变压器保护原理
变压器保护原理与配置

变压器保护原理与配置变压器是电力系统中重要的电力设备之一,其主要功能是将一个电压等级的电能转换为另一个电压等级的电能,并在输电中进行电能传输和分配。
为保障变压器的正常运行,必须对其进行保护。
以下是变压器保护原理与配置的介绍。
一、变压器保护原理1. 过载保护当变压器负载电流超过额定电流时,将引起变压器温升过高,甚至可能导致短路,从而损坏变压器。
因此,需要对变压器进行过载保护。
过载保护装置通常采用电流互感器检测变压器负载电流,并通过保护继电器等装置实现过载保护。
2. 短路保护当变压器发生短路故障时,电流会急剧升高,引起变压器内部温度瞬间升高,将损坏变压器绕组和绝缘。
因此,需要对变压器进行短路保护。
短路保护装置通常采用电流互感器检测变压器电流,并通过保护继电器等装置实现短路保护。
3. 地闸保护当变压器出现地闸故障时,会导致变压器绕组和绝缘被损坏,从而影响变压器正常运行。
因此,需要进行地闸保护。
地闸保护装置通常采用变压器的中性点作为检测点,并通过保护继电器等装置实现地闸保护。
4. 过压保护当变压器输入电压超过额定电压时,会导致变压器绕组和绝缘的击穿,损坏变压器正常运行。
因此,需要进行过压保护。
过压保护装置通常采用电压互感器检测输入电压,并通过保护继电器等装置实现过压保护。
5. 欠压保护当变压器输入电压低于额定电压时,会导致变压器负载电流急剧升高,造成变压器绕组温度异常升高,从而损坏变压器。
因此,需要进行欠压保护。
欠压保护装置通常采用电压互感器检测输入电压,并通过保护继电器等装置实现欠压保护。
二、变压器保护配置变压器保护装置应按照变压器及其用途来确定配置方案。
变压器通常采用机械继电器、数字化继电器、微处理器等不同类型的保护装置。
1. 机械继电器保护机械继电器保护装置是一种传统的设备保护方案,通常用于小型变压器的保护。
它具有工作可靠、升级容易、操作简单等优点,但不支持远程通信,难以实现自动化和故障诊断。
2. 数字化继电器保护数字化继电器保护装置是一种新型设备保护方案,通常用于大型变压器的保护。
低压变压器保护的原理

低压变压器保护的原理低压变压器保护是指对低压变压器进行保护措施,防止其运行过程中出现故障或损坏。
低压变压器保护的原理主要包括过流保护、短路保护、过载保护和温度保护等。
1. 过流保护:低压变压器的过流保护是为了保护变压器的线圈不因过大的电流而发热过高,进而引起损坏。
过流保护通常采用电流继电器来实现。
当变压器的电流超过额定电流的设定值时,电流继电器会产生动作信号,通过控制线路断开电源电路或触发报警系统来保护变压器。
2. 短路保护:短路保护是为了保护低压变压器在短路故障发生时能够及时切断电路,防止短路电流过大,引起变压器线圈断线或发热等故障。
短路保护通常采用熔断器和断路器来实现。
当变压器发生短路时,熔断器或断路器会迅速切断电路,起到保护作用。
3. 过载保护:过载保护是为了保护低压变压器在负载过大时能够正常运行,并防止超过额定负荷而损坏。
过载保护通常采用热继电器或电子保护装置来实现。
当变压器负载过大时,热继电器或电子保护装置会通过测量变压器温度或电流来判断负载情况,并通过控制电路切断电源或触发警报来保护变压器。
4. 温度保护:温度保护是为了保护低压变压器在过热情况下能够及时采取措施,防止变压器绝缘材料老化、线圈短路等故障发生。
温度保护通常通过温度继电器来实现。
温度继电器会感知变压器的温度,当温度超过设定值时,会产生动作信号,通过切断电源或触发警报来保护变压器。
除了以上四种主要的保护原理,低压变压器还可以采用其他保护装置,如油位保护、气体保护等。
油位保护是为了防止变压器油位过低而导致局部过热或发生爆炸等情况。
气体保护是为了检测变压器内部产生的可燃气体,通过监测气体浓度来判断变压器的运行状态,并采取相应的保护措施。
总的来说,低压变压器保护的原理是通过监测变压器的电流、温度、油位、气体等参数,当这些参数超过设定值或发生异常时,采取及时的措施来切断电源或触发警报,以保护变压器的正常运行和安全性。
不同的保护原理可以根据具体的变压器使用情况和要求来选择和配置,以实现对低压变压器全面的保护。
变压器保护原理及技术分析

变压器保护原理及技术分析变压器是电力系统中一个重要的电气设备,它将输电线路上高电压的电能转换为用户需要的低电压,起着电能传输和电能转换的作用。
变压器的保护是确保变压器安全运行的重要措施,保护原理及技术分析如下。
变压器的保护原理是在变压器的正常运行范围内,当发生故障或异常时,及时采取措施,使故障得到限制,避免故障扩大,同时保护设备和系统的稳定运行。
1.过载保护:变压器在长期工作中,可能会由于电流超载而造成温度升高,进而引发短路和绕组烧坏等故障。
为了保护变压器不发生过载故障,通常采用过载保护装置。
过载保护装置可以根据变压器的负载电流实时监测和判断是否超过额定电流标准,一旦超过则对变压器进行保护动作。
2.短路保护:变压器短路故障是变压器中最常见的故障之一,它往往会造成变压器严重损坏。
短路保护的主要目的是快速地切除短路故障,并保护变压器不受到损害。
短路保护装置一般采用差动保护,即通过对变压器的输入和输出电流进行差动计算,当计算值超过设定阈值时,短路保护装置进行保护动作。
3.过压保护:当系统发生过电压时,变压器会受到电压冲击,绝缘可能会受到破坏。
因此,过压保护装置是变压器保护中不可缺少的一环。
过压保护装置可以监测和检测系统电压是否超过额定值,一旦超过,则迅速切断变压器的电源,保护变压器免受到过电压的损害。
4.欠压保护:欠压保护主要是为了保护变压器,在电网电压过程中发生欠压情况,不致导致变压器正常电力传输和电能转换。
欠压保护装置一般设置在变压器的低压侧,当欠压发生时,保护装置会迅速切断变压器的电源,防止欠压引起的变压器故障。
5.温度保护:变压器在运行过程中,过高的温度会导致绝缘老化和设备损坏,因此需要进行温度保护。
温度保护装置通常采用温度传感器实时监测变压器的温度,一旦温度超过设定阈值,保护装置会对变压器进行保护动作,如切断电源或发出警报信号。
6.油压保护:变压器油压保护主要是防止变压器油泄漏或油泄放大,导致变压器损坏。
变压器主保护原理

变压器主保护原理
变压器主保护的原理是通过监测和保护变压器的重要参数,如电流、温度、压力等,来确保变压器的安全运行。
主要的保护原理如下:
1. 过流保护:通过监测变压器主回路的电流,当电流超过变压器额定电流的设定值时,保护装置会及时切断电源,防止变压器过载损坏。
2. 短路保护:当变压器主回路出现短路故障时,保护装置会通过电流变化的快速监测,迅速切断电源,以避免短路电流对变压器造成更大的损害。
3. 远/近端差动保护:差动保护是保护变压器的一种重要手段。
它通过对变压器两侧电流的差值进行监测,当差值超过设定值时,表示存在故障。
远/近端差动保护根据保护范围的不同,
可以区别监测变压器近端和远端的电流。
4. 温度保护:变压器的温度是影响其正常运行的重要因素。
温度保护装置通过探测变压器的温度,当温度超过安全范围时,会切断电源或发送警报信号,以防止变压器过热引发事故。
5. 油位保护:变压器的油位保护装置可以监测和控制变压器油箱中的油位。
当油位低于安全限制时,保护装置会切断电源,以防止变压器因油位过低而无法正常冷却。
除了以上主要的保护原理外,还有一些辅助的保护原理,如过
压保护、欠压保护、过载保护、接地保护等,它们通过监测和控制变压器运行过程中的各种参数,从而确保变压器的安全运行。
变压器保护原理

变压器保护原理差动保护:差动保护的动作量为差动电流,差动电流为变压器各侧电流相量和,变压器区内故障时,差动电流为流入故障点的电流,当差动电流大于保护的动作电流时,差动保护动作。
在变压器正常运行和外部故障时,变压器各侧流入和流出的一次电流之和为零,保护不会动作。
但变压器差动保护在实际正常运行和外部短路时,由于变压器各侧电流幅值和相位不同,以及励磁电流的存在,使得差动回路中稳态、暂态不平衡电流显著增加,从而造成影响差动保护动作行为的特殊问题。
2I 1I瓦斯保护变压器内部故障,包括轻微的匝间短路等,可能故障电流比较小,反应电气量的保护灵敏度不满足要求。
电力变压器通常利用变压器油作为绝缘和冷却介质。
当变压器油箱内故障时,在故障电流和故障点电弧的作用下,绝缘油和其它绝缘材料会因受热而分解,产生大量气体,气体的多少与流速,与故障严重程度有关,利用气体动作的保护装置为瓦斯保护。
瓦斯继电器安装在变压器本体油箱与油枕之间的连接管道中。
瓦斯保护包括二种保护,一个是反应变压器内部不正常情况或轻微故障时气体容积大小的轻瓦斯保护,动作于信号,另一个是反应变压器严重故障时油流速度的重瓦斯保护,动作于跳开故障变压器。
瓦斯保护能反应绕组轻微匝间短路、铁芯局部烧损、绕组内部断线、绝缘逐渐劣化、油面下降等故障,但对变压器外部套管及引线故障不能反应,对绝缘突发性击穿的反应不如差动保护快,因此瓦斯保护作为变压器的主保护之一,与纵差动保护相互配合,相互补充,共同构成快速灵敏的变压器保护主保护。
复合电压过电流:复合电压过电流保护是由一个负序电压继电器和一个接在相同电压上的低电压继电器共同组成的电压复合元件,两个继电器只要有一个动作,同时过电流继电器也动作,整套装置即能启动。
该保护较低电压闭锁过电流保护有下列优点:(1)在后备保护范围内发生不对称短路时,有较高的灵敏度。
(2)在变压器发生不对称短路时,电压启动元件的灵敏度与变压器的接线方式无关。
变压器的控制及保护原理

变压器的控制方式
控制变压器的输出电压
通过调整输入线圈和输出线圈的绕组比例,可以控制变压器的输出电压。这是最常见的控制 方式。
控制变压器的输入电压
通过调整输入电压的大小,可以间接地控制变压器的输出电压。
控制变压器的变比
通过在变压器的线圈上放置调整装置,可以改变变压器的变比。
变压器的保护原理
1 短路保护
变压器的控制及保护实例
1
控制实例
通过变压器的调整装置,可以精确地调整输出电压,以满足特定的应用需求。
2
过载保护实例
当变压器承载过多负载时,过载保护装置会自动切断电流,以防止损坏。
3
高温保护实例
当变压器温度超过安全范围时,高温保护系统会触发报警并采取措施,以防止过 热。
结论
通过理解变压器的控制及保护原理,您将能够更好地运用变压器技术,并确保系统的安全和可靠运行。 谢谢收听!
变压器的控制及保护原理
在本次演示中,我们将探讨变压器的控制和保护原理。通过了解基本原理和 不同的控制方式,以及如何保护变压器免受损坏,您将能够更好地理解和运 用变压器技术。
变压器的基本原理
变压器通过电磁感应原理将电能从一个线圈传输到另一个线圈。它由一个铁 芯和两个或多个线圈组成。当电流通过一个线圈时,它产生了一个磁场,这 个磁场切换到另一个线圈上时,就会在该线圈中产生电动势,从而实现电能 的传输。
2 过载保护
通过及时检测短路故障并切断电流,保护 变压器不受损坏。
当变压器承载过多电流时,过载保护系统 会及时采取措施,以防止变压器过热并提 前损当输入电压低于变压器的额定值时,低压 保护系统会自动切断电流,以保护变压器。
通过监测变压器温度,高温保护系统可以 及时采取措施,防止变压器过热并导致损 坏。
变压器保护原理及试验方法最终版

2.2 后备保护的原理
2.2.1 过流保护 过流保护用于降压变压器,动作电流Idz的整定应考虑
躲过切除外部短路后电机自启动和变压器可能出现的最大负
荷电流,动作方程:I>Idz 且t >Tdz。即短路电流I大于
动作电流定值Idz,持续时间t大于动作时间定值Tdz。一个 装置中可以设置多段过流保护,每段的Idz和Tdz各不相同, Idz越大 Tdz越小。
据,动作方程:I2>K2xbI1。
K2xb为二次谐波制动系数整定值,推荐为0.15。 满足动作方程就闭锁差动保护,否则开放差动保护。
原理二:波形判别原理。
基波的波形是正弦波,完整对称。励磁涌流存在大量谐 波分量,波形是间断不对称的。保护装置利于三相差动电流 的波形判别作为励磁涌流的识别判据,判断波形是对称完整 的就开放差动保护,否则就闭锁差动保护。
2.2.6 零序过压保护
对全绝缘的变压器,中性点直接接地时采用零序过流保 护,而在中性点不接地时采用零序过压保护。
有些变压器在中性点装设放电间隙作为过电压保护,这 种变压器保护的零序过流保护和零序过压保护就变为间隙零 序过流保护和间隙零序过压保护,在间隙击穿过程中,间隙 零序过压和零序过流交替出现,有的厂家的装置一旦零序过 压或零序过流元件动作后,两个保护就相互展宽,使保护可 靠动作。
在实际的变压器差动保护装置中,其比率制动特性如图 4所示,图4中平行于横坐标的AB段称为无制动段,它是由启 动电流和最小制动电流构成的,动作值不随制动电流变化而 变化。我们希望制动电流小于变压器额定电流时无制动作用, 通常选取制动电流等于被保护变压器高压侧的额定电流的二 次值。即: Izd=Ie/nLH
2.2.7 失灵保护 220kV以上的断路器发生拒动时,会危及整个
变压器保护原理

1.1变压器比率制动式差动保护比率制动式差动保护就是变压器的主保护,能反映变压器内部相间短路故障、高压侧单相接地短路及匝间层间短路故障。
变压器保护装置最多可实现四侧差动,动作特性图如图6-1-1所示:I 制制制制制 r es)r es.0op.制制制制制 o p )I图6-1-1 比率差动保护动作特性图1.1.1 比率差动原理1.1.1.1 差动动作方程如下0.op op I I >当 0.res res I I < ;()0.res res 0.op op S I -I I I +> 当 0.res res I I > (6-1-1)op I 为差动电流,0.op I 为差动最小动作电流整定值,res I 为制动电流,0.res I 为最小制动电流整定值,S 为比率制动系数整定值,各侧电流的方向都以指向变压器为正方向。
1.1.1.1.1 对于两侧差动:op I = |21I I &&+| (6-1-2) res I = |21I I &&-| / 2(6-1-3)1.1.1.1.2 对于三侧及以上数侧的差动:op I = | 1I & +2I & +…+ k I & | (6-1-4)res I = max{ |1I &|,|2I &|,…,|k I &| }(6-1-5)式中:4K 3<<,1I &,2I &,…k I &分别为变压器各侧电流互感器二次侧的电流。
1.1.1.1.3 对于无电源低压侧带分支的两圈变差动:op I = |321I I I &&&++|(6-1-6) res I = |321I I I &&&--| / 2(6-1-7)式中:1I &、2I &、3I &分别为变压器高压侧、低压侧A 分支与低压侧B 分支电流互感器二次侧的电流。