龙格库塔法基本原理

合集下载

龙格-库塔方法基本原理3

龙格-库塔方法基本原理3
a2c2h2 fx b21c2h2 ff y O(h3)
2020/4/7
15
令 y(xi1) yi1 对应项的系数相等,得到
c1 c2 1 ,
a2c2
1 2
,
b21c2
1 2
这里有 4 个未知 数,3 个方程。
存在无穷多个解。所有满足上式的格式统称为2阶 龙格 - 库塔格式。
2020/4/7
称为P阶龙格-库塔方法。
其中ai,bij,ci为待定参数,要求上式yi+1在点(xi,yi)处作 Tailor展开,通过相同项的系数确定参数。
2020/4/7
9
Runge-Kutta方法的推导思想
对于常微分方程的初值问题
y f (x, y) a x b
y(a)
y0
的解y=y(x),在区间[xi, xi+1]上使用微分中值定理,有
hf (xi 2
,
yi
1 2
K1 )
K3 hf (xi h, yi K1 2K 2 )
2020/4/7
22
四阶(经典)龙格—库塔法
如果需要再提高精度,用类似上述的处理 方法,只需在区间[xi,xi+1]上用四个点处的斜 率加权平均作为平均斜率K*的近似值,构成一 系列四阶龙格—库塔公式。具有四阶精度,即 局部截断误差是O(h5)。
f x(xi , yi ) f (xi , yi ) f y (xi , yi ) O(h3 )
类似地,若取前P+1项作为y(xi+1)的近似值,便得到
yi1
yi
hyi
h2 2!
yi
hP P!
yi(P)
P阶泰勒方法
其中 yi f , yi f (xi , yi )x f x ff y

龙格库塔算法

龙格库塔算法

龙格库塔算法龙格库塔算法(Runge-Kutta method)是一种常用的数值解微分方程的方法,其基本原理是通过逐步逼近的方式,根据初始条件和微分方程的表达式,计算出方程的近似解。

该方法具有较高的精度和稳定性,在科学计算、物理模拟、工程建模等领域得到广泛应用。

龙格库塔算法的核心思想是将微分方程的解按照一定的步长进行离散化,从而将连续的求解问题转化为离散的迭代过程。

具体来说,龙格库塔算法通过计算函数在一定步长内的平均斜率,来估计下一个点的函数值。

这个平均斜率是通过多次计算函数在不同点上的导数得到的,从而提高了计算的精度。

龙格库塔算法的一般形式可以表示为:k1 = f(tn, yn)k2 = f(tn + h/2, yn + h/2 * k1)k3 = f(tn + h/2, yn + h/2 * k2)k4 = f(tn + h, yn + h * k3)yn+1 = yn + h/6 * (k1 + 2k2 + 2k3 + k4)其中,tn是当前时间点,yn是当前函数值,h是步长,f是微分方程的表达式。

通过多次迭代,可以逐渐逼近微分方程的解。

龙格库塔算法的优点在于其精确度较高,可以通过调整步长来控制计算的精度和效率。

此外,该算法具有较好的数值稳定性,可以有效处理非线性、刚性或高阶微分方程等复杂问题。

因此,在科学和工程计算中,龙格库塔算法被广泛应用于各种数值模拟和求解问题。

需要注意的是,龙格库塔算法并非万能的,对于一些特殊的问题,可能存在数值不稳定性或计算精度不够的情况。

此外,算法的步长选择也需要根据具体问题进行调整,过小的步长会增加计算量,而过大的步长可能导致精度下降。

因此,在使用龙格库塔算法时,需要根据具体问题的特点和要求来选择合适的步长和算法参数,以获得满意的计算结果。

总结起来,龙格库塔算法是一种常用的数值解微分方程的方法,具有较高的精度和稳定性。

通过离散化和迭代的方式,可以逐步逼近微分方程的解。

计算方法上机作业——龙格库塔法

计算方法上机作业——龙格库塔法

计算方法上机作业——龙格库塔法龙格库塔法(Runge-Kutta method)是一种常用于求解常微分方程(Ordinary Differential Equation,ODE)的数值解法。

它是由德国数学家卡尔·龙格(Carl Runge)和马丁·威尔海姆·库塔(Martin Wilhelm Kutta)在20世纪初提出的。

龙格库塔法的基本思想是通过数值逼近来计算微分方程的近似解。

在讲解龙格库塔法之前,我们先来简单回顾一下ODE的一阶常微分方程的基本形式:y′(y)=y(y,y)其中,y(y,y)是已知函数。

龙格库塔法的核心是使用差分逼近计算函数的斜率。

假设我们要求解的方程为:y′(y)=y(y,y),y(y)=y₀所需计算的点为y₀,y₁,...,yy,对应的函数值为y₀,y₁,...,yy,其中y是步长的个数。

龙格库塔法通过递推关系式来计算估计值,并不断更新当前点的函数值。

接下来以龙格库塔法的经典四阶形式为例进行说明。

该方法的基本方程如下:yy+1=yy+(y₁+2y₂+2y₃+y₄)/6y₁=ℎy(yy,yy)y₂=ℎy(yy+ℎ/2,yy+y₁/2)y₃=ℎy(yy+ℎ/2,yy+y₂/2)y₄=ℎy(yy+ℎ,yy+y₃)其中y表示当前步骤,ℎ表示步长,yy表示当前点的函数值,y₁,y₂,y₃和y₄则表示对应的斜率。

使用龙格库塔法,我们可以通过不断递归计算来求得指定区间(例如[y,y])上的函数值。

具体步骤如下:1.确定求解区间[y,y]和初始点(y₀,y₀)以及步长ℎ。

2.初始化:设置yy=y₀,yy=y₀。

3.对所有y=0,...,y−1:计算y₁,y₂,y₃和y₄,根据上述递推关系式。

根据递推关系式计算yy+1更新当前点的函数值,即yy+1=y(yy+1)。

更新当前点的y值,即yy+1=yy+ℎ。

4.返回结果:最终求得的函数值。

需要注意的是,选择适当的步长对最终结果的精度和计算效率都有重要影响。

82第二节 龙格—库塔法

82第二节 龙格—库塔法
h k y x n O hk 1 k! 2
k
(1)
h h k 若令 yn1 y xn hy xn y xn y xn (2) 2! k! 则 y xn1 yn1 O hk 1
y0 k1 2 k2 hf x0 h 2, y0 k1 2
y0 k3
k4 hf x0 h, y0 k3
y0 k2 2 k3 hf x0 h 2, y0 k2 2
k
x1 x0 h y1 y0 k
数学学院 信息与计算科学系
0.1832292
0.1584376
数学学院 信息与计算科学系
接上图
0.4 0.5 0.5 0.6 0.6 1.341667 1.416026 1.412676 1.482627 1.483281 0.0745394 0.0710094 0.0708400 0.0673253
0.1416245
数学学院 信息与计算科学系
数学学院 信息与计算科学系
由表8-4可见,虽然四阶龙格-库塔方法每步要 计算四次 f 的值,但以h=0.2为步长ቤተ መጻሕፍቲ ባይዱ计算结果就
有5 位有效数字,而欧拉法与预估计-校正方法以
h=0.1为步长的计算结果才具有2 位与3 位有效数字.
如果步长 h 也取0.2,则结果的精度会更低.

即公式(2)为k 阶方法.
数学学院 信息与计算科学系
二、龙格-库塔方法(R-K方法)
R-K方法不是通过求导数的方法构造近似公式, 而是通过计算不同点上的函数值, 并对这些函数值作 线性组合, 构造近似公式, 再把近似公式与解的泰勒 展开式进行比较, 使前面的若干项相同 , 从而使近似 公式达到一定的阶数.

四阶龙格—库塔法的原理及其应用

四阶龙格—库塔法的原理及其应用

《四阶龙格—库塔法的原理及其应用》
龙格—库塔法(又称龙格库塔法)是由一系列有限的、独立的可能解组成的无穷序列,这些解中每个都与原来的数列相差一个常数。

它是20世纪30年代由匈牙利著名数学家龙格和库塔提出的,故得此名。

1.它的基本思想是:在n 阶方阵M 上定义一个函数,使得当n 趋于无穷时,它在m 中所表示的数值为M 的某种特征值,从而构造出一族具有某种特性的可计算函数f (x)= Mx+ C (其中C 为任意正整数)。

例如,若f (x)=(a-1) x+ C,则称之为(a-1) x 的龙格—库塔法。

2.它的应用很广泛,可以求解各类问题,且能将大量的未知数变换成少数几个已知数,因此它是近似计算的一种重要工具。

3.
它的优点主要有:(1)可以将多项式或不等式化成比较简单的形式;(2)对于同一问题可以用不同的方法来解决,并取得同样的结果;(3)适合处理高次多项式或者不等式,尤其适合处理多元函数的二次型。

龙格-库塔法

龙格-库塔法

四阶龙格-库塔法求解常微分方程的初值问题1.算法原理对于一阶常微分方程组的初值问题⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋯⋯==⋯⋯=⋯⋯⋯⋯=⋯⋯=0020********'212'2211'1)(,,)(,)())(,),(),(,()())(,),(),(,()())(,),(),(,()(n n n n n n n y x y y x y y x y x y x y x y x f x y x y x y x y x f x y x y x y x y x f x y , 其中b x a ≤≤。

若记Tn Tn Tn y x f y x f y x f y x f y y y y x y x y x y y x y )),(,),,(),,((),(),,,())(),(),(()(2102010021⋯⋯=⋯⋯=⋯⋯=,,则可将微分方程组写成向量形式⎩⎨⎧=≤≤=0')()),(,()(y a y b x a x y x f x y微分方程组初值问题在形式上和单个微分方程处置问题完全相同,只是数量函数在此变成了向量函数。

因此建立的单个一阶微分方程初值问题的数值解法,可以完全平移到求解一阶微分方程组的初值问题中,只不过是将单个方程中的函数转向向量函数即可。

标准4阶R-K 法的向量形式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++=++=++==++++=+),()21,2()21,2(),()22(61342312143211K y h x hf K K y h x hf K K y h x hf K y x hf K K K K K y y n n n n n n n n n n 其分量形式为n j K y K y K y h x hf K K y K y K y h x hf K K y K y K y h x hf K y y y x hf K K K K K y y n ni i i i j j n nii i i j j n nii i i j j ni i i i j j j j j j i j i j ,,2,1).,,,;(),2,2,2;2(),2,2,2;2(),,,,;(),22(6132321314222212131212111221143211,1,⋯⋯=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+⋯⋯+++=+⋯⋯+++=+⋯⋯+++=⋯⋯=++++=++,,2.程序框图3.源代码%该函数为四阶龙格-库塔法function [x,y]=method(df,xspan,y0,h)%df为常微分方程,xspan为取值区间,y0为初值向量,h为步长x=xspan(1):h:xspan(2);m=length(y0);n=length(x);y=zeros(m,n);y(:,1)=y0(:);for i=1:n-1k1=feval(df,x(i),y(:,i));k2=feval(df,x(i)+h/2,y(:,i)+h*k1/2);k3=feval(df,x(i)+h/2,y(:,i)+h*k2/2);k4=feval(df,x(i)+h,y(:,i)+h*k3);y(:,i+1)=y(:,i)+h*(k1+2*k2+2*k3+k4)/6;end%习题9.2clear;xspan=[0,1];%取值区间h=0.05;%步长y0=[-1,3,2];%初值df=@(x,y)[y(2);y(3);y(3)+y(2)-y(1)+2*x-3];[xt,y]=method(df,xspan,y0,h)syms t;yp=t*exp(t)+2*t-1;%微分方程的解析解yp1=xt.*exp(xt)+2*xt-1%计算区间内取值点上的精确解[xt',y(1,:)',yp1']%y(1,:)为数值解,yp1为精确解ezplot(yp,[0,1]);%画出解析解的图像hold on;plot(xt,y(1,:),'r');%画出数值解的图像4.计算结果。

龙格库塔 高阶常微分方程组

龙格库塔 高阶常微分方程组

龙格库塔高阶常微分方程组龙格库塔法(Runge-Kutta method)是一种数值解常微分方程的方法,它由卡尔·龙格(Carl Runge)和马丁·康托尔·库塔(Martin Kutta)分别独立发现。

这种方法常常被用来解决高阶常微分方程组,其优点在于精度高且适用范围广。

1. 龙格库塔法的基本原理我们来简要介绍一下龙格库塔法的基本原理。

对于一个一阶常微分方程y′=f(x,y),我们可以通过欧拉法进行数值解,其迭代公式为y_(n+1) = y_n + hf(x_n, y_n)。

而龙格库塔法则通过多个步骤的迭代来提高精度。

常见的四阶龙格库塔法的迭代公式如下:k1 = hf(x_n, y_n)k2 = hf(x_n+1/2h, y_n+1/2k1)k3 = hf(x_n+1/2h, y_n+1/2k2)k4 = hf(x_n+h, y_n+k3)y_(n+1) = y_n + 1/6(k1 + 2k2 + 2k3 + k4)2. 高阶常微分方程组的数值解对于高阶常微分方程组,我们可以通过变量替换的方式将其转化为一组一阶微分方程,然后利用龙格库塔法进行数值解。

以二阶常微分方程为例,我们可以令y1 = y,y2 = y',然后构造一组一阶微分方程:y1' = y2y2' = f(x,y1,y2)这样,我们就可以利用龙格库塔法对其进行数值解了。

3. 个人观点和理解在我看来,龙格库塔法是一种非常有效的数值解法,尤其适用于高阶常微分方程组。

通过多步迭代的方式,可以大大提高数值解的精度,从而在实际问题中得到更为可靠的结果。

当然,龙格库塔法也存在一定的局限性,比如对于一些特殊形式的方程可能不够有效,需要结合其他方法进行求解。

总结回顾通过本文的介绍,我们对龙格库塔法有了更深入的了解。

从基本原理到在高阶常微分方程组中的应用,我们了解了其在数值计算中的重要性。

我也分享了自己对这一方法的个人观点和理解。

四阶龙格-库塔法求解常微分方程的初值问题

四阶龙格-库塔法求解常微分方程的初值问题
实验 4 四阶龙格-库塔法求解常微分方程的初值问题
1. 算法原理 龙格—库塔法是一种求其准确解 y( x) 在一系列点 xi 处 y ( xi ) 的近似值 yi 的方 法, yi 称为数值解。 经典的四阶龙格—库塔公式为:
K1 hf ( xi , yi ) K 2 hf ( xi h , yi 1 K1 ) 2 2 h 1 K 3 hf ( xi , yi K 2 ) 2 2 K 4 hf ( xi h, yi K 3 ) yi 1 yi 1 ( K1 2 K 2 2 K 3 K 4 ) 6
2. 程序框图
开始
输入函数 f ,初始点 x0,初始向量 y0,步 长 h, 矩阵的等分数 N
N
xi = x0 ih
计算 K1,K2,K3,
i=i+1 否
K4,yi+1
i=N

输出一系列点 xi 和 对应的数值解 yi
结束
3. 程序使用说明 本程序使用 MATLAB 利用四阶龙格—库塔法来求解常微分方程的初值问题。 源程序文件 “RK.m”为龙格—库塔法的源程序,x为一系列点 xi = x0 ih 组成 的向量,y为数值解 yi 组成的矩阵,f为1阶微分方程的函数,x0为初始点,y0为 初始向量(列向量) ,h为步长,N为矩阵的等分数。 输入1阶微分方程的函数f,初始点x0,初始向量y0,步长h,矩阵的等分数N 后, 在命令窗口输入[x,y]=RK(f,x0,y0,h,N), 回车后即可算出一系列点 xi 和对应的 数值解 yi 。 源程序文件 “RK2.m”是计算实习 9.2 算例的程序, 直接运行后, 在命令窗口 输入 t1,t2,回车后即可得到算例结果,其中 t1 表示 y (1) 的近似值,t2 表示 y (1) 的精确值。 4. 算例计算结果 此算例为课本 304 页计算实习 9.2. 将算例的高阶常微分方程转化为如下一阶微分方程组。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙格库塔法
一、基本原理:
龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。

由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。

该算法是构建在数学支持的基础之上的。

对于一阶精度的欧拉公式有:
yi+1=yi+h*K1 K1=f(xi,yi)
当用点xi处的斜率近似值K1与右端点xi+1处的斜率K2的算术平均值作为平均斜率K*的近似值,那么就会得到二阶精度的改进欧拉公式:
yi+1=yi+h*( K1+ K2)/2
K1=f(xi,yi)
K2=f(xi+h,yi+h*K1)
依次类推,如果在区间[xi,xi+1]内多预估几个点上的斜率值K1、K2、……Km,并用他们的加权平均数作为平均斜率K*的近似值,显然能构造出具有很高精度的高阶计算公式。

经数学推导、求解,可以得出四阶龙格-库塔公式,也就是在工程中应用广泛的经典龙格-库塔算法:
yi+1=yi+h*( K1+ 2*K2 +2*K3+ K4)/6
K1=f(xi,yi)
K2=f(xi+h/2,yi+h*K1/2)
K3=f(xi+h/2,yi+h*K2/2)
K4=f(xi+h,yi+h*K3)
通常所说的龙格-库塔法是指四阶而言的,我们可以仿二阶、三阶的情形推导出常用的标准四阶龙格-库塔法公式计算公式(1)的局部截断误差。

龙格-库塔法具有精度高,收敛,稳定(在一定条件下),计算过程中可以改变步长,不需要计算高阶导数等优点,但仍需计算在一些点上的值,如四阶龙格-库塔法每计算一步需要计算四次的值,这给实际计算带来一定的复杂性,因此,多用来计算“表头”。

相关文档
最新文档