2018年山东省高考数学试卷(理科)word版试卷及解析
2018高考山东理科数学试题及答案解析[解析版]
![2018高考山东理科数学试题及答案解析[解析版]](https://img.taocdn.com/s3/m/1e914fd6de80d4d8d05a4f93.png)
2017 年普通高等学校招生全国统一考试(山东卷)数学(理科)第Ⅰ卷(共 50 分)、选择题:本大题共 10小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1)【2017 年山东,理 1,5分】设函数 y 4 x 2的定义域为 A ,函数 y ln (1 x )的定义域为 B ,则 A B ( ) (A ) 1,2 (B ) (1,2 (C ) 2,1 (D ) 2,1) 答案】 D解析】由4 x 20得 2 x 2,由1 x 0得x 1,A B={x| 2 x 2} {x|x 1} {x| 2 x 1},故选 D .2)【 2017年山东,理 2, 5分】已知 a R , i 是虚数单位,若 z a 3i ,z z 4,则 a ( )设其回归直线方程为 y bx a ,10已知 x 10i 225 , yi 1600, b 4 ,该班某学生的脚i1i1长为 24,据此估计其身高为()A ) 160 (B ) 163(C )166 (D ) 170答案】 C解析】 x 22.5,y 160, a 160 4 22.5 70,y 4 24 70 166,故选 C .6)【2017 年山东,理 6,5 分】执行两次如图所示的程序框图,若第一次输入的 x 值为 7,第二次输入的 x 值为 9,则第一次、第二次输出的 a 值分别为( ) ( A )0,0 (B )1, 1 (C )0,1 (D )1,0 答案】 D解析】第一次 x 7,22 7,b 3,32 7,a 1;第二次 x 9,22 9,b 3,32 9,a 0 ,故选 D .7)【 2017年山东,理 7,5分】若 a b 0,且 ab 1,则下列不等式成立的是( )1b b 11 b 1 b( A ) 1 或 1 ( 答案】 A 解析】由 z a 3i, z z 4 得 3)【 2017 年山东,理 为真命题的是(( A ) p q 答案】 B 解析】由 x 0时 x 1 1,ln ( x 1) 有意义, 即 p ,q 均是真命题,故选 B .B ) 7 或 72a3, 5 分】已知命题 )3 4 ,所以 a 1 ,故选 A .B ) p q 4)【 2017 年山东,理 4,5 分】已知 x 、 B )2 D ) 3p : x 0, ln(x 1) 0;命题 q :若 a b ,C ) p qD ) 知 p 是真命题, y 满足约束条件由 2 1,2 21; 21 2,( 1) ( 2)2则 a 2 b 2 ,下列命题pq2可知 q 是假命题,(A )0 答案】 Cxy30 解析】由 3x+y 5 0 画出可行域及直线x 3 0C )5xy303x y 5 0 ,则 z x 2 y 的最大值是( x30( D )6x 2y 0如图所示,平移 x 2y 0发现,当其经过直线 3x y 5 0 与 x 3 的交点 ( 3,4) 时, z x 2y 最大为 z 3 2 4 5,故选 C .5)【 2017年山东,理 5,5 分】为了研究某班学生的脚长 x (单位:厘米)和身高 y (单位: 厘米)的关系,从该班随机抽取 10 名学生,根据测量数据的散点图可以看出 y 与 x 之间有线性相关关系,A )aalog 2 (a b)(B ) alog 2(a b) a ( C )alog 2(a b)a( D )log 2 (a b) a ab2a 22a2 bb2b2a答案】 Bba 11 1解析】 a 1,0 b 1, a 1,log 2 (a b ) log 22 ab 1, 2 b a a b alog 2(a b ),故选 B .2 b b8)【2017 年山东, 理 8,5分】从分别标有 1,2,⋯,9的 9 张卡片中不放回地随机抽取 2次,每次抽取 1 张, 则抽到在 2 张卡片上的数奇偶性不同的概率是( )答案】 C 解析】 2C 5C 4 5 ,故选 C .9 8 99)【2017 年山东,理 9,5 分】在 ABC 中,角 A 、 B 、C 的对边分别为 a 、b 、c ,若 ABC 为锐角三角形, 且满足sinB (1 2cosC ) 2sin AcosC cos Asin C ,则下列等式成立的是( )(A )a 2b (B )b 2a (C ) A 2B(D ) B 2A答案】 A 解析】 sin (A C ) 2sin BcosC 2sin AcosC cos Asin C 所以 2sin BcosC sin AcosC 2sinB sinA 2b a , 故选 A .10)【2017 年山东,理 10,5 分】已知当 x 0,1 时,函数 y (mx 1)2的图象与 y x m 的图象有且只有一个交点,则正实数 m 的取值范围是( ) (A ) 0,1 2 3,(B ) 0,1 3,( C ) 0, 2 2 3,(D ) 0, 2 3,答案】 B解析】当 0 m 1时, 1 1 , y (mx 1)2 单调递减,且 y (mx 1)2 [(m 1)2 ,1] , y x m 单调递增,且 my x m [m,1 m] ,此时有且仅有一个交点;当 m 1时, 0 1 1, y (mx 1)2 在[ 1,1] 上单调 mm 递增,所以要有且仅有一个交点,需 (m 1)2 1 m m 3 ,故选 B .第 II 卷(共 100 分)、填空题:本大题共 5 小题,每小题 5 分11)【2017 年山东,理 11,5分】已知 (1 3x )n 的展开式中含有 x 2的系数是 54,则 n . 答案】 4解析】 r1 C r n 3x r C r n 3r x r,令r 2得:C 2n 32 54,解得 n 4.113)【2017 年山东,理 13,5 分】由一个长方体和两个 1圆柱体构成的几何体的三视图如4 图,则该几何体的体积为 .答案】 2212 解析】该几何体的体积为 V 1 121 2 2 1 1 2 . 425A)4B)5C)7D)2e 1 e 2 e 1 e 212)【2017年山东,理 12,5分】已知 e 1 、 e 2是互相垂直的单位向量,若 3e 1 e 2与e 1 e 2的夹角为 60 ,则实数 的值是 .3 2 1 2 cos60 1 2,解得: 3.32214)【 2017 年山东,理 14,5 分】在平面直角坐标系 xOy 中,双曲线 x 2 y2 1( a 0, b 0 )的右支与焦 ab点为 F 的抛物线 x 2 2py ( p 0)交于 A 、B 两点,若 AF + BF =4 OF ,则该双曲线的渐近线方程 为. 答案】 y 2 x222 x 2 y 21 2 2 1 2 2 2 2 2 a 2 b 2 a y 2 pb y a b 0 ,x 22 py2所以 y A y B 2p 2b p a 2b 渐近线方程为 y 2 x . a215)【2017 年山东,理 15,5 分】若函数 e xf(x)(e 2.71828 是自然对数的底数)在 f(x) 的定义域上单调 f (x) 具有 M 性质。
【高三数学试题精选】山东省2018年高考理科数学试题_0

山东省2018年高考理科数学试题
5
c
绝密★启用前
2018年普通高等学校招生全国统一考试(东卷)
理科数学
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项
1答卷前,考生务必用05毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3 第Ⅱ卷必须用05毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4填空题直接填写答案,解答题应写出字说明、证明过程或演算步骤
参考式
如果事A,B互斥,那么P(A+B)=P(A)+P(B)
第Ⅰ卷(共50分)
一、选择题本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的
(1)若复数z满足其中i为虚数单位,则z=
(A)1+2i(B)1 2i(c)(D)
(2)设集合则 =。
2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
全国卷Ⅲ2018年理数高考试题解析(word档含答案解析)

为 9 3 ,则三棱锥 D ABC 体积的最大值为
A .0.7
B. 0.6
C. 0.4
D. 0.3
9.△ ABC 的内角 A ,B ,C 的对边分别为
a2 a ,b , c ,若 △ ABC 的面积为
b2
c2 ,则 C
4
A. π 2
B. π 3
C. π 4
D. π 6
10.设 A ,B ,C ,D 是同一个半径为 4 的球的球面上四点, △ ABC 为等边三角形且其面积
项是符合题目要求的.
1.已知集合 A x | x 1≥ 0 , B 0,1,2 ,则 A B
A. 0
B. 1
C. 1,2
D. 0,1,2
2. 1 i 2 i
A. 3 i
B. 3 i
C. 3 i
D. 3 i
3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图
中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长
2018 年普通高等学校招生全国统一考试
理科数学
注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如
需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。 写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一
方体,则咬合时带卯眼的木构件的俯视图可以是
4.若 sin A. 8 9
1 ,则 cos 2
3
B. 7 9
2018年高考山东理科数学试题详细解析 精品

2018年普通高等学校全国统一考试(山东卷)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的的四个选项中,只有一个项是符合题目要求的。
(1)设集合2{60}M x x x =+-<,{13}N x x =≤≤,则M N =A.[1,2)B. [1,2]C. (2,3]D. [2,3]【解析】:{32}M x x =-<<,{|13}N x x =≤≤,则[1,2)M N = ,答案应选A 。
(2)复数2(2iz i i-=+为虚数单位)在复平面内对应的点所在的象限为 A.第一象限 B.第二象限 C.第三象限 D.第四象限【解析】:22(2)34255i i iz i ---===+对应的点为34(,)55-在第四象限,答案应选D.(3)若点(,9)a 在函数3xy =的图象上,则tan6a π的值为A.0B.3C. 1D. 【解析】:因为点(,9)a 在函数3xy =的图象上,所以2393a ==,2a =,tantan 63a ππ== D. (4)不等式5310x x -++≥的解集是A.[5,7]-B. [4,6]C. (,5][7,)-∞-+∞D. (,4][6,)-∞-+∞ 【解析】:解法一:当5x >时,原不等式可化为2210x -≥,解得6x ≥;当35x -≤≤时,原不等式可化为810≥,不成立;当3x <-时,原不等式可化为2210x -+≥,解得4x -≤.综上可知6x ≥,或4x -≤,答案应选D 。
解法二:可以作出函数53y x x =-++的图象,令5310x x -++=可得4x -=或6x =,观察图像可得6x ≥,或4x -≤可使5310x x -++≥成立,答案应选D 。
解法三:利用绝对值的几何意义,53x x -++表示实数轴上的点x 到点3x =-与5x =的距离之和,要使点x 到点3x =-与5x =的距离之和等于10,只需4x -=或6x =,于是当6x ≥,或4x -≤可使5310x x -++≥成立,答案应选D 。
2018年山东省高考理科数学试题word版

绝密★启用并使用完毕前2018年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。
共4页,满分150分。
考试用时150分钟.考试结束后,将本卷和答题卡一并交回。
注意事项:1.答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)*P(B)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为()A.2+iB.2-iC.5+iD.5-i(2)设集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.9(3)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(-1)=()(A)-2(B)0(C)1(D)2(4)已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面积是边长为的正三棱柱,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为()(A)(B)(C)(D)(5)将函数y=sin(2x+φ)的图像沿x轴向左平移个单位后,得到一个偶函数的图像,则φ的一个可能取值为(A)(B)(C)0(D)(6)在平面直角坐标系xOy中,M为不等式组:2x-y-2≥0,x+2y-1≥0,3x+y-8≤0,所表示的区域上一动点,则直线O M斜率的最小值为(A)2(B)1(C)(D)(7)给定两个命题p,q。
2018年高考理科数学试卷及答案(清晰word版)

理科数学试题 第1页(共9页)绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C .{|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半理科数学试题 第2页(共9页)4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC -B .1344AB AC - C .3144AB AC +D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表 面上的点N 在左视图上的对应点为B ,则在此圆柱侧 面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+理科数学试题 第3页(共9页)11.已知双曲线2213x C y :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。
2018年高考理数真题试题(全国Ⅱ卷)(Word版+答案+解析)

2018年高考理数真题试卷(全国Ⅱ卷)一、选择题1.1+2i1−2i=( )A. −45−35i B. −45+35i C. −35−45i D. −35+45i2.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z}.则A中元素的个数为()A. 9B. 8C. 5D. 43.函数f(x)=e x−e−xx2的图像大致为( )A. B.C. D.4.已知向量a→,b→满足|a→|=1, a→⋅b→=−1 ,则a→·(2a→-b→)=()A. 4B. 3C. 2D. 05.双曲线x2a2−y2b2=1(a>0,b>0)的离心率为√3,则其渐近线方程为()A. y=±√2xB. y=±√3xC. y=±√22x D. y=±√32x6.在ΔABC中,cos C2=√55,BC=1,AC=5则AB=()A. 4√2B. √30C. √29D. 2√57.为计算S=1−12+13−14+⋅⋅⋅+199−1100,设计了右侧的程序框图,则在空白框中应填入()A. i=i+1B. i=i+2C. i=i+3D. i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A. 112 B. 114 C. 115 D. 1189.在长方形ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1= √3 ,则异面直线AD 1与DB 1所成角的余弦值为( ) A. 15 B. √56C. √55D. √2210.若 f(x)=cosx −sinx 在 [−a,a] 是减函数,则a 的最大值是( ) A. π4 B. π2 C. 3π4 D. π11.已知 f(x) 是定义为 (−∞,+∞) 的奇函数,满足 f(1−x)=f(1+x) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。
) 1、设z=,则∣z ∣=( )A.0B. 12 C.1 D. √2 2、已知集合A={x|x 2-x-2>0},则C R A =( ) A 、{x|-1<x<2} B 、{x|-1≤x ≤2}C 、{x|x<-1}∪{x|x>2}D 、{x|x ≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3 = S 2+ S 4,a 1 =2,则a 5 =( ) A 、-12 B 、-10 C 、10 D 、125、设函数f (x )=x ³+(a-1)x ²+ax .若f (x )为奇函数,则曲线y= f (x )在点(0,0)处的切线方程为( )A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB→ =( ) A. 34 AB → - 14 AC → B. 14 AB → - 34 AC → C. 34 AB → + 14 AC → D. 14 AB → + 34 AC→建设前经济收入构成比例建设后经济收入构成比例7、某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A. 2√17B. 2√5C. 3D. 28.设抛物线C :y ²=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM → ·FN→ =( ) A.5 B.6 C.7 D.8 9.已知函数f (x )= g (x )=f (x )+x+a ,若g (x )存在2个零点,则a 的取值范围是( )A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。
此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC. △ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。
在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A. p 1=p 2B. p 1=p 3C. p 2=p 3D. p 1=p 2+p 311.已知双曲线C : x 23 - y ²=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若△OMN 为直角三角形,则∣MN ∣=( ) A. 32 B.3 C.D.412.已知正方体的棱长为1,每条棱所在直线与平面α 所成的角都相等,则α 截此正方体所得截面面积的最大值为( ) A. B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
13.若x ,y 满足约束条件则z=3x+2y 的最大值为 .14.记Sn 为数列{an}的前n项和. 若Sn= 2an+1,则S6= .15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)16.已知函数f(x)=2sinx+sin2x,则f(x)的最小值是 .三.解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC =,求BC.18.(12分)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把∆DFC折起,使点C 到达点P的位置,且PF⊥BF .(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.设椭圆C:x2+ y²=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).2(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.20、(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件产品作检验,再根据检验结果决定是否对余下的所有产品做检验,设每件产品为不合格品的概率都为P (0<P<1),且各件产品是否为不合格品相互独立。
(1)记20件产品中恰有2件不合格品的概率为f(P),求f(P)的最大值点。
(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为P的值,已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用。
(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?已知函数. (1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1 , x2, 证明: .(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22. [选修4-4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C₁的方程为y=k∣x∣+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C₂的极坐标方程为ρ²+2ρcosθ -3=0.(1)求C₂的直角坐标方程:(2)若C₁与C₂有且仅有三个公共点,求C₁的方程.23. [选修4-5:不等式选讲](10分)已知f(x)=∣x+1∣-∣ax-1∣.(1)当a=1时,求不等式f(x)﹥1的解集;(2)若x∈(0,1)时不等式f(x)﹥x成立,求a的取值范围.绝密★启用前2018年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题 1.C 2.B 3.A 4.B 5.D 6.A 7.B8.D9.C10.A11.B12.A二、填空题 13.6 14.63- 15.16 16.332-三、解答题 17.解:(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52,sin 45sin ADB=︒∠所以2sin 5ADB ∠=. 由题设知,90ADB ∠<︒, 所以223cos 1255ADB ∠=-=. (2)由题设及(1)知,2cos sin 5BDC ADB ∠=∠=.在BCD △中,由余弦定理得2222cos 22582522525.BC BD DC BD DC BDC=+-⋅⋅⋅∠=+-⨯⨯⨯=所以5BC =.18.解:(1)由已知可得,BF PF ⊥,BF EF ⊥,所以BF ⊥平面PEF . 又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH EF ⊥,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,||BF 为单位长,建立如图所示的空间直角坐标系H xyz -. 由(1)可得,DE PE ⊥. 又2DP =,1DE =,所以3PE =. 又1PF =,2EF =,故PE PF ⊥. 可得32PH =,32EH =.则(0,0,0)H ,3(0,0,)2P , 3(1,,0)2D --,33(1,,)22DP =,3(0,0,)2HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则34sin ||3||||HP DP HPDP θ⋅===. 所以DP 与平面ABFD .19.解:(1)由已知得(1,0)F ,l 的方程为1x =. 由已知可得,点A 的坐标为或(1,. 所以AM的方程为y =y =-.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,11(,)A x y ,22(,)B x y ,则1x <2x <直线MA ,MB 的斜率之和为121222MA MB y y k k x x +=+--. 由11y kx k =-,22y kx k =-得12121223()4(2)(2)MA MB kx x k x x kk k x x -+++=--.将(1)y k x =-代入2212x y +=得2222(21)4220k x k x k +-+-=.所以,22121222422,2121k k x x x x k k -+==++. 则3331212244128423()4021k k k k kkx x k x x k k --++-++==+.从而0MA MB k k +=,故MA ,MB 的倾斜角互补. 所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.20.解:(1)20件产品中恰有2件不合格品的概率为221820()C (1)f p p p =-. 因此 2182172172020()C [2(1)18(1)]2C (1)(110)f p p p p p p p p '=---=--.令()0f p '=,得0.1p =. 当(0,0.1)p ∈时,()0f p '>;当(0.1,1)p ∈时,()0f p '<.所以()f p 的最大值点为00.1p =.(2)由(1)知,0.1p =.(ⅰ)令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)Y B ,20225X Y =⨯+,即4025X Y =+.所以(4025)4025490EX E Y EY =+=+=. (ⅱ)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,故应该对余下的产品作检验.21.解:(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(ⅰ)若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ⅱ)若2a >,令()0f x '=得,x =或x当2()2a a x+∈+∞时,()0f x '<;当x∈时,()0f x '>. 所以()f x在,)+∞单调递减,在单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点1x ,2x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >. 由于 12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a ax x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <. 所以22212ln x x x -+<0,即1212()()2f x f x a x x -<--.22.解:(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线. 记y 轴右边的射线为1l ,y 轴左边的射线为2l . 由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23y x =-+.23.解:(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x --⎧⎪=-<<⎨⎪⎩≤≥故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立. 若0a ≤,则当(0,1)x ∈时|1|1ax -≥; 若0a >,|1|1ax -<的解集为20x a <<,所以21a≥,故02a <≤. 综上,a 的取值范围为(0,2].。