最新河北省历年中考数学试题

合集下载

河北中考数学试题及答案doc

河北中考数学试题及答案doc

河北中考数学试题及答案doc一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. √2C. 0.5D. 3/4答案:B2. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角是多少度?A. 60°B. 90°C. 120°D. 150°答案:A3. 将下列哪个数列按从小到大的顺序排列?A. 3, 2, 1B. 1, 2, 3C. 3, 1, 2D. 2, 3, 1答案:B4. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C5. 以下哪个图形是轴对称图形?A. 等边三角形B. 矩形C. 圆D. 所有选项答案:D6. 一个数的绝对值是5,这个数可能是多少?A. 5B. -5C. 5或-5D. 以上都不是答案:C7. 以下哪个表达式的结果是一个正数?A. -2 + 3B. 2 - 5C. -3 × 2D. 1 ÷ (-1)答案:A8. 一个圆的半径是5厘米,那么这个圆的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:B9. 一个数的立方是-8,这个数是多少?A. 2B. -2C. 8D. -8答案:B10. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:B二、填空题(每题3分,共30分)11. 一个数的相反数是-4,这个数是________。

答案:412. 如果一个数的绝对值是7,那么这个数可能是________或________。

答案:7或-713. 一个等腰三角形的底角是45°,那么顶角是________度。

答案:9014. 一个数的平方根是2,那么这个数是________。

答案:415. 一个圆的直径是10厘米,那么这个圆的半径是________厘米。

答案:516. 一个数的立方根是-2,那么这个数是________。

1997——2021年河北省二十五年历年中考数学真题试卷(学生版+解析版)

1997——2021年河北省二十五年历年中考数学真题试卷(学生版+解析版)

2021年河北省中考数学试卷一、选择题(本大题有16个小题,共42分。

1~10小题各3分,11~16小题各2分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,已知四条线段a ,b ,c ,d 中的一条与挡板另一侧的线段m 在同一直线上,请借助直尺判断该线段是( )A .aB .bC .cD .d2.(3分)不一定相等的一组是( )A .a +b 与b +aB .3a 与a +a +aC .a 3与a •a •aD .3(a +b )与3a +b3.(3分)已知a >b ,则一定有﹣4a □﹣4b ,“□”中应填的符号是( )A .>B .<C .≥D .=4.(3分)与√32−22−12结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣15.(3分)能与﹣(34−65)相加得0的是( )A .−34−65B .65+34C .−65+34D .−34+656.(3分)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A .A 代B .B 代C .C 代D .B 代7.(3分)如图1,▱ABCD 中,AD >AB ,∠ABC 为锐角.要在对角线BD 上找点N ,M ,使四边形ANCM 为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )A .甲、乙、丙都是B .只有甲、乙才是C .只有甲、丙才是D .只有乙、丙才是8.(3分)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB =( )A .1cmB .2cmC .3cmD .4cm 9.(3分)若√33取1.442,计算√33−3√33−98√33的结果是( )A .﹣100B .﹣144.2C .144.2D .﹣0.0144210.(3分)如图,点O 为正六边形ABCDEF 对角线FD 上一点,S △AFO =8,S △CDO =2,则S 正六边边ABCDEF 的值是( )A.20B.30C.40D.随点O位置而变化11.(2分)如图,将数轴上﹣6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列正确的是()A.a3>0B.|a1|=|a4|C.a1+a2+a3+a4+a5=0D.a2+a5<012.(2分)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.713.(2分)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).证法2:如图,∵∠A=76°,∠B=59°,且∠ACD=135°(量角器测量所得)又∵135°=76°+59°(计算所得)∴∠ACD =∠A +∠B (等量代换).下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理14.(2分)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“( )”应填的颜色是( )A .蓝B .粉C .黄D .红 15.(2分)由(1+c 2+c −12)值的正负可以比较A =1+c 2+c 与12的大小,下列正确的是( ) A .当c =﹣2时,A =12B .当c =0时,A ≠12C .当c <﹣2时,A >12D .当c <0时,A <12 16.(2分)如图,等腰△AOB 中,顶角∠AOB =40°,用尺规按①到④的步骤操作:①以O 为圆心,OA 为半径画圆;②在⊙O 上任取一点P (不与点A ,B 重合),连接AP ;③作AB 的垂直平分线与⊙O 交于M ,N ;④作AP 的垂直平分线与⊙O 交于E ,F .结论Ⅰ:顺次连接M ,E ,N ,F 四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是()A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17.(4分)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片块.18.(4分)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E 保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应(填“增加”或“减少”)度.19.(4分)用绘图软件绘制双曲线m:y=60x与动直线l:y=a,且交于一点,图1为a=8时的视窗情形.(1)当a=15时,l与m的交点坐标为;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O始终在视窗中心.例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的12,其可视范围就由﹣15≤x ≤15及﹣10≤y ≤10变成了﹣30≤x ≤30及﹣20≤y ≤20(如图2).当a =﹣1.2和a =﹣1.5时,l 与m 的交点分别是点A 和B ,为能看到m 在A 和B 之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的1k ,则整数k = .三、解答题(本大题有7个小题,共66分。

河北中考数学试卷往年真题

河北中考数学试卷往年真题

河北中考数学试卷往年真题1. 选择题(1)已知等差数列的公差为2,首项为3,如果第n项是37,求n 的值。

答案:n=18解析:由公式an=a1+(n-1)d可得,37=3+(n-1)2,解得n=18。

(2)若函数y=ax^2+bx+c的图像经过点(2,3)和(-1,4),且a+b+c=0,求a的值。

答案:a=-2解析:由题意可得两个方程3=4a+2b+c和4=a-b+c,解得a=-2。

(3)已知三角形ABC中,AB=AC,角A=70°,角B=40°,点D在AB上,点E在AC上,使得∠BDC=∠BCE,求∠BDC的度数。

答案:80°解析:由∠BDC=∠BCE可得∠BDC=∠BCE=∠ACB=70°,由角度和为180°可得∠DBC=180°-70°-40°=70°,再由∠BDC+∠DBC+∠DBC=180°可得∠BDC=80°。

2. 填空题(1)设集合A={1,2,3,4,5},集合B={3,4,5,6,7},则集合A∩B=________ 。

答案:{3,4,5}解析:集合A∩B表示A和B的交集,即包含两个集合中相同的元素,所以A∩B={3,4,5}。

(2)已知△ABC中,∠B=60°,BC=4,AB=a,AC=b,若a+b=6,则△ABC的面积为________。

答案:4√3解析:由正弦定理可得,a/sin60°=4/sinC,即a=4sin60°/sinC=2√3/sinC,而a+b=6可以得到2√3/sinC+b=6,解得b=6-2√3/sinC,所以△ABC的面积为area=1/2*2√3*(6-2√3/sinC)*sinC=4√3。

(3)已知等差数列的前n项和Sn=(3n^2+7n)/2,求该等差数列的前5项的和。

答案:S5=55解析:将n=5代入Sn=(3n^2+7n)/2可得S5=(3*5^2+7*5)/2=55。

河北历年中考数学试卷真题

河北历年中考数学试卷真题

河北历年中考数学试卷真题一、选择题1. 下列各组数中,其中两个数的乘积是整数而其余两个数的乘积不一定是整数的组是()A. \( \frac{3}{2}, \frac{5}{4}, - \frac{1}{2}, - \frac{3}{4} \)B. \( 1.5, -2.5, 4, -8 \)C. \( -\frac{1}{3}, \frac{1}{2}, -\frac{1}{4}, \frac{1}{5} \)D. \( \frac{2}{3}, -\frac{5}{6}, -\frac{1}{3}, \frac{5}{2} \)2. 若要得到一元二次方程 \( (x + p)(x + q) = 0 \) 的解为 \( x = -p \) 和\( x = -q \),则 \( p \) 和 \( q \) 的关系是()A. \( p = 2q \)B. \( p = -q \)C. \( p = q \)D. \( p = -2q \)3. 已知等差数列的前四项依次为 \( a - 2d, a - d, a, a + 7 \),则 \( a \) 的值是()A. 2B. 5C. 7D. 94. 某三位数的个位数字比十位数字多3,百位数字比十位数字少1,这个数的十位数字是()A. 3B. 4C. 5D. 65. 若增加一个正整数之后,得到的数比原数的两倍还要大4,这个正整数是()A. 3B. 4C. 5D. 6二、填空题1. 简化 \( x(1 + 2xy) - 2y(1 - xy) \) 得到的结果是 \_\_\_\_。

2. 已知 \( y = \frac{x + 2}{x - 3} \),则当 \( x = -2 \) 时,\( y \) 的值为\_\_\_\_。

3. 若 \( \frac{a}{5} = \frac{b}{12} = \frac{60}{c} \),则 \( a + b + c \)的值为 \_\_\_\_。

【中考特训】2022年河北省石家庄市中考数学历年真题汇总 卷(Ⅲ)(含答案解析)

【中考特训】2022年河北省石家庄市中考数学历年真题汇总 卷(Ⅲ)(含答案解析)

2022年河北省石家庄市中考数学历年真题汇总 卷(Ⅲ)考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AD 是ABC 的边BC 上的中线,7,5AB AD ==,则AC 的取值范围为( )A .515AC <<B .315AC << C .317AC <<D .517AC <<2、某农场开挖一条480m 的渠道,开工后,每天比原计划多挖20m ,结果提前4天完成任务,若设原计划每天挖x m ,那么所列方程正确的是( )A .48048020x x-+= 4 B .4804804x x -+= 20 C .48048020x x -+= 4 D .4804804x x--= 20 3、如图,三角形是直角三角形,四边形是正方形,已知正方形A 的面积是64,正方形B 的面积是100,则半圆C 的面积是( )·线○封○密○外A .36B .4.5πC .9πD .18π4、有下列四种说法:①半径确定了,圆就确定了;②直径是弦; ③弦是直径;④半圆是弧,但弧不一定是半圆. 其中,错误的说法有( ) A .1种B .2种C .3种D .4种5、12是-2的( ) . A .相反数B .绝对值C .倒数D .以上都不对6、以下四个选项表示某天四个城市的平均气温,其中平均气温最高的是( ) A .3-℃B .15-℃C .10-℃D .1-℃7、计算3.14-(-π)的结果为( ) . A .6.28B .2πC .3.14-πD .3.14+π8、如果11a a -=-,那么a 的取值范围是( ) A .1a <B .1a >C .1a ≤D .1a ≥9、如图,反比例函数3(0)y x x=->图象经过矩形OABC 边AB 的中点E ,交边BC 于F 点,连接EF 、OE 、OF ,则OEF 的面积是( )A .32B .94C .73D .5210、观察下列算式,用你所发现的规律得出20192的个位数字是( ) 122=,224=,328=,4216=,5232=,6264=,72128=,82256=…… A .2 B .4 C .6 D .8第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知二次函数2242y x mx m =--+与反比例函数24m y x+=的图像在第二象限内的一个交点的横坐标是-2,则m 的值是_______.2、己知,0为锐角ABC 的外心,BOC 80∠=,那么BAC ∠=________.3、(1)定义“*”是一种运算符号,规定a b=2a b *-+2015,则()1*-2=________.(2)宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,则买地毯至少需要___________________ 元.4、如图,圆心角∠AOB =20°,将 AB 旋转n °得到CD ,则CD 的度数是______度.·线○封○密○外5、根据下列各式的规律,在横线处填空:1111122+-=,111134212+-=,111156330+-=,111178456+-=,……, 1120172018+-______=_______. 三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy 中,抛物线2y x bx c =-++与x 轴交于点A ,B (A 在B 的左侧).(1)抛物线的对称轴为直线3x =,4AB =.求抛物线的表达式;(2)将(1)中的抛物线,向左平移两个单位后再向下平移,得到的抛物线经过点O ,且与x 正半轴交于点C ,记平移后的抛物线顶点为P ,若OCP △是等腰直角三角形,求点P 的坐标;(3)当4b =时,抛物线上有两点()11,M x y 和()22,N x y ,若12x <,22x >,124x x +>,试判断1y 与2y 的大小,并说明理由.2、掘土机挖一个工地,甲机单独挖12天完成,乙机单独挖15天完成.现在两台掘土机合作若干天后,再由乙机单独挖6天完成.问:甲乙两台掘土机合作挖了多少天?3、如图,在平面直角坐标系xOy 中,已知抛物线2y x bx =+经过点A (2,0)和点()1,B m -,顶点为点D .(1)求直线AB 的表达式; (2)求tan ∠ABD 的值;(3)设线段BD 与x 轴交于点P ,如果点C 在x 轴上,且ABC 与ABP △相似,求点C 的坐标.4、鱼卷是泉州十大名小吃之一,不但本地人喜欢,还深受外来游客的赞赏.小张从事鱼卷生产和批发多年,有着不少来自零售商和酒店的客户,当地的习俗是农历正月没有生产鱼卷,客户正月所需要的鱼卷都会在农历十二月底进行一次性采购.2018年年底小张的“熟客”们共向小张采购了5000箱鱼卷,到2020年底“熟客”们采购了7200箱.(1)求小张的“熟客"们这两年向小张采购鱼卷的年平均增长率;(2)2020年底小张“熟客”们采订购鱼卷的数量占小张年底总销售量的45,由于鱼卷受到游客们的青睐,小张做了一份市场调查,决定今年年底是否在网上出售鱼卷,若没有在网上出售鱼卷,则按去年的价格出售,每箱利润为15元,预计销售量与去年持平;若计划在网上出售鱼卷,则需把每箱售价下4至5元,且每下调1元销售量可增加1000箱,求小张在今年年底能获得的最大利润是多少元? 5、如图,二次函数2y x bx c =-++的图像与x 轴交于点A 、B ,与y 轴交于点C .已知B (3,0),C(0,4),连接B C . ·线○封○密○外(1)b = ,c = ;(2)点M 为直线BC 上方抛物线上一动点,当△MBC 面积最大时,求点M 的坐标; (3)①点P 在抛物线上,若△PAC 是以AC 为直角边的直角三角形,求点P 的横坐标;②在抛物线上是否存在一点Q ,连接AC ,使2QBA ACO ∠∠=,若存在直接写出点Q 的横坐标,若不存在请说明理由.-参考答案-一、单选题 1、C 【分析】延长AD 至点E ,使5DE AD ==,连接CE ,证明ABD ECD ≌,可得7CE AB ==,然后运用三角形三边关系可得结果. 【详解】如图,延长AD 至点E ,使5DE AD ==,连接CE .∵AD 为ABC 的BC 边上的中线, ∴BD CD =,在ABD △和ECD 中,,,,AD ED ADB EDC BD CD =⎧⎪∠=∠⎨⎪=⎩ ∴()SAS ABD ECD ≌,∴7CE AB ==. 在ACE 中,AE EC AC AE CE -<<+, 即557557AC +-<<++, ∴317AC <<, 故选:C . 【点睛】 本题考查了全等三角形的判定与性质,三角形三边关系,根据中点倍长法构造全等三角形是解题的关键.·线○封○密○外2、C 【分析】设原计划每天挖x m ,根据结果提前4天完成任务列方程即可. 【详解】解:设原计划每天挖x m ,由题意得48048020x x -+= 4. 故选C . 【点睛】本题考查了列分式方程解实际问题的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤. 3、B 【分析】根据正方形的性质分别求出DE ,EF ,根据勾股定理求出DF ,根据圆的面积公式计算. 【详解】解:正方形A 的面积是64,正方形B 的面积是100, DE 10∴=,EF 8=,由勾股定理得,DF 6=,∴半圆C 的面积21π3 4.5π2=⨯⨯=, 故选B .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222a b c +=.4、B 【分析】 根据弦的定义、弧的定义、以及确定圆的条件即可解决. 【详解】 解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误; 直径是弦,直径是圆内最长的弦,是真命题,故此说法正确; 弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误; ④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.其中错误说法的是①③两个. 故选B . 【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆. 5、D 【分析】根据相反数、绝对值、倒数的定义进行解答即可. 【详解】解:,-2的相反数是2,-2的绝对值是2,-2的倒数是-12,所以以上答案都不对.·线○封○密○外故选D . 【点睛】本题考查相反数、绝对值、倒数,掌握相反数、绝对值、倒数的定义是解题的关键.. 6、D 【分析】根据负数比较大小的概念逐一比较即可. 【详解】解析:131015->->->-℃℃℃℃. 故选:D 【点睛】本题主要考查了正负数的意义,熟悉掌握负数的大小比较是解题的关键. 7、D 【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解. 【详解】解: 3.14-(-π)= 3.14+π. 故选:D . 【点睛】本题考查减法运算,熟记减去一个数等于加上这个数的相反数是解题的关键. 8、C 【分析】根据绝对值的性质,得出10a -≤,即可得解.【详解】由题意,得10a -≤ 解得1a ≤ 故选:C. 【点睛】 此题主要考查绝对值的性质,熟练掌握,即可解题. 9、B 【分析】 连接OB .首先根据反比例函数的比例系数k 的几何意义,得出S △AOE =S △COF =1.5,然后由三角形任意一边的中线将三角形的面积二等分及矩形的对角线将矩形的面积二等分,得出F 是BC 的中点,则S △BEF =12S △OCF =0.75,最后由S △OEF =S 矩形AOCB ﹣S △AOE ﹣S △COF ﹣S △BEF ,得出结果. 【详解】 连接OB . ∵E 、F 是反比例函数y =﹣3x(x >0)图象上的点,EA ⊥x 轴于A ,FC ⊥y 轴于C ,∴S △AOE =S △COF =1.5. ∵矩形OABC 边AB 的中点是E ,∴S △BOE =S △AOE =1.5,S △BOC =S △AOB =3,∴S △BOF =S △BOC ﹣S △COF =3﹣1.5=1.5,∴F 是BC 的中点,∴S △OEF =S 矩形AOCB ﹣S △AOE ﹣S △COF ﹣S △BEF =6﹣1.5﹣1.5﹣0.5×1.5=94. 故选B . ·线○封○密·○外【点睛】本题主要考查了反比例函数的比例系数k 与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系,即S =12|k |.得出点F 为BC 的中点是解决本题的关键.10、D【分析】通过观察算式可以发现规律:左边是指数从1开始以2为底数的乘方,右边是个位数字,以2,4,8,6交替出现,也就是4个数为一个周期.20194504÷=……3,所以20192的个位数字应该与32的个位数字相同,所以20192的个位数字是8.【详解】解:通过观察算式可以发现规律:左边是指数从1开始以2为底数的乘方,右边是个位数字,以2,4,8,6交替出现,也就是4个数为一个周期.20194504÷=……3,所以20192的个位数字应该与32的个位数字相同,所以20192的个位数字是8.故选D .【点睛】本题主要考查了数字类的规律问题,解题的关键在于能够准确找到相关规律.二、填空题1、-7【详解】已知二次函数y=-4x 2-2mx+m 2与反比例函数y=2m 4x+的图象在第二象限内的一个交点的横坐标是-2,交点的纵坐标一定是同一个数值,因而把x=-2分别代入解析式,得到的两个函数值一定相同,就得到一个关于m 的方程,从而求出m 的值. 解:根据题意得:-4×4+4m+m 2=2m 4-2+, 解得:m=-7或2. 又交点在第二象限内,故m=-7. 2、40 【解析】 【分析】 根据外心的概念及圆周角定理即可求出答案. 【详解】 ∵O 是△ABC 的外心, ∴O 为△ABC 的外接圆圆心, ∵∠BOC 是弧BC 所对圆心角,∠BAC 是弧BC 所对圆周角, ∴∠BAC=12∠BOC=40°, 故答案为:40° 【点睛】 本题考查外心的概念及圆周角定理,外心是三角形外接圆的圆心,同弧所对的圆周角等于圆心角的一半,熟练掌握外心的概念及圆周角定理是解题关键·. 3、2019; 800. 【分析】 (1)利用已知的新定义计算即可得到结果; ·线○封○密·○外(2)根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】解:(1)∵a b=2a b*-+20151*-2=2-(-2)+2015=2019;∴()(2)如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为6米,4米,∴地毯的长度为6+4=10米,地毯的面积为10×2=20平方米,∴买地毯至少需要20×40=800元.故答案为:(1)2019;(2)800.【点睛】(1)本题考查有理数的混合运算,熟练掌握运算法则是解本题的关键.(2)本题考查平移的性质,,解题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.4、20【分析】先根据旋转的性质得AB CD=,则根据圆心角、弧、弦的关系得到∠DOC=∠AOB=20°,然后根据圆心角的度数等于它所对弧的度数即可得解.【详解】解:∵将AB 旋转n°得到CD , ∴AB CD =∴∠DOC=∠AOB=20°,∴CD 的度数为20度.故答案为20.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了旋转的性质. 5、11009 120172018⨯ 【分析】 观察不难发现,两个连续自然数的倒数的和减去后一个自然数的一半的倒数,等于这两个自然数的乘积的倒数. 【详解】 解:∵1111122+-= 111134212+-= 111156320+-= 111178456+-= …… ·线○封○密○外∴111120172018100920172018+-=⨯ 故答案为:11009;120172018⨯ 【点睛】 本题是对数字变化规律的考查,比较简单,仔细观察分母的变化找出规律是解决本题的关键.三、解答题1、(1)265y x x =-+-(2)(1,1)P(3)12y y >【分析】(1)根据对称性求得点,A B 的坐标,进而设抛物线交点式即可求得解析式;(2)根据对称性以及等腰直角三角形的性质即可求得点P 的坐标;(3)根据4b =,求得对称轴,根据抛物线开口向下,离对称轴越远的点,其函数值越大,据此分析即可.(1)3x =,4AB =,且抛物线2y x bx c =-++与x 轴交于点A ,B ,A 在B 的左侧.设()(),0,,0A m B n324m n n m +⎧=⎪∴⎨⎪-=⎩解得1,5m n ==()()1,0,5,0A B ∴设抛物线的解析式为()()15y a x x =--又2y x bx c =-++,1a =- ∴()()215=65y x x x x =----+-即265y x x =-+-(2)265y x x =-+-()234x =--+ ∴抛物线的对称轴为3x = 将抛物线向左平移2个单位,则新抛物线的对称轴为1x = ,O C 关于1x =对称 (2,0)C ∴ 设(1,)P t POC 是等腰直角三角形,PCO POC ∠∠都小于90° OPC ∴∠是直角 2OC =PO PC ∴===解得1t =± 根据函数图象可知当1t =-时不合题意,舍去·线○封○密○外1t ∴=()1,1P ∴(3)4b =222b b x a ∴=-==12x <,22x >,124x x +>,1222x x ∴-<-()11,M x y 和()22,N x y 在抛物线上,则点M 离抛物线的对称轴更近,∴12y y >【点睛】本题考查了待定系数法求抛物线的解析式,二次函数的平移,二次函数的性质,掌握二次函数的性质是解题的关键.2、甲乙两台掘土机合作挖了4天.【分析】设甲乙两台掘土机合作挖了x 天,则甲乙合作的工作量为11+,1215x 乙机单独挖6天完成的工作量为6,15 再结合两部分的工作量之和等于1列方程,解方程即可. 【详解】 解:设甲乙两台掘土机合作挖了x 天,则 116+1,121515x 整理得:936,x 解得:4,x = 答:甲乙两台掘土机合作挖了4天. 【点睛】 本题考查的是一元一次方程的应用,掌握“工作时间乘以工作效率等于工作量”是解本题的关键. 3、 (1)2y x =-+ (2)13 (3)()10,0C -或1,02⎛⎫ ⎪⎝⎭ 【分析】 (1)根据抛物线2y x bx =+经过点A (2,0),可得抛物线解析式为22y x x =-,再求出点B 的坐标,即可求解;(2)先求出点D 的坐标为()1,1D - ,然后利用勾股定理逆定理,可得△ABD 为直角三角形,即可求解; (3)先求出直线BD 的解析式,可得到点P 的坐标为1,02P ⎛⎫ ⎪⎝⎭ ,然后分两种情况讨论即可求解. ·线○封○密○外(1)解:∵抛物线2y x bx =+经过点A (2,0), ∴2220b += ,解得:2b =- , ∴抛物线解析式为22y x x =-,当1x =- 时,3y = ,∴点B 的坐标为()1,3B - ,设直线AB 的解析式为()0y kx m k =+≠ , 把A (2,0),()1,3B -,代入得:203k m k m +=⎧⎨-+=⎩ ,解得:12k m =-⎧⎨=⎩, ∴直线AB 的解析式为2y x =-+;(2)如图,连接BD ,AD ,∵()22211y x x x =-=--, ∴点D 的坐标为()1,1D - ,∵A (2,0),()1,3B -,∴()()()()()22222222212318,2112,111320AB AD BD =--+==-+-==--+--= , ∴222AB AD BD += , ∴△ABD 为直角三角形,∴1tan 3AD ABD AB ∠==; (3) 设直线BD 的解析式为()1110y k x b k =+≠ , 把点()1,1D -,()1,3B -代入得: 111113k b k b +=-⎧⎨-+=⎩ ,解得:1121k b =-⎧⎨=⎩ , ∴直线BD 的解析式为21y x =-+ , 当0y = 时,12x =, ∴点P 的坐标为1,02P ⎛⎫ ⎪⎝⎭ , 当△ABP ∽△ABC 时,∠ABC =∠APB ,如图,过点B 作BQ ⊥x 轴于点Q ,则BQ =3,OQ =1,∵△ABP ∽△ABC , ∴∠ABD =∠BCQ ,·线○封○密·○外由(2)知1tan 3ABD ∠=, ∴1tan 3BCQ ∠=, ∴13BQ CQ = , ∴CQ =9,∴OC =OQ +CQ =10,∴点C 的坐标为()10,0C - ;当△ABP ∽△ABC 时,∠APB =∠ACB ,此时点C 与点P 重合,∴点C 的坐标为1,02C ⎛⎫ ⎪⎝⎭, 综上所述,点C 的坐标为()10,0C -或1,02⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查了二次函数的图象和性质,勾股定理逆定理,锐角三角函数,相似三角形的性质,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键.4、(1)20%(2)小张在今年年底能获得的最大利润是143000元.【分析】(1)设小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为,x 则可得方程2500017200,x 再解方程即可得到答案;(2)先求解今年的总的销量为9000箱,设今年总利润为w 元,价格下调x 元,则可建立二次函数为1590001000w x x ,再利用二次函数的性质求解最大值即可.(1)解:设小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为,x 则2500017200,x 整理得:2361,25x 解得:121120%,5x x (负根不合题意舍去) 答:小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为20%. (2) 解: 2020年底小张“熟客”们采订购鱼卷的数量占小张年底总销售量的45, ∴ 2020年小张年总销量为:47200=90005(箱), 设今年总利润为w 元,价格下调x 元,则1590001000w x x 令0,w 则1215,9,x x所以抛物线的对称轴为:1593,2x 10000,a 所以函数有最大值, 45,x当4x =时,1113000143000w 最大值(元), 所以小张在今年年底能获得的最大利润是143000元. 【点睛】 本题考查的是一元二次方程的应用,二次函数的应用,掌握“确定相等关系建立一元二次方程,建立·线○封○密○外二次函数模型”是解本题的关键.5、(1)5,43b c ==(2)点M 的坐标为(32,174) (3)①点P 的横坐标为103或2;②存在,712-或2512- 【分析】 (1)把B (3,0),C (0,4)代入2y x bx c =-++可求解;(2)设25,43M m m m ⎛⎫-++ ⎪⎝⎭,连接OM ,根据CBM COM BOM COB S S S S =+-可得二次函数,运用二次函数的性质可求解;(3)①分90CAP ∠=和90ACP ∠=两种情况求解即可;②作2OEA ACO ∠∠=交y 轴于点E .作2QBO ACO ∠∠=交y 轴于点D ,交抛物线于点Q ,分BD 在x 轴上方和下方两种情况求解即可.(1)把B (3,0),C (0,4)代入2y x bx c =-++,得9+304b c c -+=⎧⎨=⎩ 解得,5,43b c == 故答案为:53,4;(2)设如图1,连接OM ,25,43M m m m ⎛⎫-++ ⎪⎝⎭,则有CBM COM BOM COB S S S S =+- 21151434342232m m m ⎛⎫=⨯⋅+⨯⋅-++-⨯⨯ ⎪⎝⎭ 23922m m =-+ 23327228m ⎛⎫=--+ ⎪⎝⎭ 当32m =,△ABC 面积最大,此时点M 的坐标为(32,174) (3) (3)当25403x x -++=时,124,33x x =-= ∴4(,3A -0) 设25,43P x x x ⎛⎫-++ ⎪⎝⎭ 满足条件的直角三角形分90CAP ∠=和90ACP ∠=两种情况. ①如图2,当90CAP ∠=时,过点A 作DE y ∥轴,分别过点C 、P 作CD DE ⊥于点D ,PE DE ⊥于点E , ·线○封○密○外90,D E ∠∠∴==90DCA DAC ∠∠∴+=,90,CAP ∠=90,DAC EAP ∠∠∴+=DCA EAP ∠∠∴=∴DCA EAP ∆∆ ∴AD DC PE EA=, ∴244345433x x x =⎛⎫⎛⎫----++ ⎪ ⎪⎝⎭⎝⎭ 解得143x =-,2103x =. 经检验,143x =-是原方程的增根, ∴103x =∴点P 的横坐标为103; ②如图3,当90ACP ∠=时,过点C 作DE x ∥轴,分别过点A 、P 作AD DE ⊥于点D 、PE DE ⊥于点E .∴90,D E ∠∠== 90DCA DAC ∠∠∴+= 90,ACP ∠= 90DCA PCE ∠∠∴+= DAC PCE ∠∠∴==, ∴ADC CEP ∽AD DC CE EP ∴=, ∴24435443x x x =⎛⎫--++ ⎪⎝⎭ 解得10x =,22x =, 经检验,x =0是增根,·线○·封○密○外∴x =2∴此时,点P 的横坐标为2.综上,点P 的横坐标为103或2. ②作2OEA ACO ∠∠=交y 轴于点E .∵,ACO EAC ∠∠=AE CE ∴= 如图4,作2QBO ACO ∠∠=交y 轴于点D ,交抛物线于点Q .Ⅰ.设OE x =,则4AE CE x ==-在Rt △AOE 中.222443x x ⎛⎫+=- ⎪⎝⎭,解得169=x , ∵2,2QBA ACO AEO ACO ∠=∠∠=∠∴AEO QBA ∠=∠又90AOE DOB ∠=∠=︒∴EOA BOD ∽, ∴EO OA BO OD=,∴164933OD = 解得9,4OD =, 90,4D ⎛⎫∴ ⎪⎝⎭ 设直线BD 的解析式为y kx b =+ 把B (3,0),90,4D ⎛⎫ ⎪⎝⎭代入得,3094k b b +=⎧⎪⎨=⎪⎩ 解得,3494k b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴直线BD 的解析式为3944y x =-+ 与2543y x x =-++联立方程组,得23944543y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩ ∴23954443x x x -+=-++ 化简得21229210x x --=, 可解得13x =(舍去),2712x =-. Ⅱ.在图4中作点D 关于x 轴对称的点1D ,且作射线1BD 交抛物线于点1Q ,如图5, ·线○封○密○外∵点D 与点1D 关于x 轴对称, ∴1DOB D OB ≅,∴1OD OD =∴1D (0,-94),设直线1BD 的解析式为11y k x b =+把B (3,0),190,4D ⎛⎫- ⎪⎝⎭代入得,3094k b b +=⎧⎪⎨=-⎪⎩解得,3494k b ⎧=⎪⎪⎨⎪=-⎪⎩∴直线BD 的解析式为3944y x =- 与2543y x x =-++联立方程组,得23944543y x y x x ⎧=-⎪⎪⎨⎪=-++⎪⎩∴23954443x x x -=-++化简得21211750x x --=,可解得13x =(舍去),22512x =-. 所以符合题意的点Q 的横坐标为-712或-2512. 【点睛】 本题考查的是二次函数综合运用,涉及到一次函数的性质、三角形相似,面积问题,其中(3),要注意分类求解,避免遗漏. ·线○封○密·○外。

往年河北省中考数学真题及答案

往年河北省中考数学真题及答案

往年河北省中考数学真题及答案一、选择题(~6小题,每小题2分;7~16小题,每小题3分,共42分.)1. 气温由-1℃上升2℃后是A .-1℃B .1℃C .2℃D .3℃2. 截至往年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为A .0.423×107B .4.23×106C .42.3×105D .423×1043.下列图形中,既是轴对称图形又是中心对称图形的是4.下列等式从左到右的变形,属于因式分解的是A .a(x -y)=ax -ayB .x2+2x+1=x(x+2)+1C .(x+1)(x+3)=x2+4x+3D .x3-x =x(x+1)(x -1)5.若x =1,则||x -4=A .3B .-3C .5D .-56.下列运算中,正确的是A .9=±3B .3-8=2C .(-2)0=0D .2-1=127.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A .120x =100x -10B .120x =100x+10C .120x -10=100xD .120x+10=100x8.如图1,一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的距离为A .40海里B .60海里C .70海里D .80海里9.如图2,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y =A .2B .3C .6D .x+310.反比例函数y =m x的图象如图3所示,以下结论:①常数m <-1;②在每个象限内,y随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(-x,-y)也在图象上.其中正确的是A.①② B.②③ C.③④ D.①④11.如图4,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB. 若NF = NM = 2,ME = 3,则AN =A.3 B.4 C.5 D.612.如已知:线段AB,BC,∠ABC = 90°. 求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是A.两人都对 B.两人都不对C.甲对,乙不对D.甲不对,乙对13.一个正方形和两个等边三角形的位置如图6所示,若∠3 = 50°,则∠1+∠2 = A.90° B.100° C.130° D.180°14.如图7,AB是⊙O的直径,弦CD⊥AB,∠C = 30°,CD = 23.则S阴影=A.π B.2π C.233 D.23π15.如图8-1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B = 30°,∠C = 100°,如图8-2.则下列说法正确的是A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远16.如图9,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE = EF = FB = 5,DE = 12 动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y = S△EPF,则y与t的函数图象大致是二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.如图10,A 是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A 与桌面接触的概率是________.18.若x+y =1,且,则x ≠0,则(x+2xy+y2x ) ÷x+y x的值为_____________. 19.如图11,四边形ABCD 中,点M,N 分别在AB,BC 上,将△BMN 沿MN 翻折,得△FMN,若MF ∥AD,FN ∥DC, 则∠B =___________ °20.如图12,一段抛物线:y =-x(x -3)(0≤x ≤3),记为C1,它与x 轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P (37,m )在第13段抛物线C13上,则m =_________. 三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)定义新运算:对于任意实数a,b,都有a ⊕b =a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如: 2⊕5=2⨯(2-5)+1=2⨯(-3)+1=-6+1=-5(1)求(-2)⊕3的值(2)若3⊕x 的值小于13,求x 的取值范围,并在图13所示的数轴上表示出来.22.(本小题满分10分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类的人数绘制成扇形图(如图14-1)和条形图(如图14-2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(本小题满分10分)如图15,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.24.(本小题满分11分)如图16,△OAB中,OA = OB = 10,∠AOB = 80°,以点O为圆心,6为半径的优弧MN⌒分别交OA,OB于点M,N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP = BP′;(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;(3)设点Q在优弧MN⌒上,当△AOQ的面积最大时,直接写出∠BOQ的度数.25.(本小题满分12分)某公司在固定线路上运输,拟用运营指数Q 量化考核司机的工作业绩.Q = W + 100,而W 的大小与运输次数n 及平均速度x (km/h )有关(不考虑其他因素),W 由两部分的和组成:一部分与x 的平方成正比,另一部分与x 的n 倍成正比.试行中得到了表中的数据.(1)用含x 和n 的式子表示Q ; (2)当x = 70,Q = 450时,求n 的值;(3)若n = 3,要使Q 最大,确定x 的值;(4)设n = 2,x = 40,能否在n 增加m%(m >0)同时x 减少m%的情况下,而Q 的值仍为420,若能,求出m 的值;若不能,请说明理由.参考公式:抛物线y =ax2+bx+c(a ≠0)的顶点坐标是(-b 2a ,4ac -b24a)26.(本小题满分14分)一透明的敞口正方体容器ABCD -A ′B ′C ′D ′ 装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α(∠CBE = α,如图17-1所示).探究 如图17-1,液面刚好过棱CD,并与棱BB ′ 交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图17-2所示.解决问题:(1)CQ 与BE 的位置关系是___________,BQ 的长是____________dm ;(2)求液体的体积;(参考算法:直棱柱体积V 液 = 底面积SBCQ ×高AB )(3)求α的度数.(注:sin49°=cos41°=34,tan37°=34)拓展 在图17-1的基础上,以棱AB 为轴将容器向左或向右旋转,但不能使液体溢出,图17-3或图17-4是其正面示意图.若液面与棱C ′C 或CB 交于点P,设PC = x,BQ = y.分别就图17-3和图17-4求y 与x 的函数关系式,并写出次数n 2 1 速度x 40 60 指数Q 420 100相应的α的范围.[温馨提示:下页还有题!]延伸在图17-4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图17-5,隔板高NM = 1 dm,BM = CM,NM⊥BC.继续向右缓慢旋转,当α = 60°时,通过计算,判断溢出容器的液体能否达到4 dm3.。

2020-2021年河北省中考数学试题及答案(Word版)

2020-2021年河北省中考数学试题及答案(Word版)

2021年河北省中考数学试卷及答案2021年河北省中考数学试卷及答案(1——34页)2020年河北省中考数学试卷及答案(35——45页)一、选择题(本大题有16个小题,共42分。

1~10小题各3分,11~16小题各2分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,已知四条线段a ,b ,c ,d 中的一条与挡板另一侧的线段m 在同一直线上,请借助直尺判断该线段是( )A .aB .bC .cD .d2.(3分)不一定相等的一组是( )A .a +b 与b +aB .3a 与a +a +aC .a 3与a •a •aD .3(a +b )与3a +b3.(3分)已知a >b ,则一定有﹣4a □﹣4b ,“□”中应填的符号是( )A .>B .<C .≥D .=4.(3分)与√32−22−12结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣15.(3分)能与﹣(34−65)相加得0的是( )A .−34−65B .65+34C .−65+34D .−34+656.(3分)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A .A 代B .B 代C .C 代D .B 代7.(3分)如图1,▱ABCD 中,AD >AB ,∠ABC 为锐角.要在对角线BD 上找点N ,M ,使四边形ANCM 为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )A .甲、乙、丙都是B .只有甲、乙才是C .只有甲、丙才是D .只有乙、丙才是8.(3分)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB =( )A .1cmB .2cmC .3cmD .4cm 9.(3分)若√33取1.442,计算√33−3√33−98√33的结果是( )A .﹣100B .﹣144.2C .144.2D .﹣0.0144210.(3分)如图,点O 为正六边形ABCDEF 对角线FD 上一点,S △AFO =8,S △CDO =2,则S 正六边形ABCDEF 的值是( )A.20B.30C.40D.随点O位置而变化11.(2分)如图,将数轴上﹣6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列正确的是()A.a3>0B.|a1|=|a4|C.a1+a2+a3+a4+a5=0D.a2+a5<012.(2分)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.713.(2分)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).证法2:如图,∵∠A=76°,∠B=59°,且∠ACD=135°(量角器测量所得)又∵135°=76°+59°(计算所得)∴∠ACD =∠A +∠B (等量代换).下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理14.(2分)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“( )”应填的颜色是( )A .蓝B .粉C .黄D .红 15.(2分)由(1+c 2+c −12)值的正负可以比较A =1+c 2+c 与12的大小,下列正确的是( )A .当c =﹣2时,A =12B .当c =0时,A ≠12C .当c <﹣2时,A >12D .当c <0时,A <12 16.(2分)如图,等腰△AOB 中,顶角∠AOB =40°,用尺规按①到④的步骤操作: ①以O 为圆心,OA 为半径画圆;②在⊙O 上任取一点P (不与点A ,B 重合),连接AP ;③作AB 的垂直平分线与⊙O 交于M ,N ;④作AP 的垂直平分线与⊙O 交于E ,F .结论Ⅰ:顺次连接M ,E ,N ,F 四点必能得到矩形;结论Ⅱ:⊙O 上只有唯一的点P ,使得S 扇形FOM =S 扇形AOB .对于结论Ⅰ和Ⅱ,下列判断正确的是( )A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C .Ⅰ不对Ⅱ对D .Ⅰ对Ⅱ不对二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17.(4分)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为 ;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片 块.18.(4分)如图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且∠A ,∠B ,∠E 保持不变.为了舒适,需调整∠D 的大小,使∠EFD =110°,则图中∠D 应 (填“增加”或“减少”) 度.19.(4分)用绘图软件绘制双曲线m :y =60x 与动直线l :y =a ,且交于一点,图1为a =8时的视窗情形.(1)当a =15时,l 与m 的交点坐标为 ;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O 始终在视窗中心. 例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的12,其可视范围就由﹣15≤x≤15及﹣10≤y≤10变成了﹣30≤x≤30及﹣20≤y≤20(如图2).当a=﹣1.2和a=﹣1.5时,l与m的交点分别是点A和B,为能看到m在A和B之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的1k,则整数k=.三、解答题(本大题有7个小题,共66分。

2024河北中考数学试卷电子版

2024河北中考数学试卷电子版

2024河北中考数学试卷电子版引言本文将为您提供2024年河北中考数学试卷的电子版。

该试卷是河北省教育厅组织的中学毕业生统一考试的一部分,涵盖了中学数学的各个知识点和技能。

通过阅读该试卷,您将了解到中学数学的题型和考点,帮助您更好地了解中学数学的教学内容和考试要求。

一、选择题1.下列式子中哪个是等式?A) 2 + 3 = 5B) 2 + 3 > 5C) 2 + 3 < 5正确答案:A) 2 + 3 = 5解析:等号(=)表示左右两边的值相等,所以只有A) 2 + 3 = 5是等式。

2.一个正方形的边长为8cm,那么它的周长是多少?A)16 cmB)32 cmC)64 cm正确答案:B) 32 cm解析:正方形的周长等于四条边长的和,所以周长为8 + 8 + 8 + 8 = 32 cm。

3.已知 (x - 2) ÷ 3 = 5,求未知数 x 的值。

A)9B)12C)17正确答案:B) 12解析:将等式中的除法转化为乘法,得到 x - 2 = 3 × 5 = 15,再将等式中的减法转化为加法,得到 x = 15 + 2 = 17。

二、填空题1.解方程 2x - 5 = 7,得到的解是 __________。

正确答案:x = 6解析:将等式中的减法转化为加法,得到 2x = 7 + 5 = 12,再将等式中的乘法转化为除法,得到 x = 12 ÷ 2 = 6。

2.若 a + b = 12,a - b = 4,则 a 的值是 __________。

正确答案:a = 8解析:将等式相加得到 a + b + a - b = 12 + 4,合并同类项得到 2a = 16,再将等式中的乘法转化为除法,得到 a = 16 ÷ 2 = 8。

3.若 2x + 3y = 9,x - 2y = 1,则 y 的值是 __________。

正确答案:y = 2解析:将等式相减得到 2x + 3y - (x - 2y) = 9 - 1,合并同类项得到 x + 5y = 8,再将等式中的加法转化为减法,得到5y = 8 - x,最后将等式中的乘法转化为除法,得到 y = (8 - x) ÷ 5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省历年中考数学试题
1.07年(本小题满分10分)一手机经销商计划购进某品牌的A 型、B 型、C 型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A 型手机x 部,B 型手机y 部.三款手机的进价和预售价如下表:
(1)用含x ,y 的式子表示购进C 型手机的部数; (2)求出y 与x 之间的函数关系式;
(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销
这批手机过程中需另外支出各种费用共1500元. ①求出预估利润P (元)与x (部)的函数关系式; (注:预估利润P =预售总额-购机款-各种费用)
②求出预估利润的最大值,并写出此时购进三款手机各多少部.
2.(08河北)(本小题满分8分)如图11,直线1l 的解析表达式为33y x =-+,且
1l 与x 轴交于点D
,直线2l 经过点A B ,,直线1l ,2l 交于点C .
(1)求点D 的坐标;(2)求直线2l 的解析表达式; (3)求ADC △的面积;
(4)在直线2l 上存在异于点C 的另一点P ,使得 ADP △与ADC △的面积相等,请直接..
写出点P 的坐标.
图15
60
40
40
150
30
单位:cm A
B B
3.(13年河北),如图15,A (0,1),M (3,2),N (4,4).动点P 从点A 出发,沿轴以每秒1个单位长的速度向上移动,且过点P 的直线l :y =-x +b 也随之移动,设移动时间为t 秒. (1)当t =3时,求l 的解析式;
(2)若点M ,N 位于l 的异侧,确定t 的取值范围;
(3)直接写出t 为何值时,点M 关于l 的对称点落在坐标轴上.
4.07年(本小题满分12分)
某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm×30 cm ,B 型板材规格是40 cm×30 cm.现只能购得规格是150 cm×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)
裁法一 裁法二 裁法三 A 型板材块
数 1 2
B 型板材块

2
m n
设所购的标准板材全部裁完,其中按裁法一裁x 张、按裁法二裁y 张、按裁法三裁z 张,且所裁出的A 、B 两种型号的板材刚好够用. (1)上表中,m = ,n = ; (2)分别求出y 与x 和z 与x 的函数关系式;
(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,
并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材 多少张?
5.(本小题满分9分)
已知A、B两地的路程为240千米,某经销商每天都要用汽车或火车将x 吨保鲜品一次性由A地运往B地,受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.
现在有货运收费项目及收费标准表,行驶路程S(千米)与行驶时间t(时)的函数图象(如图13中①),上周货运量折线统计图(如图13中②)等信息如下:
货运收费项目及收费标准表
运输工具运输费单价
元/(吨•千米)
冷藏单价
元/(吨•时)
固定费用
元/次
汽车 2 5 200 火车 1.6 5 2280 ⑴汽车的速度为__________千米/时,
火车的速度为_________千米/时;
设每天用汽车和火车运输的总费用分别为y汽(元)和y 火(元),分别求
y汽、y火与x的函数关系式(不必写出x的取值范围)及x为何值时y汽>y火;
(总费用=运输费+冷藏费+固定费用)
6.07年(本小题满分8分)如图13,已知二次函数2
y ax =和点B .(1)求该二次函数的表达式; (2)写出该抛物线的对称轴及顶点坐标;
(3)点P (m ,m )与点Q 均在该函数图像上(其中m >0),且这两点关于抛物线的对称轴对称,求m 的值及点Q 到x 轴的距离.
7.09年(本小题满分9分) 已知抛物线2y ax bx =+经过点(33)A --,和点P (t ,0t ≠ 0.
(1)若该抛物线的对称轴经过点A ,如图12, 请通过观察图象,指出此时y 的最小值,
并写出t 的值;
(2)若4t =-,求a 、b 向; (3)直.接.写出使该抛物线开口向下的t 的一个值.
8.(08河北)(本小题满分12分)
研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y
图12
图13
(万元)与x 满足关系式2
159010
y x x =
++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额-全部费用)
(1)成果表明,在甲地生产并销售x 吨时,1
1420
p x =-
+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式; (2)成果表明,在乙地生产并销售x 吨时,1
10
p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;
(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?
9.(本小题满分12分)
某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一
种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =100
1
x +150,成本为20元/件,无论销售多少,每月还需支出广告
费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费). 若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为
常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳
100
1x 2
元的附加费,
设月利润为w 外(元)(利润 = 销售额-成本-附加费).
(1)当x = 1000时,y = 元/件,w 内 = 元; (2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围); (3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最
大值与在国内销售月利润的最大值相同,求a 的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选
择在国内还是在国外销售才能使所获月利润较大?
10.(本小题满分12分)
如图15,在平面直角坐标系中,点P 从原点O 出发,沿x 轴向右以每秒1个单位长的速度运动t (t >0)秒,抛物线y =x 2+bx +c 经过点O 和点P .已知矩形ABCD 的三个顶点为A (1,0)、B (1,-5)、D (4,0).
⑴求c 、b (用含t 的代数式表示);
⑵当4<t <5时,设抛物线分别与线段AB 、CD 交于点M 、N .
①在点P 的运动过程中,你认为∠AMP 的大小是否会变化?若变化,说明理由;若不变,求出∠AMP 的值;
②求△MPN 的面积S 与t 的函数关系式,并求t 为何值时,S=
218
; ③在矩形ABCD 的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..
写出t 的取值
范围.
11.某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm )在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm 2)成正比例.每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据. (1)求一张薄板的出厂价与边长之间满足
的函数关系式;
(2)已知出场一张边长为40cm 的薄板,获得的利润是26元(利润=出厂价-成本价).
①求一张薄板的利润与边长之间满足的函数关系式.
②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少? 12.(本小题满分12分)
薄板的边长
(cm ) 20 30
出厂价(元/
张)
50 70
次数n 2 1 速度x
40
60
某公司在固定线路上运输,拟用运营指数Q量化考核
指数Q420 100 司机的工作业绩.Q = W + 100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据.
(1)用含x和n的式子表示Q;
(2)当x = 70,Q = 450时,求n的值;
(3)若n = 3,要使Q最大,确定x的值;
(4)设n = 2,x = 40,能否在n增加m%(m>0)
同时x减少m%的情况下,而Q的值仍为420,若能,求出m的值;若不
能,请说明理由.
13.(11分)(2014•河北)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G、H,O九个格点.抛物线l的解析式为y=(﹣1)n x2+bx+c(n 为整数).
(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;
(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;
(3)若l经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.。

相关文档
最新文档