电磁场复习题

合集下载

电磁场复习习题

电磁场复习习题

一、选择题1、下列的矢量运算规律有错误的一项是:( B ) A 、θsin AB e B A n →→→=⨯ B 、→→⨯B A =→→⨯A BC 、)()()(→→→→→→→→→⋅-⋅=⨯⨯B A C C A B C B A D 、)()(→→→→→→⨯=⨯⋅A C B C B A2、选出下列的场中不属于矢量场的项:( C ) A 、电场 B 、磁场 C 、高度场 D 、力场3、关于梯度的性质下列说法不正确的是:( D ) A 、标量场的梯度是一个矢量场B 、在标量场中,在给定点沿任意方向的方向导数等于梯度在该方向上的投影C 、标量场中每一点M 处的梯度,垂直于过该点的等值面D 、标量场中每一点M 处的梯度,指向场减小的方向 4、关于矢量场的性质,下列说法有误的是:( A )A 、在矢量线上,任一点的法线方向都与该点的场矢量方向相同B 、静电场中的正电荷就是发出电场线的正通量源C 、磁感应强度B 在某一曲面S 上的面积分就是矢量B 通过该曲面的磁通量D 、漩涡源产生的矢量线是闭合曲线5、下列不属于电磁学三大实验定律的是:( A )A 、高斯定律B 、安培定律C 、库伦定律D 、法拉第电磁感应定律 6、关于电荷,下列描述不正确的是:( B ) A 、点电荷是电荷分布的一种极限情况 B 、实际上带电体上的电荷分布是连续的C 、宏观上我们常用电荷密度来描述电荷的分布情况D 、电荷不能被创造也不能被消灭只能转移 7、关于静电场,下列说法中 (1)由空间位置固定的电荷产生 (2)由电量不随时间变化的电荷产生 (3)基本物理量是电场强度 (4)性质由其散度和旋度来描述 (5)基本实验定律是库仑定律 下列判断正确的是:( D )A 、都不对B 、有一个错C 、有三个错D 、全对 8、0E ερ=⋅∇→是高斯定理的微分形式,它表明任意一点电场强度的( C )与该处的电荷密度有关。

A 、梯度B 、旋度C 、散度D 、环流9、静磁场的磁感应强度在闭合曲线上的环量等于闭合曲线交链的恒定电流的代数和与( B )的乘积。

电磁场复习题

电磁场复习题

电磁场复习题1.设y=0平面是两种介质分界面,在y>0的区域内,ε1=5ε0,而在y<0的区域内ε2=3ε0。

如已知E2=10i+20j伏/米,求D2,D1及E1。

2.简述静电场的基本性质。

3.为什么静电场解答是唯一的?4.求空气中一个点电荷q在地面上引起的感应电荷分布情况。

5.真空中有两个同号点电荷:q1(=q)和q2(=3q),它们的距离为d。

试决定在它们的联结线上,哪一点的电场强度为零;哪一点上由这两个电荷所引起的电场强度量值相等,方向一致。

6.一圆柱形电容器,外导体的直径为4厘米,内外导体间介质的击穿电场强度为200千伏/厘米,内导体的直径2γ可以自由选定,问γ为何值时,该电容器能承受最大电压并求此最大电压值?7.由方程x3+y2+z=1000(其中x,y和z皆为正值)决定的曲面是一个电位为200伏的等位面。

如果已知曲面上P点(7米,25米,32米)的|E|=50伏/米,求该点上的E。

8.一平行板电容器,极板面积S=400厘米2,两板相距d=0.5厘米,两板中间的一半厚度为玻璃所占,另一半为空气。

已知玻璃的εr=7,其击穿场强为60千伏/厘米,空气的击穿场强为30千伏/厘米。

当电容器接到10千伏的电源时,会不会被击穿?9.半径为R的金属球壳内,离球心d(d<R)处,置一点电荷q。

且已知金属球壳的电位为φ0,求q所受之力。

设球壳在真空中。

10.一根水平天线,直径为3毫米,长度为40米,轴线离地面5米,求此天线的电容。

11.电导率为γ的均匀、各向同性的导体球,其表面上的电位为φ0∞sθ,其中θ是球坐标(r,θ,α)的一个变量。

试决定表面上各点的电流密度δ。

12.一长度为1米,内外导体的半径分别是R1=5厘米,R2=10厘米的圆柱形电容器,中间的非理想介质有电导率γ=10-9西门子/米。

若在两电极间加电压U0=1000伏,求:(1)各点的电位、电场强度;(2)漏电导。

13.一个由钢条组成的接地体系统,已知其接地电阻为100欧姆,土壤的电导率γ=10-2西门子/米。

《工程电磁场》复习题

《工程电磁场》复习题

《工程电磁场》复习题一.问答题1.什么就是静电场?写出其基本方程并由此总结静电场的特点。

由静止电荷在其周围产生的电场。

F=q1*q2/4pi*R*R*e0 静电场不随时间变化2、什么就是恒定电场?写出其基本方程并由此总结静电场的特点。

恒定电流产生的电场。

3、什么就是恒定磁场?写出其基本方程并由此总结静电场的特点。

磁场强度与方向保持不变的磁场。

4、如果区域中某点的电场强度为零,能否说明该点的电位也为零?为什么?电场强度E就是一个随空间点位置不同而变化的矢量函数,仅与该点的电场有关。

a,b为两个电荷相等的正反电荷,在其中心点处电位为零,但场强不为零。

5、如果区域中某点的电位为零,能否说明该点的电场强度也为零?举例说明?不能。

a,b为两个相等正电荷,在其中心点处电场强度为零,但电位不为零。

6.静电场的电力线会闭合的不?恒定电场的电力线会闭合的不?为什么?静电场的电力线不会闭合,起于正电荷止于负电荷。

在变化的磁场产生的有旋电场中,电力线环形闭合,围绕着变化磁场。

7、写出两种不同媒质分界面上恒定电场与恒定磁场的边界衔接条件。

恒定电场的边界衔接条件J*dS=0 E*dl=0恒定磁场的边界衔接条件B*dS=0 H*dl=I8、什么就是矢量磁位A? 什么就是磁感应强度B?B=0 B=*A(*A)=0, 矢量磁位A就是一个辅助性矢量。

磁感应强度B就是描述磁场强弱与方向的基本物理量9、什么就是磁导率? 什么就是介电常数?表示磁介质磁性的物理量。

介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数。

10、导电媒质中恒定电场与静电场之间具有什么相似关系?二.填空题1.静止电荷产生的电场,称之为_静电场__________场。

它的特点就是有散无旋场,不随时间变化。

2.高斯定律说明静电场就是一个有散场。

3.安培环路定律说明磁场就是一个有旋场。

4.电流密度就是一个矢量,它的方向与导体中某点的正电荷的运动方向相同。

电磁场与电磁波复习题

电磁场与电磁波复习题

一、选择题1、关于均匀平面电磁场,下面的叙述正确的是A.在任意时刻,各点处的电场相等B.在任意时刻,各点处的磁场相等C.在任意时刻,任意等相位面上电场相等、磁场相等D.同时选择A和B2、空气中某一球形空腔,腔内分布着不均匀的电荷,其电荷体密度与半径成反比,则空腔外表面上的电场强度A.大于腔内各点的电场强度B.小于腔内各点的电场强度C.等于腔内各点的电场强度D.不能确定3、用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是A.镜像电荷是否对称B.电位所满足的方程是否未改变C.边界条件是否保持不变D.同时选择B和C∇⨯=,其中的J4、微分形式的安培环路定律表达式为H JA.是传导电流密度B.是磁化电流密度C.是传导电流和磁化电流密度D.若在真空中则是传导电流密度;在介质中则为磁化电流密度5、电源以外恒定电流场基本方程微分形式说明它是有散无旋场无散无旋场无散有旋场 D. 有散有旋场6、两个载流线圈之间存在互感,对互感没有影响的是A.线圈的尺寸B.两个线圈的相对位置C.线圈上的电流D.线圈所在空间的介质7、一导体回路位于与磁场力线垂直的平面内,欲使回路中产生感应电动势,应使A.磁场随时间变化B.回路运动C.磁场分布不均匀D.同时选择A和B8、一沿+z 传播的均匀平面波,电场的复数形式为()m x y E E e je =-r r r ,则其极化方式是A .直线极化B .椭圆极化C .右旋圆极化D .左旋圆极化9、.对于载有时变电流的长直螺线管中的坡印廷矢量,下列陈述中,正确的是:A. 无论电流增大或减小, 都向内B. 无论电流增大或减小, 都向外C. 当电流增大,向内;当电流减小时,向外10、在边界形状完全相同的两个区域内的静电场,满足相同的边界条件,则两个区域中的场分布A .一定相同B .一定不相同C .不能断定相同或不相同11、z >0半空间中为ε=2ε0的电介质,z <0半空间中为空气,在介质表面无自由电荷分布。

电磁场理论复习试题

电磁场理论复习试题

1. 两导体间的电容与_A__有关A. 导体间的位置B. 导体上的电量C. 导体间的电压D. 导体间的电场强度2. 下面关于静电场中的导体的描述不正确的是:____C__A. 导体处于非平衡状态。

B. 导体内部电场处处为零。

C. 电荷分布在导体内部。

D. 导体表面的电场垂直于导体表面3. 在不同介质的分界面上,电位是__B_。

A. 不连续的B. 连续的C. 不确定的D. 等于零4. 静电场的源是AA. 静止的电荷B. 电流C. 时变的电荷D. 磁荷5. 静电场的旋度等于__D_。

A. 电荷密度B. 电荷密度与介电常数之比C. 电位D. 零6. 在理想导体表面上电场强度的切向分量DA. 不连续的B. 连续的C. 不确定的D. 等于零7. 静电场中的电场储能密度为BA. B. C. D.8. 自由空间中静电场通过任一闭合曲面的总通量,等于BA. 整个空间的总电荷量与自由空间介电常数之比B. 该闭合曲面内所包围的总电荷量与自由空间介电常数之比。

C. 该闭合曲面内所包围的总电荷量与自由空间相对介电常数之比。

D. 该闭合曲面内所包围的总电荷量。

9. 虚位移法求解静电力的原理依据是GA. 高斯定律B. 库仑定律C. 能量守恒定律D. 静电场的边界条件10. 静电场中的介质产生极化现象,介质内电场与外加电场相比,有何变化?A. 变大B. 变小C. 不变D. 不确定11. 恒定电场中,电流密度的散度在源外区域中等于B____A. 电荷密度B. 零C. 电荷密度与介电常数之比D. 电位12. 恒定电场中的电流连续性方程反映了___A_A. 电荷守恒定律B. 欧姆定律C. 基尔霍夫电压定律D. 焦耳定律13. 恒定电场的源是___B_A. 静止的电荷B. 恒定电流C. 时变的电荷D. 时变电流14. 根据恒定电场与无源区静电场的比拟关系,导体系统的电导可直接由静电场中导体系统的DA. 电量B. 电位差C. 电感D. 电容15. 恒定电场中,流入或流出闭合面的总电流等于__C___A. 闭合面包围的总电荷量B. 闭合面包围的总电荷量与介电常数之比C. 零D. 总电荷量随时间的变化率16. 恒定电场是DA. 有旋度B. 时变场C. 非保守场D. 无旋场17. 在恒定电场中,分界面两边电流密度矢量的法向方向是BA. 不连续的B. 连续的C. 不确定的D. 等于零18. 导电媒质中的功率损耗反映了电路中的_D____A. 电荷守恒定律B. 欧姆定律C. 基尔霍夫电压定D. 焦耳定律19. 下面关于电流密度的描述正确的是AA. 电流密度的大小为单位时间垂直穿过单位面积的电荷量,方向为正电荷运动的方向。

工程电磁场复习题

工程电磁场复习题

工程电磁场复习题一、简答题1.如何由电位求电场强度?试写出直角坐标系下的表达式。

.Ee某eyez某yz2.写出毕奥—沙伐定律的数学表达式,说明它揭示了哪些物理量间的关系。

0IdleR4R2表明磁感应强度B与电流I及电流元dl所处位置(R,eR)有关。

dB3.传导电流、位移电流、运流电流是如何定义的各有什么特点传导电流是导体中电荷运动形成的电流。

位移电流是变化的电场产生的等效电流。

运流电流是不导电空间内电荷运动形成的电流。

4.一带电导体球外套有一个与它同心的导体球壳,球壳内外均为空气。

如用导线把壳与球连在一起,结果会如何?5.在磁场中,洛仑兹力是否会对运动电荷做功?为什么?6.什么是接地电阻其大小与哪些因素有关.接地设备呈现出的总电阻称之。

与土壤电导率和接地体尺寸(等效球半径)成反比。

7.由电磁感应定律,线圈中感应电流的方向应如何判断.感应电流与其产生的磁通成右手螺旋关系。

该磁通用以后抗线圈中外磁通的变化。

8.电场强度相同时,电介质中的电能体密度为什么比真空中的大因We而电12E20,故We电We09.什么是跨步电压?有何意义?跨步电压,就是指电气设备发生接地故障时,在接地电流入地点周围电位分布区行走的人,其两脚之间的电压。

意义是确定电力系统接地体危险区的半径,并根据其表达式采取相应的工程对策减小危险区面积。

10.平行板电容器,两板带有等量异号自由电荷,忽略边缘效应,当板间距离增大时,板间电场强度是否改变?为什么?电场强度减小,电场强度与平行板之间的距离成反比11.什么是全电流定律12.不同磁媒质分界面上,磁矢量位满足A1=A2,为什么?13.在线性媒质中,两个线圈之间的互感系数与哪些因素有关?14.将处于平板电容器之间的介质板抽出,问是什么力在做功外力做功15.恒定磁场中束缚电流和自由电流有何区别?束缚电流是由电介质束缚电荷产生磁偶极子所构成的电流,一个原子尺寸的现象,自由电流不受磁介质束缚二、分析计算题1.半径为a的均匀带电球壳,电荷面密度为常数,外包一层厚度为d、介电常数为的介质,求介质内外的电场强度。

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题(含答案)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数,散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。

散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。

2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分,旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。

当S 点P 时,存在极限环量密度。

⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。

4.⽮量的旋度在直⾓坐标系下的表达式。

5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。

梯度的⼤⼩为该点标量函数?的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,⽮量场由它的散度、旋度及边界条件唯⼀地确定,说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。

9、麦克斯韦⽅程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,⼀般采⽤时谐场来分析时变电磁场的⼀般规律,是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下,可以使⽤叠加原理。

电磁场复习题

电磁场复习题

14设平板电容器中,电位函数为bx ax +2=ϕ,则电容器中的电场强度E= ,体电荷密度ρ= 。

15、两个半无限大导电平面相交,夹角为90度,中间有一点电荷q ,若用镜像法求解,则应出现 个镜像点电荷。

16、半径为a 的球形接地体深埋地下,则接地电阻为 。

17、线圈1和2的形状、尺寸及相互间位置不变,现在它们之间放置一块铁板,则互感将 。

18、无限大导体平面一侧有一点电荷q ,利用镜像法求电介质空间的电场时,镜制中电感的单位是 。

9、欧姆定律的微分形式是E J γ=。

一、 单项选择题1、在静电场中,引入电位函数ϕ的依据是……………( )(1)0=∙∇E (2) 0=⨯∇E (3) 0=∙∇D2、一无限长空心铜圆柱体载有电流 I ,内外半径分别为1R 和2R ,另一无限长实心铜圆柱体载有电流 I , 半径为2R ,则……………( )(1)2R r >处产生的磁场强度相同(2)在2R r >处空心导体产生的磁场强度比实心导体产生的磁场强度大(3)在2R r >处空心导体产生的磁场强度比实心导体产生的磁场强度小3、下列向量表达式中,哪一个可能是磁感应强度。

(其中a 为常数)……( )(1)F =ar 0r (2) F =i ay j ax - (3)F =0sin θθa4、长直同轴圆柱电容器,内外导体单位长度带电荷量分别为 +τ 和 -τ ,内外导体之间充满两种电介质,内层为1ε,外层为2ε。

分界面是以R 为半径的柱面。

则两种介质分界面上的电场强度 E 和电位移D 的关系为 ( )(1)2121,D D E E =≠ (2) 2121,D D E E ≠≠ (3) 2121,D D E E ≠=5、载有电流 I 的细导线,围成半径为 R 的圆环,置于k B B 0=的均匀磁场中,线圈环所在平面的法线方向为i 。

此时线圈导线上……………( )(1)受到0α方向的力 (2)不受力 (3)受到转距7、一半径为a 的圆柱形铁棒在均匀外磁场中磁化后,棒内的磁化强度为k M 0 ,则铁棒表面的磁化电流密度为……………( )(1)k M K m 0= (2) 00αM K m = (3) 00αM K m -=8、平板电容器板间介质为空气,板间距离为d ,平板面积为S,与恒定电压源U 相连,极间电场强度为E 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题⒈电场强度的方向与( )的受力方向相同。

⒉电偶极子产生的电场为()。

⒊无限长带线电荷密度为τ的导线周围电场强度为( )。

⒋静电场中,选定Q点为电位参考点,则空间任一点P的电位值为( )。

⒌电力线的微分方程为( )。

⒍球坐标系中电力线的微分方程为( )。

⒎静电场中,电通密度与电场强度、极化强度之间的关系式为( )。

⒏各向同性的线性介质中,极化强度与电场强度的关系为( )。

⒐极化电介质中电通密度与电场强度和极化强度的关系式为( )。

⒑静电场中媒质分界面上的衔接条件为( )和( )。

⒒静电场中导体与电介质分界面上电位表示的衔接条件为( )和( )。

⒓真空中半径为a的孤立导体球的电容量为( )。

⒔半径为a的球形区域内均匀分布有电荷体密度为ρ,则此球内电场为( )。

⒕静电场中电位函数的泊松方程为( )。

⒖同轴电缆内外导体半径分别为a和b,电压为U,中间介质介电常数为ε,则中间介质的电场强度为( )。

⒗内外半径分别为a和b的同心球面间电容量为( )。

⒘已知带电体上连续电荷分布密度函数和电位分布,计算静电能量的公式为( )。

⒙已知n个分离带电体上电荷量和电位分布,计算总的静电能量的公式为( )。

⒚已知静电场分布区域中电场强度分布以及区域媒质介电常数,总的静电能量计算公式为( )。

⒛电荷为q的带电体在电场中受到电场力为( )。

21静电场中,对带电荷量不变的系统,虚位移法计算电场力的公式为( )。

22静电场中,对电位不变系统,虚位移法计算电场力的公式为( )。

23在自由空间中,电荷运动形成的电流称为( )。

24恒定电场中电流连续性方程为( )。

25恒定电流指的是( )。

2020/3/27 26元电流段具有的形式为( )、( )、( )和( )。

27电流线密度与运动电荷之间的关系为( )。

28焦耳定律的微分形式为( )。

29欧姆定律的微分形式为( )。

30电源电动势与局外场强的关系为( )。

31导电媒质中(电源外)恒定电场的基本方程微分形式为( )和( )。

32恒定电场中,两种导电媒质分界面上场量衔接条件为( )和( )。

33恒定电场中,两种导电媒质分界面上电位函数的衔接条件为( )和( )。

34恒定电场中静电比拟法计算导电媒质电导的公式为( )。

35恒定磁场中,磁感应强度是另一矢量的旋度,我们把这个矢量定义为( )。

这个矢量的散度公式称为( )。

36真空中,以线电流定义的毕奥——沙伐定律表达式为( )。

37洛伦兹力是指( ),用公式表示为( )。

38磁力线的微分方程为( )。

39真空中通有恒定电流I的无限长载流导线周围的磁感应强度为( )。

40真空中安培环路定律的表达式为( )。

41导磁媒质中以磁化强度表示的磁化电流面密度计算公式为( )。

42导磁媒质中以磁化强度表示的磁化电流线密度计算公式为( )。

43一般导磁媒质中,磁感应强度与磁场强度和磁化强度的关系式为( )。

44各向同性的线性导磁媒质中,媒质构成方程为( )。

45磁通连续性原理的微分形式为( )。

46磁通连续性原理的表达式为( )。

47两种导磁媒质分界面上,磁感应强度切向分量的衔接条件表达式( )。

48两种导磁媒质分界面上,磁感应强度法向分量的衔接条件表达式( )。

49两种导磁媒质分界面上,磁感应强度线的折射定律表达式为( )。

50磁感应强度是另一矢量的旋度,我们把这个矢量定义为( )。

51恒定磁场中,辅助位A的散度又称( ),其表达式为( )。

52恒定磁场中,线电流I计算磁矢位A的表达式为( )。

53磁矢位计算磁通的公式为( )。

54磁感应强度计算磁通的公式为( )。

55真空中磁偶极子产生磁场的磁矢位A为( )。

56已知恒定磁场中磁场强度分布以及区域媒质导磁率,总的磁场能量计算公式为( )。

57恒定磁场中,对电流不变的系统,虚位移法计算磁场力的公式为( )。

58恒定磁场中,对磁链不变的系统,虚位移法计算磁场力的公式为( )。

59磁路中对应磁通连续性原理的磁路定律公式为( )。

60磁感应强度随时间变化产生的感应电动势又称( ),其表达式为( )。

61全电流定律的微分形式为( )。

62时变场中理想导体表面上的边界条件为( )、( )、( )和( )。

63时变电磁场中,电流连续性原理的微分形式为( ),积分形式为( )。

64感应电场的源是( )。

65感应电场的基本方程为( )、( )。

66动态矢量位计算磁感应强度的公式为( )。

67动态位计算电场强度的公式为( )。

68坡印亭矢量表示( ),其复数表达形式为( )。

69单元偶极子产生的时变电磁场中远区场又称( ),满足的场域条件为( )。

70单元偶极子产生的时变电磁场中近区场又称( ),满足的场域条件为( )。

71真空中辐射电磁波的波阻抗为( )。

72电准静态场微分形式基本方程组为( )、( )、( )和( )。

73磁准静态场微分形式基本方程组为( )、( )、( )和( )。

74导体内的时变电磁场可看作磁准静态场的条件为( )。

75理想介质中的时变电磁场可看作磁准静态场的条件为( )。

二分析简答题1.根据静电场电介质的极化说明E、D和P的物理意义,并写出相关关系式。

2.分析电场强度对任意闭合回路积分为零的物理意义。

3.比较分析静电场分析计算中的边界条件和衔接条件。

4.写出静电场中几种典型的镜像法问题以及处理的主要思路。

5.从静电能量角度分析一接地导体移近另一孤立带正电导体时两导体的电位变化。

6.总结静电能量计算方法和主要公式。

7.利用静电场理论分析电缆为什么要制成多层绝缘的结构。

8.简答静电比拟的理论依据和条件,并写出相关计算公式。

9.分析恒定电场中,下列三种情况的边界条件:⑴电导率相差极大的两导电媒质的分界面;⑵导电媒质与理想介质的分界面;⑶两种非理想媒质的分界面。

2020/3/2710. 写出计算电导的主要方法及步骤,并写出主要计算公式11. 分析导电媒质及导电媒质外部电介质中电场的规律。

12. 分析导磁媒质的磁化现象,写出描述媒质磁化程度的物理量及其定义式,回答媒质在磁场中的效应。

13. 根据恒定磁场导磁媒质的磁化现象说明B 、H 和M 的物理意义,并写出相关关系式。

14. 通过磁力线方程说明恒定磁场中等A 线即为磁感应强度B 线。

15. 总结恒定磁场能量计算方法和主要公式。

16. 写出计算电感的主要方法及步骤,并写出主要计算公式17. 利用恒定磁场自感计算方法分析一个线圈置于空气中,其周围放入一块铁磁物质和一块铜时,线圈自感的变化情况。

18. 时变场中如何引入动态位写出主要公式。

19. 写出动态标量位解的一般表达式,并分析说明时变场的波动性和推迟效应。

20. 简述时变电磁场中似稳场的条件和特点。

21. 简述时变电磁场中辐射场的条件和特点。

22. 根据磁准静态场方程分析交流电路中基尔霍夫电流定律。

23. 根据磁准静态场方程分析交流电路中基尔霍夫电压定律。

三、 证明计算题1.证明两等量异号的长平行直导线电荷场的等位面是一族圆柱面。

2.计算图中平板电容器中的电场强度。

(例1-11a ) 3.计算图中平板电容器中的电场强度。

(例1-11b ) 4. 从静电场基本方程出发,证明当电介质均匀时,极化电荷密度P ρ存在的条件是电荷密度ρ不为零,且有关系式ρεερ⎪⎪⎭⎫ ⎝⎛=0P -1-。

5.在无限大导体平面上方h 处有一线电荷τ,求空间任一点的电位和电场强度。

6.真空中有电荷以体密度ρ均匀分布于一半径为a 的球中,试求球内外的电场强度和电位。

7. 带电荷为Q ±的同心球壳,内外球半径分别为a 和b ,假设外球壳很薄,电荷均匀分布在球面上,试计算这个同心球电容器中的静电能量。

8. 平行板电容器板间距离为d ,其中媒质的电导率为γ,两板接有电流为I 的电流源,测得媒质功耗为P 。

如将板间距离扩大为2d ,媒质不变,则电容器功耗是多少9. 计算长度为l 的同轴电缆的绝缘电阻。

设同轴电缆内外导体的半径为a 和b ,中间介质的电导率为γ,介电常数为ε。

10. 计算半径为r 圆环载有线电流为I 时圆环中心点处的磁感应强度。

11. 磁导率为μ,半径为 a 的无限长圆柱导磁媒质通有线电流I ,圆柱外为空气。

求圆柱内外的磁感应强度、磁场强度和磁化强度12. 两平行放置的无限长直导线中分别通有电流I 1和I 2,两导线相距为d ,分别计算两导线单位长度所受的磁场力。

题图13. 求图中电流I 所在区域为有效区时,镜像电流的大小和位置。

14. 在恒定磁场中,若两种不同媒质的分界面为xoz 平面,其上有电流线密度A/m 2=z e K ,已知z y x e e e H 321++=,求2H 。

15. 长度为l ,内外导体半径分别为 R 1 与 R 2 的同轴电缆,通有电流 I ,试求电缆储存的磁场能量与自感。

16. 一半径为a 的长直圆柱形导体,被一同样长度的同轴圆筒导体所包围,圆筒半径为b ,圆柱导体与圆筒载有相反方向的电流I ,求圆筒内外的磁感应强度(导体和圆筒内外导磁媒质的磁导率均为0μ)。

17. 试从麦克斯韦第一、第二方程推导出磁通连续性原理和高斯定律。

18. 利用坡印亭矢量分析证明直流电源通过同轴电缆向负载传输的能量是在电缆中间的介质中传递的。

19. 计算右图所示线电流在真空中的P 点所产生的磁感应强度。

相关文档
最新文档