龙格库塔法求微方程matlab

合集下载

matlab四阶龙格库塔法解方程组

matlab四阶龙格库塔法解方程组

matlab四阶龙格库塔法解方程组摘要:1.MATLAB 与四阶龙格- 库塔法简介2.四阶龙格- 库塔法求解方程组的原理3.MATLAB 中实现四阶龙格- 库塔法的方法4.四阶龙格- 库塔法在MATLAB 中的应用实例5.总结与展望正文:一、MATLAB 与四阶龙格- 库塔法简介MATLAB 是一种广泛应用于科学计算、数据分析和可视化的编程语言,它为用户提供了丰富的函数库和工具箱,使得各种数学运算和工程计算变得简单易行。

在MATLAB 中,求解方程组是工程和技术领域中常见的问题,而四阶龙格- 库塔法(RK4)是一种高效的数值求解方法。

二、四阶龙格- 库塔法求解方程组的原理四阶龙格- 库塔法是一种基于分步法的四阶数值积分方法,用于求解常微分方程初值问题。

它通过将求解区间分为若干个小区间,然后在每个小区间内,对导数进行四次评估,最后以加权平均的方式获取区间内函数的平均斜率,从而近似求得该区间内函数的值。

通过这种方式,可以逐步求解出方程组的解。

三、MATLAB 中实现四阶龙格- 库塔法的方法在MATLAB 中,可以使用自定义函数和循环结构实现四阶龙格- 库塔法求解方程组。

以下是一个简单的示例:```matlabfunction dXdt = rk4(t, X, f, dt)% 计算k1k1 = f(t, X);% 计算k2k2 = f(t + dt/2, X + 0.5*dt*k1);% 计算k3k3 = f(t + dt/2, X + 0.5*dt*k2);% 计算k4k4 = f(t + dt, X + dt*k3);% 计算四阶龙格- 库塔法导数dXdt = (k1 + 2*k2 + 2*k3 + k4) / 6;end```四、四阶龙格- 库塔法在MATLAB 中的应用实例假设我们要求解如下方程组:```x" = 2*y - zy" = x + 2*zz" = -x + y```我们可以使用MATLAB 中的四阶龙格- 库塔法求解该方程组,具体步骤如下:1.定义方程组的函数形式:```matlabfunction f = example_function(t, X)f(1, X) = [2*X(2) - X(3); X(1) + 2*X(3); -X(1) + X(2)];end```2.设置求解参数:```matlabtspan = [0, 10];dt = 0.01;```3.初始化解:```matlabX0 = [1; 1; 1];```4.使用四阶龙格- 库塔法求解方程组:```matlab[~, X] = ode45(@(t, X) example_function(t, X), tspan, X0, dt);```5.绘制解的曲线:```matlabplot3(X(:, 1), X(:, 2), X(:, 3));xlabel("x");ylabel("y");zlabel("z");title("四阶龙格- 库塔法求解示例");```五、总结与展望四阶龙格- 库塔法作为一种高效的数值积分方法,在MATLAB 中得到了广泛的应用。

使用Matlab进行微分方程求解的方法

使用Matlab进行微分方程求解的方法

使用Matlab进行微分方程求解的方法引言微分方程是数学中非常重要的一部分,广泛应用于物理、经济、工程等领域。

对于大部分微分方程的解析解往往难以求得,而数值解法则成为了一种常用的解决手段。

Matlab作为一种强大的科学计算软件,也提供了丰富的工具和函数用于求解微分方程,本文将介绍一些常见的使用Matlab进行微分方程求解的方法。

一、数值求解方法1. 欧拉方法欧拉方法是最简单的一种数值求解微分方程的方法,它将微分方程的微分项用差分的方式进行近似。

具体的公式为:y(n+1) = y(n) + hf(x(n), y(n))其中,y(n)表示近似解在第n个点的值,h为步长,f(x, y)为微分方程的右端项。

在Matlab中使用欧拉方法进行求解可以使用ode113函数,通过设定不同的步长,可以得到不同精度的数值解。

2. 中点法中点法是较为精确的一种数值求解微分方程的方法,它的计算公式为:k1 = hf(x(n), y(n))k2 = hf(x(n) + h/2, y(n) + k1/2)y(n+1) = y(n) + k2中点法通过计算两个斜率的平均值来得到下一个点的值,相较于欧拉方法,中点法能提供更精确的数值解。

3. 4阶龙格库塔法龙格库塔法是一类高阶数值求解微分方程的方法,其中4阶龙格库塔法是最常用的一种。

它的计算公式为:k1 = hf(x(n), y(n))k2 = hf(x(n) + h/2, y(n) + k1/2)k3 = hf(x(n) + h/2, y(n) + k2/2)k4 = hf(x(n) + h, y(n) + k3)y(n+1) = y(n) + (k1 + 2k2 + 2k3 + k4)/64阶龙格库塔法通过计算多个斜率的加权平均值来得到下一个点的值,相较于欧拉方法和中点法,它的精度更高。

二、Matlab函数和工具除了可以使用以上的数值方法进行微分方程求解之外,Matlab还提供了一些相关的函数和工具,方便用户进行微分方程的建模和求解。

内弹道 龙格库塔 计算 matlab

内弹道 龙格库塔 计算 matlab

内弹道是指射程较短的导弹或火箭弹在飞行过程中受到大气阻力和重力等作用的飞行轨迹。

内弹道理论研究的是导弹或火箭弹在发射后到离开大气层再进入大气层末时的飞行过程。

内弹道包括导弹或火箭弹在发射后的加速、稳定、制导、飞行以及飞行过程中的动力学性能仿真等诸多内容。

内弹道有着复杂的飞行特性和动力学方程,在实际工程中需要进行准确的计算和仿真。

内弹道的计算中,龙格库塔(Runge-Kutta)法是一种常用的数值积分方法,在求解微分方程等领域有着广泛的应用。

龙格库塔法是由数学家奥特翁格(C. W. Runge)和马丁庫塔(M. W. J. Kutta)于1900年提出的,用于求解常微分方程初值问题,其优点是精度较高,适用范围广。

在内弹道计算中,可以利用龙格库塔法对导弹或火箭弹的飞行轨迹进行数值模拟和计算,得到较为准确的飞行轨迹数据。

在实际工程中,为了方便进行内弹道的计算,可以使用Matlab等数学建模和仿真软件。

Matlab是一种常用的科学计算软件,具有强大的数值计算和仿真功能,可以用于内弹道计算中的龙格库塔法数值模拟。

在Matlab中,可以编写相应的程序,利用龙格库塔法对导弹或火箭弹的飞行过程进行仿真和计算,得到准确的飞行轨迹和动力学性能数据。

内弹道计算是导弹或火箭弹研究设计中的重要内容,龙格库塔法是一种常用的数值积分方法,Matlab是一种常用的科学计算软件,它们的应用能够有效地进行内弹道的计算和仿真,为导弹或火箭弹的研制提供重要的技术支持。

随着技术的不断发展,内弹道计算已经成为导弹或火箭弹研究设计中不可或缺的一部分。

在内弹道计算中,龙格库塔法是一种常用的数值积分方法,可以对导弹或火箭弹的飞行轨迹进行数值模拟和计算,提供准确的飞行轨迹数据。

而Matlab作为一种强大的科学计算软件,对于内弹道的计算和仿真也有着重要的应用价值。

在实际工程中,使用Matlab编写程序,利用龙格库塔法对导弹或火箭弹的飞行轨迹进行数值模拟和计算,将为导弹或火箭弹的研制提供重要的技术支持。

微分方程的数值解法matlab(四阶龙格—库塔法)

微分方程的数值解法matlab(四阶龙格—库塔法)

解析解: x x x1 3 2(((ttt))) 0 .0 8 1 1 2 P k 8 0siw n t) (2 .6 3 0 3 3 P k 0siw n t) (0 .2 12 2 2 P k 0siw n t)(
第一个质量的位移响应时程
Y (t)A(Y t)P(t)
(2)
Y (t)A(Y t)P(t)
3. Matlab 程序(主程序:ZCX)
t0;Y0;h;N;P0,w; %输入初始值、步长、迭代次数、初始激励力;
for i = 1 : N
t1 = t0 + h
P=[P0*sin(w*t0);0.0;0.0]
%输入t0时刻的外部激励力
Van der Pol方程
% 子程序 (程序名: dYdt.m ) function Ydot = dYdt (t, Y) Ydot=[Y(2);-Y(2)*(Y(1)^2-1)-Y(1)];
或写为
function Ydot = dYdt (t, Y) Ydot=zeros(size(Y)); Ydot(1)=Y(2); Ydot(2)=-Y(2)*(Y(1).^2-1)-Y(1)];
Solver解算指令的使用格式
说明:
t0:初始时刻;tN:终点时刻 Y0:初值; tol:计算精度
[t, Y]=solver (‘ODE函数文件名’, t0, tN, Y0, tol);
ode45
输出宗量形式
y1 (t0 )
Y
y1
(t1
)
y
1
(t
2
)
y2 (t0 )
y
2
(
t1
)
y
2
(
t

龙格库塔法RKF45Matlab实现

龙格库塔法RKF45Matlab实现

龙格库塔法RKF45的Matlab实现2007-08-16 14:03:32| 分类:MatLab/Maple/Mat|字号订阅4阶5级龙格库塔法用于解一阶微分方程(组),对于高阶微分方程,可以将其转换为一阶微分方程组求解。

原程序由John.H.Mathews编写(数值方法matlab版),但只能解微分方程,不能解微分方程组。

由LiuLiu@uestc修改,使之能够解微分方程组。

该程序精度比matlab自带的ode45更高。

rkf45.m:function [Rt Rx]=rkf45(f,tspan,ya,m,tol)% Input:% - f function column vector% - tspan[a,b] left & right point of [a,b]% - ya initial value column vector% -m initial guess for number of steps% -tol tolerance% Output:% - Rt solution: vector of abscissas% - Rx solution: vector of ordinates% Program by John.Mathews, improved by liuliu@uestcif length(tspan)~=2error('length of vector tspan must be 2.');endif ~isnumeric(tspan)error('TSPAN should be a vector of integration steps.');endif ~isnumeric(ya)error('Ya should be a vector of initial conditions.');endh = diff(tspan);if any(sign(h(1))*h <= 0)error('Entries of TSPAN are not in order.') ;enda=tspan(1);b=tspan(2);ya=ya(:);a2 = 1/4; b2 = 1/4; a3 = 3/8; b3 = 3/32; c3 = 9/32; a4 = 12/13;b4 = 1932/2197; c4 = -7200/2197; d4 = 7296/2197; a5 = 1;b5 = 439/216; c5 = -8; d5 = 3680/513; e5 = -845/4104; a6 = 1/2;b6 = -8/27; c6 = 2; d6 = -3544/2565; e6 = 1859/4104; f6 = -11/40;r1 = 1/360; r3 = -128/4275; r4 = -2197/75240; r5 = 1/50;r6 = 2/55; n1 = 25/216; n3 = 1408/2565; n4 = 2197/4104; n5 = -1/5;big = 1e15;h = (b-a)/m;hmin = h/64;% 步长自适应范围下限hmax = 64*h;% 步长自适应范围上限max1 = 200;% 迭代次数上限Y(1,:) = ya;T(1) = a;j = 1;% tj = T(1);br = b - 0.00001*abs(b);while (T(j)<b),if ((T(j)+h)>br), h = b - T(j); end%caculate values of k1...k6,y1...y6tj = T(j);yj = Y(j,:);y1 = yj;k1 = h*feval(f,tj,y1);y2 = yj+b2*k1;if big<abs(max(y2)) return, endk2 = h*feval(f,tj+a2*h,y2);y3 = yj+b3*k1+c3*k2; if big<abs(max(y3)) return, endk3 = h*feval(f,tj+a3*h,y3);y4 = yj+b4*k1+c4*k2+d4*k3; if big<abs(max(y4)) return, endk4 = h*feval(f,tj+a4*h,y4);y5 = yj+b5*k1+c5.*k2+d5*k3+e5*k4; if big<abs(max(y5)) return, end k5 = h*feval(f,tj+a5*h,y5);y6 = yj+b6*k1+c6.*k2+d6*k3+e6*k4+f6*k5; if big<abs(max(y6)) return, endk6 = h*feval(f,tj+a6*h,y6);err = abs(r1*k1+r3*k3+r4*k4+r5*k5+r6*k6);ynew = yj+n1*k1+n3*k3+n4*k4+n5*k5;% error and step size controlif ( (err<tol) | (h<2*hmin) ),Y(j+1,:) = ynew;if ((tj+h)>br),T(j+1) = b;elseT(j+1) = tj + h;endj = j+1;tj = T(j);endif (max(err)==0),s = 0;elses1 = 0.84*(tol.*h./err).^(0.25);% 最佳步长值s=min(s1);endif ((s<0.75)&(h>2*hmin)), h = h/2; endif ((s>1.50)&(2*h<hmax)), h = 2*h; endif ( (big<abs(Y(j,:))) | (max1==j) ), return, endend% [Rt Rx]=[T' Y];Rt=T';Rx=Y;使用方法:首先编写方程(组)文件(注意与ode45不同,这儿方程组为1Xn数组:function dx= fun(t,x)dx=zeros(1,2);dx(1)=x(1)+x(2)*2+0*t;dx(2)=3*x(1)+x(2)*2+0*t;然后使用:[Rt,Rx]=rkf45(@fun,[0,0.2],[6;4],100,1e-7)。

Runge-Kutta法求微分方程数值解及其Matlab实现开题报告范文

Runge-Kutta法求微分方程数值解及其Matlab实现开题报告范文

毕业论文(设计)材料题目:Runge-Kutta法求微分方程数值解及其Matlab实现学生姓名:程晓曦学生学号:1005020103系别:数学与计算科学系专业:数学与应用数学届别:2010届指导教师:李宁填写说明1、本材料包括淮南师范学院本科毕业论文(设计)任务书、开题报告以及毕业论文(设计)评审表三部分内容。

2、本材料填写顺序依次为:(1)指导教师下达毕业论文(设计)任务书;(2)学生根据毕业论文(设计)任务书的要求,在文献查阅的基础上撰写开题报告,送交指导教师审阅并签字认可;(3)毕业论文(设计)工作后期,学生填写毕业论文(设计)主要内容,连同毕业论文(设计)全文一并送交指导教师审阅,指导教师根据学生实际完成的论文(设计)质量进行评价;(4)指导教师将此表连同学生毕业论文(设计)全文一并送交评阅教师评阅。

3、指导教师、评阅教师对学生毕业论文(设计)的成绩评定均采用百分制。

4、毕业论文(设计)答辩记录不包括在此表中。

一、毕业论文(设计)任务书二、毕业论文(设计)开题报告三、毕业论文(设计)评审表原文已完。

下文为附加文档,如不需要,下载后可以编辑删除,谢谢!施工组织设计本施工组织设计是本着“一流的质量、一流的工期、科学管理”来进行编制的。

编制时,我公司技术发展部、质检科以及项目部经过精心研究、合理组织、充分利用先进工艺,特制定本施工组织设计。

一、工程概况:西夏建材城生活区27#、30#住宅楼位于银川市新市区,橡胶厂对面。

本工程由宁夏燕宝房地产开发有限公司开发,银川市规划建筑设计院设计。

本工程耐火等级二级,屋面防水等级三级,地震防烈度为8度,设计使用年限50年。

本工程建筑面积:27#楼3824.75m2;30#楼3824.75 m2。

室内地坪±0.00以绝对标高1110.5 m为准,总长27#楼47.28m;30#楼47.28 m。

总宽27#楼14.26m;30#楼14.26 m。

设计室外地坪至檐口高度18.6 00m,呈长方形布置,东西向,三个单元。

数值分析Matlab作业龙格库塔欧拉方法解二阶微分方程-推荐下载

数值分析Matlab作业龙格库塔欧拉方法解二阶微分方程-推荐下载

四阶龙格库塔方法使用四级四阶经典显式Rungkutta公式稳定性很好,RK4法是四阶方法,每步的误差是h5阶,而总积累误差为h4阶。

所以比欧拉稳定。

运行第三个程序:在一幅图中显示欧拉法和RK4法,随着截断误差的积累,欧拉法产生了较大的误差h=0.01h=0.0001,仍然是开始较为稳定,逐渐误差变大总结:RK4是很好的方法,很稳定,而且四阶是很常用的方法,因为到五阶的时候精度并没有相应提升。

通过这两种方法计算出角度峰值y=3.141593,周期是1.777510。

三个程序欧拉法clear;clch=0.00001;a=0;b=25;x=a:h:b;y(1)=0;z(1)=0;for i=1:length(x)-1 % 欧拉y(i+1)=y(i)+h*z(i);z(i+1)=z(i)+h*7.35499*cos(y(i));endplot(x,y,'r*');xlabel('时间');ylabel('角度');A=[x,y];%y(find(y==max(y)))%Num=(find(y==max(y)))[y,T]=max(y);fprintf('角度峰值等于%d',y) %角度的峰值也就是πfprintf('\n')fprintf('周期等于%d',T*h)%周期legend('欧拉');龙格库塔方法先定义函数rightf_sys1.mfunction w=rightf_sys1(x,y,z)w=7.35499*cos(y);clear;clc;%set(0,'RecursionLimit',500)h=0.01;a=0;b=25;x=a:h:b;RK_y(1)=0; %初值%RK_z(1)=0;初值for i=1:length(x)-1K1=RK_z(i); L1=rightf_sys1(x(i),RK_y(i),RK_z(i));%K1 and L1K2=RK_z(i)+0.5*h*L1;L2=rightf_sys1(x(i)+0.5*h,RK_y(i)+0.5*h*K1,RK_z(i)+0.5*h*L1);K3=RK_z(i)+0.5*h*L2;L3=rightf_sys1(x(i)+0.5*h,RK_y(i)+0.5*h*K2,RK_z(i)+0.5*h*L2);K4=RK_z(i)+h*L3;% K4L4=rightf_sys1(x(i)+h,RK_y(i)+h*K3,RK_z(i)+h*L3);and L4RK_y(i+1)=RK_y(i)+1/6*h*(K1+2*K2+2*K3+K4);RK_z(i+1)=RK_z(i)+1/6*h*(L1+2*L2+2*L3+L4);endplot(x,RK_y,'b+');xlabel('Variable x');ylabel('Variable y');A=[x,RK_y];[y,T]=max(RK_y);legend('RK4方法');fprintf('角度峰值等于%d',y) %角度的峰值也就是πfprintf('\n')%周期fprintf('周期等于%d',T*h)两个方法在一起对比使用跟上一个相同的函数rightf_sys1.mclear;clc; %清屏h=0.0001;a=0;b=25;x=a:h:b;Euler_y(1)=0;%欧拉的初值Euler_z(1)=0;RK_y(1)=0;%龙格库塔初值RK_z(1)=0;for i=1:length(x)-1%先是欧拉法Euler_y(i+1)=Euler_y(i)+h*Euler_z(i);Euler_z(i+1)=Euler_z(i)+h*7.35499*cos(Euler_y(i));%龙格库塔K1=RK_z(i); L1=rightf_sys1(x(i),RK_y(i),RK_z(i)); % K1 andL1K2=RK_z(i)+0.5*h*L1;L2=rightf_sys1(x(i)+0.5*h,RK_y(i)+0.5*h*K1,RK_z(i)+0.5*h*L1);% K2 and L2K3=RK_z(i)+0.5*h*L2;L3=rightf_sys1(x(i)+0.5*h,RK_y(i)+0.5*h*K2,RK_z(i)+0.5*h*L2);% K3 and L3K4=RK_z(i)+h*L3; L4=rightf_sys1(x(i)+h,RK_y(i)+h*K3,RK_z(i)+h*L3); K4 and L4RK_y(i+1)=RK_y(i)+1/6*h*(K1+2*K2+2*K3+K4);RK_z(i+1)=RK_z(i)+1/6*h*(L1+2*L2+2*L3+L4);endplot(x,Euler_y,'r-',x,RK_y,'b-');[y,T]=max(RK_y);%角度的峰值也就是πfprintf('角度峰值等于%d',y)fprintf('\n')%周期fprintf('周期等于%d',T*h)xlabel('时间');ylabel('角度');legend('欧拉','RK4');。

Matlab中龙格-库塔(Runge-Kutta)方法原理及实现

Matlab中龙格-库塔(Runge-Kutta)方法原理及实现

函数功能编辑本段回目录ode是专门用于解微分方程的功能函数,他有ode23,ode45,ode23s等等,采用的是Runge-Kutta算法。

ode45表示采用四阶,五阶runge-kutta单步算法,截断误差为(Δx)³。

解决的是Nonstiff(非刚性)的常微分方程.是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,换用ode23来解.使用方法编辑本段回目录[T,Y] = ode45(odefun,tspan,y0)odefun 是函数句柄,可以是函数文件名,匿名函数句柄或内联函数名tspan 是区间[t0 tf] 或者一系列散点[t0,t1,...,tf]y0 是初始值向量T 返回列向量的时间点Y 返回对应T的求解列向量[T,Y] = ode45(odefun,tspan,y0,options)options 是求解参数设置,可以用odeset在计算前设定误差,输出参数,事件等[T,Y,TE,YE,IE] =ode45(odefun,tspan,y0,options)在设置了事件参数后的对应输出TE 事件发生时间YE 事件解决时间IE 事件消失时间sol =ode45(odefun,[t0 tf],y0...)sol 结构体输出结果应用举例编辑本段回目录1 求解一阶常微分方程程序:一阶常微分方程odefun=@(t,y) (y+3*t)/t^2; %定义函数tspan=[1 4]; %求解区间y0=-2; %初值[t,y]=ode45(odefun,tspan,y0);plot(t,y) %作图title('t^2y''=y+3t,y(1)=-2,1<t<4')legend('t^2y''=y+3t')xlabel('t')ylabel('y')% 精确解% dsolve('t^2*Dy=y+3*t','y(1)=-2')% ans =一阶求解结果图% (3*Ei(1) - 2*exp(1))/exp(1/t) - (3*Ei(1/t))/exp(1/t)2 求解高阶常微分方程关键是将高阶转为一阶,odefun的书写.F(y,y',y''...y(n-1),t)=0用变量替换,y1=y,y2=y'...注意odefun方程定义为列向量dxdy=[y(1),y(2)....]程序:function Testode45tspan=[3.9 4.0]; %求解区间y0=[2 8]; %初值[t,x]=ode45(@odefun,tspan,y0);plot(t,x(:,1),'-o',t,x(:,2),'-*')legend('y1','y2')title('y'' ''=-t*y + e^t*y'' +3sin2t')xlabel('t')ylabel('y')function y=odefun(t,x)y=zeros(2,1); % 列向量y(1)=x(2);y(2)=-t*x(1)+exp(t)*x(2)+3*sin(2*t);endend高阶求解结果图相关函数编辑本段回目录ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tbMatlab中龙格-库塔(Runge-Kutta)方法原理及实现(自己写的,非直接调用)龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档