技术具有重要的意义。

通过本次实验,我们加深了对开关电源的理解和掌握,为日后的学习和实践打下了基础。

电力电子电路分析与仿真实验报告

电力电子电路分析与仿真实验报告

电力电子电路分析与仿真实验报告实验目的:1.理解电力电子电路的基本工作原理;2.熟悉电力电子电路的常用元件,如二极管、晶闸管等;3.学习使用仿真软件进行电力电子电路的模拟分析。

实验仪器与软件:1.电力电子实验箱;2.PC机;3. Multisim仿真软件。

实验步骤:1.搭建一个简单的单相半波整流电路,其中包括一个二极管、一个负载电阻和一个输入交流电源。

2. 打开Multisim仿真软件,选择电力电子电路仿真模块,并导入所搭建的电路图。

3.模拟设置输入交流电源的电压、频率等参数,并运行仿真。

4.观察仿真结果,记录输出直流电压、负载电流及负载电压的波形。

5.更改交流电源的电压、负载电阻的数值,并重新仿真,观察输出波形的变化。

6.搭建一个三相桥式整流电路,其中包括六个二极管和一个负载电阻。

7. 导入三相桥式整流电路图到Multisim仿真软件,并设置相关参数进行仿真。

8.观察输出直流电压、负载电流及负载电压的波形,并记录数据。

9.更改电源电压及负载电阻的数值,重新进行仿真分析。

实验结果与分析:在进行了以上实验步骤后,我们分别得到了单相半波整流电路和三相桥式整流电路的仿真结果。

通过观察输出波形和记录的数据,我们发现以下几个规律:1.在单相半波整流电路中,输出直流电压的平均值较输入交流电压的峰值小,且具有脉动。

负载电流和负载电压的波形与输入交流电压的波形相同,只是幅值减小。

2.在三相桥式整流电路中,输出直流电压的平均值较输入交流电压的峰值小,且同样存在脉动。

负载电流的波形是一个六段的锯齿波,而负载电压的波形是一个脉冲波。

结论:通过本次实验,我们深入了解了电力电子电路的基本工作原理,并熟悉了常用的电力电子元件。

同时,通过使用Multisim仿真软件进行电路仿真分析,我们能够更直观地观察到电路各个参数的变化情况,提高了实验效率和准确性。

实验报告-电力电子仿真实验

实验报告-电力电子仿真实验

电力电子仿真实验实验报告院系:电气与电子工程学院班级:电气1309班学号: 17学生姓名:王睿哲指导教师:姚蜀军成绩:日期:2017年 1月2日目录实验一晶闸管仿真实验........................................ 错误!未定义书签。

实验二三相桥式全控整流电路仿真实验.......................... 错误!未定义书签。

实验三电压型三相SPWM逆变器电路仿真实验..................... 错误!未定义书签。

实验四单相交-直-交变频电路仿真实验.......................... 错误!未定义书签。

实验五 VSC轻型直流输电系统仿真实验.......................... 错误!未定义书签。

实验一晶闸管仿真实验实验目的掌握晶闸管仿真模型模块各参数的含义。

理解晶闸管的特性。

实验设备:MATLAB/Simulink/PSB实验原理晶闸管测试电路如图1-1所示。

u2为电源电压,ud为负载电压,id为负载电流,uVT 为晶闸管阳极与阴极间电压。

图1-1 晶闸管测试电路实验内容启动Matlab,建立如图1-2所示的晶闸管测试电路结构模型图。

图1-2 带电阻性负载的晶闸管仿真测试模型双击各模块,在出现的对话框内设置相应的模型参数,如图1-3、1-4、1-5所示。

图1-3 交流电压源模块参数图1-4 晶闸管模块参数图1-5 脉冲发生器模块参数固定时间间隔脉冲发生器的振幅设置为5V,周期与电源电压一致,为(即频率为50Hz),脉冲宽度为2(即º),初始相位(即控制角)设置为(即45º)。

串联RLC分支模块Series RLC Branch与并联RLC分支模块Parallel RLC Branch的参数设置方法如表1-1所示。

表1-1 RLC分支模块的参数设置元件串联RLC分支并联RLC分支类别电阻数值电感数值电容数值电阻数值电感数值电容数值单个电阻R0inf R inf0单个电感0L inf inf L0单个电容00C inf inf C 在本系统模型中,双击Series RLC Branch模块,设置参数如图1-6所示。

数字电路仿真实训实验报告

数字电路仿真实训实验报告

课程设计(大作业)报告课程名称:数字电子技术课程设计设计题目:多功能数字时钟的设计、仿真院系:信息技术学院班级:二班设计者:张三学号:79523指导教师:张延设计时间:2011年12月19日至12月23日信息技术学院昆明学院课程设计(大作业)任务书一、设计目的为了熟悉数字电路课程,学习proteus软件的使用,能够熟练用它进行数字电路的仿真设计,以及锻炼我们平时独立思考、善于动手操作的能力,培养应对问题的实战能力,提高实验技能,熟悉复杂数字电路的安装、测试方法,掌握关于多功能数字时钟的工作原理,掌握基本逻辑们电路、译码器、数据分配器、数据选择器、数值比较器、触发器、计数器、锁存器、555定时器等方面已经学过的知识,并能够将这些熟练应用于实际问题中,我认真的动手学习了数字时钟的基本原理,从实际中再次熟悉了关于本学期数字电路课程中学习的知识,更重要的是熟练掌握了关于proteus软件的使用,收获颇多,增强了自己的工程实践能力。

另外,数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。

数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

因此,我们此次设计数字钟就是为了了解数字钟的原理,从而学会制作数字钟。

而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法。

且由于数字钟包括组合逻辑电路和时叙电路。

通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法。

二、设计要求和设计指标设计一个数字时钟,具有“秒”、“分”、“时”计时和显示功能。

小时以24小时计时制计时;具有校时功能,能够对“分”、“时”进行调整;能够进行整点报时,报时规则为:在59Min51s后隔秒发出500Hz的低音报时信号,在59min59s时发出1kHz的高音报时信号,声响持续1s。

电路电子软件仿真实验报告

电路电子软件仿真实验报告

电路电子软件仿真实验报告学号:XXXXXXX姓名:XXXX实验报告纲要1:电路电子基本知识小结一、常用电阻、电容、电感二、常用仪器的认识三、测量概念的初步认识2:Multisim的认识3:实验6-2-----6-54:常用电器的分析5:常用电器的部分电路的仿真与故障排除6:实验的反思与体会一、电阻器的基本知识(一)电阻器的作用电阻器主要用来控制电压和电流,即起降压、分压、限流、分流、隔离、信号幅度调节等作用。

(二)电阻器的电路图形符号电阻器在电路中以R表示,常用的电路符号如下(三)电阻器的种类电阻器有多种分类方法,以下是几种常用的分类方法:1、按用途的不同分类,电阻器可以分为通用电阻器、高阻电阻器、高压电阻器、高频电阻器和精密电阻器等。

2、按制作材料的不同,电阻器可分为线绕型电阻器和非线绕型电阻器。

其中线绕型电阻器又可以分为普通线绕型电阻器、被釉型线绕电阻器、陶瓷绝缘线绕型电阻器等;非线绕型电阻器又可以分为合成式线绕电阻器和膜式电阻器。

3、按结构形式不同,电阻器可为分圆柱型电阻器、管型电阻器、圆盘型电阻器和平面状电阻器(贴片式电阻器)。

4、按引线的不同,电阻可分为轴向引线型电阻器、径向引线型电阻器、无引线电阻器等。

5、按电阻器的特性,通常可分为固定电阻器、可变电阻器、敏感电阻器、熔断电阻器和电阻排等几大类。

其中,固定电阻器可分为碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、合成碳膜电阻器、有机实心电阻器、无机实心电阻器、金属玻璃釉电阻器、线绕电阻器、片式电阻器等;敏感电阻器可分为热敏电阻器、压敏电阻器、光敏电阻器、湿敏电阻器、磁敏电阻器、气敏电阻器、力敏电阻器等电容器的基本知识(一)电容器的结构特性与作用电容器是由两个相互靠近的金属电极中间夹一层绝缘介质构成的,具有通交流、隔直流的特性。

电容器广泛应用于各种高、低频及电源等电路中,起退耦、耦合、滤波、旁路、谐振等作用。

(二)电容器的电路图形符号电容器在电路中用字母“C”表示,常用的图形符号如下:(三)电容器的分类电容器有多种分类方法,以下是几种常用的分类方法:1、按电容量是否可调,电容器可以分为固定电容器和可变电容器。

器件仿真实验报告

器件仿真实验报告

器件仿真实验报告电力电子仿真仿真实验报告目录实验一:常用电力电子器件特性测试................................................................................... 3 (一)实验目的:................................................................................................ .. (3)掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性; (3)掌握各器件的参数设置方法,以及对触发信号的要求。

(3)(二)实验原理.................................................................................................... (3)(三)实验内容.................................................................................................... (3)(四)实验过程与结果分析 (3)1.仿真系统.................................................................................................... (3)2.仿真参数.................................................................................................... .. (4)3.仿真波形与分析.................................................................................................... .. (4)4.结论.................................................................................................... .. (10)实验二:可控整流电路.................................................................................................... .. (11)(一)实验目的.................................................................................................... . (11)(二)实验原理.................................................................................................... . (11)(三)实验内容.................................................................................................... . (11)(四)实验过程与结果分析 (12)1.单相桥式全控整流电路仿真系统,下面先以触发角为0度,负载为纯电阻负载为例.................................................................................................... .. (12)2.仿真参数.................................................................................................... (12)3.仿真波形与分析.................................................................................................... (14)实验三:交流-交流变换电路................................................................................................19(一)实验目的.................................................................................................... . (19)(三)实验过程与结果分析 (19)1)晶闸管单相交流调压电路 (19)实验四:逆变电路.................................................................................................... . (26)(一)实验目的.................................................................................................... . (26)(二)实验内容.................................................................................................... . (26)实验五:单相有源功率校正电路 (38)(一)实验目的.................................................................................................... . (38)(二)实验内容.................................................................................................... . (38)个性化作业:................................................................................................ . (40)(一)实验目的:................................................................................................ . (40)(二)实验原理:................................................................................................ . (40)(三)实验内容.................................................................................................... . (40)(四)结果分析:................................................................................................ . (44)(五)实验总结:................................................................................................ . (45)实验一:常用电力电子器件特性测试(一)实验目的:掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;掌握各器件的参数设置方法,以及对触发信号的要求。

模电仿真报告

模电仿真报告

模拟电子技术基础Multisim 仿真实验报告课题:交流负反馈对放大倍数稳定性的影响班级:自1203班姓名:张凯(41251083)张晨光(41251084)李顶立(41251085)一、题目负反馈对电压串联负反馈放大电路电压放大倍数稳定性的影响。

二、仿真电路仿真电路采用虚拟集成运放,运放U1、U2分别引入了局部电压并联负反馈,其闭环电压放大倍数分别为RR A11f 1uf -≈,RR A22f 2uf ≈,可以认为该负反馈放大电路中基本放大电路的放大倍数AA Au u 2f 1f ≈整个电路引入了急件电压串联负反馈,闭环电压放大倍数FA A A A Au u u u u 2f 1f 2f 1f f1+≈,RRR Ff+=,三、仿真内容分别测量 Ω=k R f 1002和 Ωk 10 时的 A u f 。

从示波器可读出输出电压的幅值,得到放大倍数电压的变化。

四、仿真结果1、张凯的结果(1)实验截图图1 负反馈放大倍数(张凯)(2)实验数据表图2 实验数据表(张凯)(1)实验截图图3 负反馈放大倍数(张晨光)(2)实验数据表图4 实验数据表(张晨光)(1)实验截图图5 负反馈放大倍数(李顶立)(2)实验数据表图6 实验数据表(李顶立)五、实验数据分析1、比较第1组数据与第2组数据可知,当反馈电阻减小时,运放的闭环电压放大倍数减小。

2、不接反馈电阻时的开环电压放大倍数与接上反馈电阻时的闭环电压放大倍数具有明显的差异,表明负反馈具有提高放大倍数稳定性的作用。

六、实验结论1、由 图4 可知,当R 2f 从100k Ω 变为10k Ω时,电路的开环电压放大倍数变化量Δ9.0101010443)(=-=A A ,闭环电压放大倍数变化量Δ()148.01.1.95-0.811ff-≈=AA u u ,AA AA uf∆<<∆uf。

由此说明负反馈放大倍数的稳定性。

2、根据 图四 可知R 2f 从100k Ω 变为10k Ω时,开环电压放大倍数A 从104变为103,闭环电压放大倍数A uf 分别为99和90.9,与仿真结果近似。

电子电路multisim仿真实验报告

电子电路multisim仿真实验报告

电子电路multisim仿真实
验报告
班级:XXX
姓名:XXX
学号:XXX
班内序号:XXX
一:实验目的
1:熟悉Multisim软件的使用方法。

2:掌握放大器静态工作点的仿真方法及其对放大器性能的影响。

3:掌握放大电路频率特性的仿真方法。

二:虚拟实验仪器及器材
基本电路元件(电阻,电容,三极管)双踪示波器波特图示仪直流电源
三:仿真结果
(1)电路图
其中探针分别为:
探针一探针二
(2)直流工作点分析。

(3)输入输出波形
A通道为输入波形B通道为输出波形
四:实验流程图
开始
选取实验所需电路元件
及测量工具
合理摆放元件位置并连
接电路图
直流特性分析
结束
五:仿真结果分析
(1)直流工作点
电流仿真结果中,基极电流Ib为7.13u,远小于发射极和集电极,而发射极和集电极电流Ie和Ic近似相等,与理论结果相吻合。

电压仿真结果中,基极与发射极的电位差Vbe经过计算约为0.625V,符合三极管的实际阈值电压,而Vce约为5.65V。

以上数据均满足放大电路的需求,所以电路工作在放大区。

(2)示波器图像分析
示波器显示图像中,A路与B路反相,与共射放大电路符合。

六:总结与心得
这次的仿真花费了大量时间,主要是模块的建立。

经过本次的电子电路仿真实验,使我对计算机在电路实验中的应用有了更为深刻的认识,对计算机仿真的好处有了进一步的了解。

仿真可以大大的减轻实验人员的工作负担,同时更可以极大的提升工作效率,事半功倍,所以对仿真的学习是极为必要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子仿真实验报告篇一:电路仿真实验报告实验一电路仿真一、实验目的通过几个电路分析中常用定理和两个典型的电路模块,对Multisim的主窗口、菜单栏、工具栏、元器件栏、仪器仪表和一些基本操作进行学习。

二、实验内容1.叠加定理:在任何由线性元件、线性受控源及独立源组成的线性电路中,每一支路的响应都可以看成是各个独立电源单独作用时,在该支路中产生响应的代数和;2.戴维南定理:一个含独立源、线性受控源、线性电阻的二端电路N,对其两个端子来说都可以等效为一个理想电压源串联内阻的模型。

其理想电压源的数值为有源二端电路N的两个端子间的开路电压uoc,串联的内阻为N内部所有独立源等于零,受控源保留时两端子间的等效电阻Req,常记为R0;3.互易定理:对一个仅含线性电阻的二端口,其中,一个端口夹激励源,一个端口做响应端口。

在只有一个激励源的情况下,当激励与响应互换位置时,同一激励所产生的响应相同;4.暂态响应:在正弦电路中,电量的频率、幅值、相位都处于稳定的数值,电路的这种状态称为稳定状态。

电路从一种稳态向另一种稳态转换的过程称为过渡过程,由于过渡过程一般都很短暂,因此也称为暂态过程,简称暂态;5.串联谐振:该电路是一个由电阻、电容和电感串联组成,当激励源的频率达到谐振频率时,输出信号的幅值达到最大。

三、实验结果及分析1.叠加定理:①两个独立源共同作用时:②电压源单独作用时:③电流源单独作用时:2.戴维南定理:所以,根据戴维南定理可知,该电路的戴维南等效电阻Req=10.033/(781.609*10-6) =12.8 kΩ3.互易定理:当激励源与响应互换位置之后,该激励源所产生的响应不变。

4.暂态响应:①当电容C=4.7uF时,②当电容C=1uF时,对比①、②所对应的输出响应的波形图可以得知:电容容量减小之后,暂态过程所经历的时间变短了,波形上升沿河下降沿变陡了。

5.串联谐振:串联谐振电路的幅频特性曲线相频特性曲线四、问题与总结通过本次仿真实验,对电路课本上叠加定理、戴维南定理、互易定理以及暂态响应和串联谐振电路进行了相应的论证,同时对这几个简单的定理进行了相应的回顾与复习。

另外对Multisim的主窗口、菜单栏、工具栏、元器件栏、仪器仪表有了一定的了解,对Multisim这个仿真软件有了初步的认识。

篇二:电子通原仿真实验报告通信原理仿真实验报告电子 124XX 孙世林实验二数字基带传输系统仿真实验一、实验题目本实验主要研究的是通信系统中基带系统的传输特性,通过眼图,展示噪声和信道特性不理想对基带信号传输造成的影响。

二、实验原理数字基带传输系统是把数字基带信号直接送往信道,不经调制直接传输的系统,数字基带系统的基本结构可以由图 1 的模型表示:1) 信号发生器信号发生器产生固定码速率的二进制单、双极性不归零信号2) 发送/接收滤波器发送滤波器和接收滤波器都是升余弦平方根特性 1 由于发送滤波器的输入信号是不归零信号而不是冲激信号, 因此在滤波器的输入端采取了均衡措施, 使其输出的波形为标准的升余弦脉冲 1 另外由于升余弦滤波器是非因果滤波器,滤波器当前的输出依赖于未来时刻的输入, 为解决这一问题, 在滤波器中人为地增加了时间延迟, 延迟的时间是码速率的整数倍3) 传输信道信道引入加性高斯白噪声, 理论上, 高斯白噪声的功率谱是无限宽的, 但是在系统中只要噪声带宽远大于系统的最高带宽就可以满足要求, 因此在信道中引入的是限带高斯白噪声噪声源用相关时间比系统最短时间常数小得多的高斯分布随机序列发生器来模拟。

三、程序源代码function[f,sf]=T2F(t,st)dt=t(2)-t(1);T=t(end);df=1/T;N=length(st);f=-N/2*df:df:N/2*df-df;sf=fft(st);sf=T/N*fftshift(sf);end%在把序列d插入到序列M中,得到一个新序列function [out]=sigexpand(d,M)N=length(d);out=zeros(M,N);out(1,:)=d;out=reshape(out,1,M*N);%数字基带信号的功率谱密度clear all;close all;Ts=1;%每个码元的长度N_sample=8;%每个码元的抽样点数dt=Ts/N_sample;%抽样时间间隔N=1000;%码元数t=0:dt:(N*N_sample-1)*dt;%1x8000T=t(end);gt1=ones(1,N_sample);%1x8gt2=ones(1,N_sample/2); % 1x4?1x8?gt2=[gt2 zeros(1,N_sample/2)];%1x8mt3=sinc((t-5)/Ts);% 1x8000 sin(pi*t/Ts)/(pi*t/Ts)波形gt3=mt3(1:10*N_sample);%截段取10个码元d=(sign(randn(1,N))+1)/2;%1x1000 d=??data=sigexpand(d,N_sample);%插入N_sample-1个0gt4=ones(1,N_sample);gt5=ones(1,N_sample/2);gt5=[gt5 zeros(1,N_sample/2)];st1=conv(data,gt1);%调用Matlab的卷积函数conv st2=conv(data,gt2);d=2*d-1; % 变成双极性序列data=sigexpand(d,N_sample);st3=conv(data,gt3);st4=conv(data,gt4);st5=conv(data,gt5);[f,st1f]=T2F(t,[st1(1:length(t))]);[f,st2f]=T2F(t,[st2(1:length(t))]);[f,st3f]=T2F(t,[st3(1:length(t))]);[f,st4f]=T2F(t,[st4(1:length(t))]);[f,st5f]=T2F(t,[st5(1:length(t))]);%------------------产生单极性RZ波形与频谱------------------figure(1)subplot(321)plot(t,[st1(1:length(t))]);axis([0 20 -1.5 1.5]);xlabel('单极性NRZ波形');gridsubplot(322);plot(f,10*log10(abs(st1f).^2/T));gridaxis([-5 5 -40 10]);xlabel('单极性NRZ功率谱密度(dB/Hz)');subplot(323)plot(t,[st2(1:length(t))]);gridaxis([0 20 -1.5 1.5]);xlabel('单极性RZ波形');subplot(324);plot(f,10*log10(abs(st2f).^2/T));gridaxis([-5 5 -40 10]);xlabel('单极性RZ功率谱密度(dB/Hz)');subplot(325)plot(t-5,[st3(1:length(t))]);gridaxis([0 20 -2 2]);ylabel('双极性sinc波形');xlabel('t/Ts');subplot(326);plot(f,10*log10(abs(st3f).^2/T));gridaxis([-5 5 -40 10]);ylabel('sinc波形功率谱密度(dB/Hz)');xlabel('f*Ts');%------------------双极性NRZ波形与频谱---------------------figure(2)subplot(221)plot(t,[st4(1:length(t))]);axis([0 20 -1.5 1.5]);xlabel('双极性NRZ波形');gridsubplot(222);plot(f,10*log10(abs(st4f).^2/T));gridaxis([-5 5 -40 10]);xlabel('双极性NRZ功率谱密度(dB/Hz)');subplot(223)plot(t,[st5(1:length(t))]);gridaxis([0 20 -1.5 1.5]);xlabel('双极性NRZ波形');subplot(224);plot(f,10*log10(abs(st5f).^2/T));gridaxis([-5 5 -40 10]);xlabel('双极性NRZ功率谱密度(dB/Hz)');%------------------ 升余弦滚降系统仿真代码--------------------- Ts=1;N_sample=17;dt=Ts/N_sample;df=1.0/(20.0*Ts);t=-10*Ts:dt:10*Ts;f=-2/Ts:df:2/Ts;alpha=[0,0.75,1];for n=1:length(alpha)for k=1:length(f)if abs(f(k))>0.5*(1+alpha(n))/TsXf(n,k)=0;elseif abs(f(k)) Xf(n,k)=Ts;elseXf(n,k)=0.5*Ts*(1+cos(pi*Ts/(alpha(n)+eps)*(abs(f(k))-0.5*(1-alpha(n))/Ts)));endendxt(n,:)=sinc(t/Ts).*(cos(alpha(n)*pi*t/Ts))./(1-4*a lpha(n)^2*t.^2/Ts^2+eps);endfigure(1)plot(f,Xf);axis([-1 1 0 1.2]);xlabel('f/Ts');ylabel('升余弦滚降频谱');figure(2)plot(t,xt);axis([-10 10 -0.5 1.1]);xlabel('t');ylabel('升余弦滚降波形');Ts=1;N_sample=17;dt=Ts/N_sample;df=1.0/(20.0*Ts);t=-10*Ts:dt:10*Ts;f=-2/Ts:df:2/Ts;alpha=[0,0.5,1];for n=1:length(alpha)for k=1:length(f)if abs(f(k))>0.5*(1+alpha(n))/TsXf(n,k)=0;elseif abs(f(k)) Xf(n,k)=Ts;elseXf(n,k)=0.5*Ts*(1+cos(pi*Ts/(alpha(n)+eps)*(abs(f(k ))-0.5*(1-alpha(n))/Ts)));endendxt(n,:)=sinc(t/Ts).*(cos(alpha(n)*pi*t/Ts))./(1-4*a lpha(n)^2*t.^2/Ts^2+eps);end篇三:电子仿真线路实验报告大连理工大学本科实验报告课程名称:电子系统仿真实验学院(系):专业:班级:学号:姓名:XX 年月日一、实验目的和要求设计一个负反馈放大电路,输入信号为1kHZ的振幅为10mV的正弦波,其放大倍数为20倍左右,同频带为4MHZ左右。

相关文档
最新文档