电磁场理论复习题(题库+答案)
大学电磁场考试题及答案

大学电磁场考试题及答案一、单项选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是:A. 300,000 km/sB. 299,792,458 m/sC. 1,000,000 km/sD. 299,792,458 km/s答案:B2. 麦克斯韦方程组中描述电磁场与电荷和电流关系的方程是:A. 高斯定律B. 法拉第电磁感应定律C. 麦克斯韦-安培定律D. 所有上述方程答案:D3. 以下哪项不是电磁场的基本概念?A. 电场B. 磁场C. 引力场D. 电磁波答案:C4. 根据洛伦兹力定律,一个带电粒子在磁场中的运动受到的力与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 磁场的强度D. 粒子的质量答案:D5. 电磁波的波长和频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积是常数答案:B6. 以下哪项是电磁波的主要特性?A. 需要介质传播B. 具有粒子性C. 具有波动性D. 以上都是答案:C7. 电磁波在介质中的传播速度比在真空中:A. 快B. 慢C. 相同D. 无法确定答案:B8. 根据电磁波的偏振特性,以下说法正确的是:A. 只有横波可以偏振B. 纵波也可以偏振C. 所有波都可以偏振D. 只有电磁波可以偏振答案:A9. 电磁波的反射和折射遵循的定律是:A. 斯涅尔定律B. 牛顿定律C. 欧姆定律D. 法拉第电磁感应定律答案:A10. 电磁波的干涉现象说明了:A. 电磁波具有粒子性B. 电磁波具有波动性C. 电磁波具有量子性D. 电磁波具有热效应答案:B二、填空题(每空1分,共10分)1. 电磁波的传播不需要________,可以在真空中传播。
答案:介质2. 麦克斯韦方程组由四个基本方程组成,分别是高斯定律、高斯磁定律、法拉第电磁感应定律和________。
答案:麦克斯韦-安培定律3. 根据洛伦兹力定律,一个带电粒子在磁场中受到的力的大小与粒子的电荷量、速度以及磁场强度的乘积成正比,并且与粒子速度和磁场方向的________垂直。
电磁场与电磁波考试题答案参考资料

第一章 静电场一、选择题(每题三分)1) 将一个试验电荷Q (正电荷)放在带有正电荷的大导体附近P 点处,测得它所受力为F ,若考虑到电量Q 不是足够小,则:()A 、F/Q 比P 点处原先的场强数值大 C 、F/Q 等于原先P 点处场强的数值B 、F/Q 比P 点处原先的场强数值小 D 、F/Q 与P 点处场强数值关系无法确定 答案(B )·P+Q2) 图中所示为一沿X 轴放置的无限长分段均匀带电直线,电荷线密度分别为+λ(X<0)和一个-λ(X>0),则OXY 坐标平面上点(0,a )处的场强E为( )A 、0B 、a 2i 0πελC 、a 4i 0πελD 、a 4)j i (0πε+λ3) 图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下面那方面内容(E 为电场强度的大小,U为静电势)()A 、半径为R 的无限长均匀带电圆柱体电场的E-r 关系 C 、半径为R 的均匀带正电球体电场的U-r 关系B 、半径为R 的无限长均匀带电圆柱面电场的E-r 关系 D 、半径为R 的均匀带正电球面电场的U-r 关系答案(B )4) 有两个点电荷电量都是+q ,相距2a,今以左边的点电荷为球心,以a 为半径作一球形高斯面,在球面上取两块相等的小面积1S 和 2S 的电场强度通量分别为1ϕ和 2ϕ,通过整个球面的电场强度通量为3ϕ,则()为零D 、以上说法都不对 答案(C ) 6) 两个同心带电球面,半径分别为)(,b a b a R R R R <,所带电量分别为b a Q Q ,。
设某点与球心相距r,当b a R r R <<时,该点的电场强度的大小为() A 、2ba 0rQ Q 41+∙πε B 、2ba 0rQ Q 41-∙πε C 、)R Q r Q (412bb 2a 0+∙πε D 、2a 0r Q 41∙πε 答案(D )7) 如图所示,一个带电量为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量为() A 、6q ε B 、12qε C 、24q ε D 、048qε 答案(C )8) 半径为R 的均匀带电球面,若其电荷密度为σ,则在距离球面R 处的电场强度为()A 、0εσ B 、02εσC 、04εσD 、8εσ答案(C )9) 高斯定理⎰⎰ερ=∙vs dV S d E ()A 、适用于任何静电场 C 、只适用于具有球对称性,轴对称性和平面对称性的静电场B 、只适用于真空中的静电场 D 、只适用于虽然不具有(C)中所述的对称性,但可以找到合适的高斯面的静电场 答案(B ) 10) 关于高斯定理的理解正确的是()A 、 如果高斯面上处处E为零,则该面内必无电荷 C 、如果高斯面内有许多电荷,则通过高斯面的电通量必不为零B 、 如果高斯面内无电荷,则高斯面上处处E为零 D 、如果高斯面的电通量为零,则高斯面内电荷代数和必为零 答案(D ) 11) 如图两同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点场强大小E 为() A 、2021r 4Q Q πε+ B 、+πε2101R 4Q 2202R 4Q πε C 、201r 4Q πε D 、0 答案(D )12)若均匀电场的场强为E,其方向平行于半径为R 的半球面的轴,则通过此半球面的电通量Φ为()13) 下列说法正确的是()A 、 闭合曲面上各点场强为零时,面内必没有电荷 C 、闭合曲面的电通量为零时,面上各点场强必为零B 、 闭合曲面内总电量为零时,面上各点场强必为零 D 、通过闭合曲面的电通量仅决定于面内电荷 答案(D )14) 在空间有一非均匀电场,其电力线分布如图,在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元S ∆的电场线通量为e ∆Φ,则通过该球面其余部分的电场强度通量为()A 、e ∆Φ-B 、e S r ∆Φ⋅∆24π C 、e SSr ∆Φ⋅∆∆-24π D 、0 答案(15) 在电荷为q +的电场中,若取图中点P 处为电势零点,则M 点的电势为()16)下列说法正确的是()A 、 带正电的物体的电势一定是正的 C 、带负电的物体的电势一定是负的B 、 电势等于零的物体一定不带电 D 、物体电势的正负总相对电势参考点而言的 答案(D )17) 在点电荷q 的电场中,选取以q 为中心,R 为半径的球面上一点P 处作电势零点,则与点电荷q 距离为r 的P ‘点电势为()A 、r 4q 0πε B 、)R 1r 1(4q 0-πε C 、)R r (4q 0-πε D 、)R1r 1(4q 0-πε-答案(B )18) 半径为R的均匀带电球面,总电量为Q ,设无穷远处的电势为零,则球内距球心为r 的P 强度和 电势为() A 、E=0, U=r 4Q 0πε B 、 E=0, U=R 4Q 0πε C 、E=2r 4Q0πε. U=r 4Q 0πε D 、E=2r 4Q0πε答案(B )19) 有N 个电量为q 布,比较在这两种情况下在通过圆心O 并垂直与圆心的Z 轴上任意点P 的 场强与电势,则有() A 、场强相等,电势相等B 、场强不相等,电势不相等C 、场强分量z E 相等,电势相等D 、场强分量z E 答案(C )20)在边长为a 正方体中心处放置一电量为Q A 、a 4Q 0πε B 、R 2Q 0πε C 、R Q 0πε D 、R22Q0πε答案(B )21)如图两个同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点的电势U 为()A 、r4Q Q 021πε+ B 、101R 4Q πε+202R 4Q πε C 、0 D 、101R 4Q πε 答案(B )22) 真空中一半径为R 的球面均匀带电为Q ,,在球心处有一带电量为q 的点电荷,如图设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为()A 、E R 2π B 、E R 22π C 、E R 221π D 、E R 22πE 、22ERπ 答案(A )A 、a 4q 0πε B 、a8q 0πε C 、a 4q 0πε-D 、a8q0πε- 答案(D )A 、r4Q 0πε B 、)R Q r q (410+πε C 、r 4q Q 0πε+ D 、)RqQ r q (410-+πε 答案(B )23)当带电球面上总的带电量不变,而电荷的分布作任意改变时,这些电荷在球心出产生的电场强度E和电势U 将()A 、E 不变,U 不变 B 、E 不变,U 改变 C 、E 改变 ,U 不变 D 、E改变,U 也改变 答案(C )24) 真空中有一电量为Q 的点电荷,在与它相距为r 的A 点处有一检验电荷q,现使检验电荷q 从A 点沿半圆弧轨道运动到B 点,如图则电场场力做功为()A 、q2r r 4Q 220⋅π⋅πε B 、rq 2r 4Q 20⋅πε C 、rq r 4Q 20π⋅πε D 、0 答案(D ) 25) 两块面积为S 的金属板A 和B 彼此平行放置,板间距离为d (d 远远小于板的线度),设A 板带电量1q , B 板带电量2q ,则A,B 板间的电势差为() A 、S2q q 021ε+ B 、d S 4q q 021⋅ε+ C 、d S 2q q 021⋅ε- D 、d S4q q 021⋅ε- 答案(C )26)图中实线为某电场中电力线,虚线表示等势(位)面,由图可以看出() A 、c E >>b a E E c U >>b a U U C 、c E >>b a E E c U <<b a U UB 、c E <<b aE E c U <<ba U U D 、c E <<b a E Ec U >>b a U U 答案(A )27) 面积为S 的空气平行板电容器,极板上分别带电量为q ±,若不考虑边缘效应,则两极板间的相互作用力为()A 、S q 02ε- B 、S 2q 02ε- C 、202S 2q ε D 、202S q ε 答案(B )28)长直细线均匀带电。
大学电磁场考试题及答案

大学电磁场考试题及答案一、选择题(每题2分,共20分)1. 电磁场中,电场与磁场的相互作用遵循以下哪个定律?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定律D. 洛伦兹力定律答案:D2. 在真空中,电磁波的传播速度是多少?A. 100,000 km/sB. 300,000 km/sC. 1,000,000 km/sD. 3,000,000 km/s答案:B3. 一个点电荷产生的电场强度与距离的平方成什么关系?A. 正比B. 反比C. 对数关系D. 线性关系答案:B4. 以下哪种介质不能支持电磁波的传播?A. 真空B. 空气C. 玻璃D. 金属答案:D5. 麦克斯韦方程组中描述变化电场产生磁场的方程是?A. 高斯定律B. 高斯磁定律C. 法拉第电磁感应定律D. 安培环路定律答案:C6. 一个均匀带电球壳内部的电场强度是多少?A. 零B. 与球壳内的电荷分布有关C. 与球壳外的电荷分布有关D. 与球壳的总电荷量成正比答案:A7. 电磁波的频率和波长之间有什么关系?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率越大,波长越小答案:B8. 根据洛伦兹力公式,一个带电粒子在磁场中运动时,其受到的力的方向与什么因素有关?A. 粒子的速度B. 磁场的方向C. 粒子的电荷D. 所有上述因素答案:D9. 电磁波的偏振现象说明电磁波是横波,这是因为?A. 电磁波的振动方向与传播方向垂直B. 电磁波的振动方向与传播方向平行C. 电磁波的传播不需要介质D. 电磁波在真空中传播速度最快答案:A10. 一个闭合电路中的感应电动势遵循以下哪个定律?A. 欧姆定律B. 基尔霍夫电压定律C. 法拉第电磁感应定律D. 安培环路定律答案:C二、填空题(每题2分,共20分)11. 电磁波的传播不需要______,因此它可以在真空中传播。
答案:介质12. 根据麦克斯韦方程组,电荷守恒定律可以表示为:∇⋅ E =______。
电磁场期末考试题及答案

电磁场期末考试题及答案一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是()。
A. 3×10^8 m/sB. 2×10^8 m/sC. 1×10^8 m/sD. 4×10^8 m/s答案:A2. 电场强度的定义式为E=()。
A. F/qB. F/QC. Q/FD. F/C答案:A3. 磁场强度的定义式为B=()。
A. F/IB. F/iC. F/qD. F/Q答案:B4. 根据麦克斯韦方程组,变化的磁场会产生()。
A. 电场B. 磁场C. 电势D. 电势差答案:A5. 电磁波的波长、频率和波速之间的关系是()。
B. λ = f/cC. λ = c*fD. λ = f^2/c答案:A6. 两个点电荷之间的静电力与它们之间的距离的平方成()。
A. 正比B. 反比C. 无关D. 一次方答案:B7. 根据洛伦兹力公式,带电粒子在磁场中运动时,受到的力与磁场强度的关系是()。
A. 正比C. 无关D. 一次方答案:A8. 电容器的电容与两极板之间的距离成()。
A. 正比B. 反比C. 无关D. 一次方答案:B9. 根据楞次定律,当线圈中的磁通量增加时,感应电流产生的磁场方向是()。
A. 增加磁通量B. 减少磁通量D. 增加或减少磁通量答案:B10. 根据法拉第电磁感应定律,感应电动势的大小与磁通量变化率的关系是()。
A. 正比B. 反比C. 无关D. 一次方答案:A二、填空题(每题2分,共20分)1. 电场中某点的电势为V,将单位正电荷从该点移到无穷远处,电场力做的功为________。
2. 两个点电荷q1和q2之间的静电力常数为k,它们之间的距离为r,则它们之间的静电力大小为________。
答案:k*q1*q2/r^23. 磁场中某点的磁感应强度为B,将单位电流元i放置在该点,电流元与磁场方向垂直时,受到的磁力大小为________。
答案:B*i4. 根据麦克斯韦方程组,变化的电场会产生________。
电磁场理论基础试题集

电磁场理论基础习题集(说明:加重的符号和上标有箭头的符号都表示矢量)一、填空题1.矢量场的散度定理为(1),斯托克斯定理为(2)。
【知识点】:1.2 【难易度】:C 【参考分】:3【答案】:(1)()∫∫⋅=⋅∇SS d A d A v v v ττ (2)()S d A l d A SCvv v v ⋅×∇=⋅∫∫2.矢量场A v满足(1)时,可用一个标量场的梯度表示。
【知识点】:1.4 【难易度】:C 【参考分】:1.5【答案】:(1) 0=×∇A v 3.真空中静电场的基本方程的积分形式为(1),(2),微分形式为(3),(4)。
【知识点】:3.2 【难易度】:B【参考分】:6【答案】:(1) 0=⋅∫c l d E v v (2) ∑∫=⋅q S d D Sv v 0(3) 0=×∇E v (4)()r D vv ρ=⋅∇04.电位移矢量D v 、极化强度P v 和电场强度E v满足关系(1)。
【知识点】:3.6 【难易度】:B【参考分】:1.5【答案】:(1) P E P D D vv v v v +=+=00ε 5.有面电流s 的不同介质分界面上,恒定磁场的边界条件为(1),(2)。
【知识点】:3.8 【难易度】:B【参考分】:3【答案】:(1) ()021=−⋅B B n v v v (2) ()s J H H n v v vv =−×21 6.焦耳定律的微分形式为(1)。
【知识点】:3.8 【难易度】:B 【参考分】:1.5【答案】:(1) 2E E J p γ=⋅=v v 7.磁场能量密度=m w (1),区域V中的总磁场能量为=m W (2)。
【知识点】:5.9 【难易度】:B 【参考分】:3【答案】:(1) 221H μ (2) ∫Vd H τμ2218.理想导体中,时变电磁场的=(1),=(2) 。
【知识点】:6.1 【难易度】:A 【参考分】:3【答案】:(1)0 (2)0 9.理想介质中,电磁波的传播速度由(1)决定,速度=v (2)。
(完整版)电磁场与电磁波试题及答案.

1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ=、20n E ⨯=、2s n H J ⨯=、20n B =)1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
2. 答矢量位,0B A A =∇⨯∇⋅=;动态矢量位A E t ϕ∂=-∇-∂或AE tϕ∂+=-∇∂。
库仑规范与洛仑兹规范的作用都是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。
1. 简述穿过闭合曲面的通量及其物理定义 2.sA ds φ=⋅⎰⎰ 是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。
2. 证明在直角坐标系里计算 ,则有()()xy z x y z r r e e e e x e y e z x y z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭3x y z x y z∂∂∂=++=∂∂∂ 若在球坐标系里计算,则 232211()()()3r r r r r r r r r∂∂∇⋅===∂∂由此说明了矢量场的散度与坐标的选择无关。
电磁场理论习题及答案

电磁场理论习题及答案电磁场理论是电磁学的基础,它描述了电荷和电流产生的电磁场在空间中的分布和演化规律。
在学习电磁场理论时,习题是巩固和深化理解的重要方式。
本文将介绍一些电磁场理论的习题及其答案,帮助读者更好地掌握这一理论。
一、电场和电势1. 问题:一个均匀带电球体,半径为R,总电荷为Q。
求球心处的电场强度。
答案:根据库仑定律,电场强度E与电荷Q和距离r的关系为E = kQ/r^2,其中k为库仑常数。
对于球体内部的点,距离球心的距离r小于半径R,所以电场强度为E = kQ/r^2。
对于球体外部的点,距离球心的距离r大于半径R,所以电场强度为E = kQ/R^3 * r。
2. 问题:一个无限长的均匀带电线,线密度为λ。
求距离线上一点距离为r处的电势。
答案:根据电势公式V = kλ/r,其中k为库仑常数。
所以距离线上一点距离为r处的电势为V = kλ/r。
二、磁场和磁感应强度1. 问题:一根无限长的直导线,电流为I。
求距离导线距离为r处的磁感应强度。
答案:根据安培环路定理,磁感应强度B与电流I和距离r的关系为B =μ0I/2πr,其中μ0为真空中的磁导率。
所以距离导线距离为r处的磁感应强度为B = μ0I/2πr。
2. 问题:一根长为L的直导线,电流为I。
求距离导线距离为r处的磁场强度。
答案:根据比奥萨伐尔定律,磁场强度H与电流I和距离r的关系为H = I/2πr。
所以距离导线距离为r处的磁场强度为H = I/2πr。
三、电磁场的相互作用1. 问题:一个半径为R的导体球,带电量为Q。
求导体球表面的电荷密度。
答案:导体球表面的电荷密度σ等于导体球上的电荷总量Q除以导体球表面的面积A。
导体球表面的面积A等于球的表面积4πR^2。
所以导体球表面的电荷密度为σ = Q/4πR^2。
2. 问题:一个平行板电容器,两个平行金属板之间的距离为d,电介质的介电常数为ε。
一块电介质板插入到电容器中间,使得电容器的电容增加了n倍。
电磁场理论复习试题

1. 两导体间的电容与_A__有关A. 导体间的位置B. 导体上的电量C. 导体间的电压D. 导体间的电场强度2. 下面关于静电场中的导体的描述不正确的是:____C__A. 导体处于非平衡状态。
B. 导体内部电场处处为零。
C. 电荷分布在导体内部。
D. 导体表面的电场垂直于导体表面3. 在不同介质的分界面上,电位是__B_。
A. 不连续的B. 连续的C. 不确定的D. 等于零4. 静电场的源是AA. 静止的电荷B. 电流C. 时变的电荷D. 磁荷5. 静电场的旋度等于__D_。
A. 电荷密度B. 电荷密度与介电常数之比C. 电位D. 零6. 在理想导体表面上电场强度的切向分量DA. 不连续的B. 连续的C. 不确定的D. 等于零7. 静电场中的电场储能密度为BA. B. C. D.8. 自由空间中静电场通过任一闭合曲面的总通量,等于BA. 整个空间的总电荷量与自由空间介电常数之比B. 该闭合曲面内所包围的总电荷量与自由空间介电常数之比。
C. 该闭合曲面内所包围的总电荷量与自由空间相对介电常数之比。
D. 该闭合曲面内所包围的总电荷量。
9. 虚位移法求解静电力的原理依据是GA. 高斯定律B. 库仑定律C. 能量守恒定律D. 静电场的边界条件10. 静电场中的介质产生极化现象,介质内电场与外加电场相比,有何变化?A. 变大B. 变小C. 不变D. 不确定11. 恒定电场中,电流密度的散度在源外区域中等于B____A. 电荷密度B. 零C. 电荷密度与介电常数之比D. 电位12. 恒定电场中的电流连续性方程反映了___A_A. 电荷守恒定律B. 欧姆定律C. 基尔霍夫电压定律D. 焦耳定律13. 恒定电场的源是___B_A. 静止的电荷B. 恒定电流C. 时变的电荷D. 时变电流14. 根据恒定电场与无源区静电场的比拟关系,导体系统的电导可直接由静电场中导体系统的DA. 电量B. 电位差C. 电感D. 电容15. 恒定电场中,流入或流出闭合面的总电流等于__C___A. 闭合面包围的总电荷量B. 闭合面包围的总电荷量与介电常数之比C. 零D. 总电荷量随时间的变化率16. 恒定电场是DA. 有旋度B. 时变场C. 非保守场D. 无旋场17. 在恒定电场中,分界面两边电流密度矢量的法向方向是BA. 不连续的B. 连续的C. 不确定的D. 等于零18. 导电媒质中的功率损耗反映了电路中的_D____A. 电荷守恒定律B. 欧姆定律C. 基尔霍夫电压定D. 焦耳定律19. 下面关于电流密度的描述正确的是AA. 电流密度的大小为单位时间垂直穿过单位面积的电荷量,方向为正电荷运动的方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1~2章 矢量分析 宏观电磁现象的基本规律1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A,则 A = ,=⨯∇A 0 。
2.已知矢量场xz e xy e z y eA z y x ˆ4ˆ)(ˆ2+++=,则在M (1,1,1)处=⋅∇A9 。
3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A),则必须同时给定该场矢量的 旋度 及 散度 。
4. 写出线性和各项同性介质中场量D 、E 、B 、H、J 所满足的方程(结构方程): 。
5.电流连续性方程的微分和积分形式分别为 和 。
6. 设理想导体的表面A 的电场强度为E 、磁场强度为B,则(a )E 、B皆与A 垂直。
(b )E 与A 垂直,B与A 平行。
(c )E 与A 平行,B与A 垂直。
(d )E 、B皆与A 平行。
答案:b7. 设自由真空区域电场强度(V/m) )sin(ˆ0βz ωt E e E y -=,其中0E 、ω、β为常数。
则空间位移电流密度d J(A/m 2)为:(a ) )cos(ˆ0βz ωt E ey - (b ) )cos(ˆ0βz ωt ωE e y - (c ) )cos(ˆ00βz ωt E ωey -ε (d ) )cos(ˆ0βz ωt βE e y -- 答案:c8.已知无限大空间的相对介电常数为4=εr ,电场强度)(ˆ)(ˆ)(ˆy x e z x e z y e z y x +++++A ⋅∇A ⨯∇E J H B E D σ=μ=ε= , ,tqS d J S∂∂-=⋅⎰ t J ∂ρ∂-=⋅∇(V/m) 2cos ˆ0dxe E x πρ= ,其中0ρ、d 为常数。
则d x =处电荷体密度ρ为: (a )d 04πρ-(b )d 004ρπε- (c )d 02πρ- (d )d02ρπε- 答案:d9.已知半径为R 0球面内外为真空,电场强度分布为⎪⎪⎩⎪⎪⎨⎧>θ+θ<θ+θ-=θθ )R ( )sin ˆcos 2ˆ()R ( )sin ˆcos ˆ(20300r e e r B r e e R E r r 求(1)常数B ;(2)球面上的面电荷密度;(3)球面内外的体电荷密度。
Sol. (1) 球面上由边界条件 t t E E 21=得:sin sin 2300θ=θR BR 202R B =→(2)由边界条件s n n D D ρ=-21得:θε=-ε=-ε=ρcos 6)()(0210210R E E E E r r n n s (3)由ρ=⋅∇D得:⎩⎨⎧><=θ∂θ∂θε+∂∂ε=⋅∇ε=ρθ )R ( 0)R (0)sin (sin 1)(10002200r r E r r E r r E r即空间电荷只分布在球面上。
10. 已知半径为R 0、磁导率为的球体,其内外磁场强度分布为⎪⎩⎪⎨⎧>θ+θ<θ-θ=θθ )R ( )sin ˆcos 2ˆ(A)R ( )sin ˆcos ˆ(2030r e e rr e e H r r 且球外为真空。
求(1)常数A ;(2)球面上的面电流密度J S 大小。
Sol. 球面上(r =R 0):r H 为法向分量;θH 为法向分量 (1)球面上由边界条件n n B B 21=得:r r H H 201μ=μ300R A μμ=→ (2)球面上由边界条件s t t J H H =-21得θμμ+-=-==θθsin )2(|)(0210R r s H H J第3章 静电场及其边值问题的解法1. 静电场中电位与电场强度E 的关系为 ;在两种不同的电介质(介电常数分别为1ε和2ε)的分界面上,电位满足的边界条件为 。
2. 设无限大真空区域自由电荷体密度为ρ,则静电场:=⨯∇E0 ,E⋅∇=。
3. 电位 和电场强度E 满足的泊松方程分别为 、 。
4. 介电常数为的线性、各向同性的媒质中的静电场储能密度为 。
5. 对于两种不同电介质的分界面,电场强度的 切向 分量及电位移的 法向 分量总是连续的。
6. 如图,1E 、2E分别为两种电介质内静电场在界面上的电场强度,,30°,则60°,=||||21E E。
7. 理想导体与电介质的界面上,表面自由电荷面密度s ρ与电位沿其法向的方向导数n∂φ∂的关系为 。
8. 如图,两块位于x = 0 和 x = d 处无限大导体平板的电位分别为0、U 0,其内部充满体密度1θ2θ1E 2E 1ε2εφ-∇=En n 221121∂φ∂ε=∂φ∂εφ=φ; 2ερ-=φ∇E 2ερ∇=∇ 2E 21ε=m w 3s n ρ-=∂φ∂ε01=φ02U =φe xd) 的电荷(设内部介电常数为)。
(1)利用直接积分法计算0 < x < d 区域的电位及电场强度E;(2)x = 0处导体平板的表面电荷密度。
Sol. 为一维边值问题:)(x φ=φ )1(d d 00222d xe x--ερ-=φ⇒ερ-=φ∇边界条件:0)0(==φx , 0)(U d x ==φ(1)直接积分得:x e d dd Ue x e x d d d x )]1([)2()(2000200---+-ερ-++-ερ=φ)]1()([ˆˆ)(200000d d x x x e d dd U xe e dx d e x E --+-ερ-+-ερ-=φ-=φ-∇= (2)由s nρ-=∂φ∂ε得:00000)(==ε=∂φ∂ε-=∂φ∂ε-=ρx x s x E x n)]11(1[20000de d d d U d -+--ρερ-=-9. 如图所示横截面为矩形的无限长直导体槽,内填空气。
已知侧壁和底面的电位为零,而顶盖的电位为V 0 。
写出导体槽内电位所满足的微分方程及其边界条件,并利用直角坐标系分离变量法求出该导体槽内的电位分布。
Sol. (略)见教材第82页例3.6.110. 如图所示,在由无限大平面和突起的半球构成的接地导体上方距离平面为d 处有一个点电荷q 0 。
利用镜像法求z 轴上z > a 各点的电位分布。
Sol. 空间电荷对导体表面上部空间场分布的影响等效于:无限大接地导体平面 + 接地导体球 边界条件:0=φ=φ球面平面使0=φ平面,引入镜像电荷:0,q q d z -='-='使0=φ球面,引入镜像电荷:⎪⎪⎩⎪⎪⎨⎧=''-=-='-=-==022220121||,||,q d a q z a q d a z a z q d a q d a z z 轴上z > a 各点的电位:⎥⎦⎤⎢⎣⎡+'+-+-+-πε=φd z q z z q z z q d z q 221100||41⎥⎦⎤⎢⎣⎡+----πε=d z ad z a d z q12||144223011. 已知接地导体球半径为R 0 ,在x 轴上关于原点(球心)对称放置等量异号电荷+q 、-q ,位置如图所示。
利用镜像法求(1)镜像电荷的位置及电量大小;(2)球外空间电位;(3)x 轴上x >2R 0各点的电场强度。
Sol. (1) 引入两个镜像电荷:22001q q R R q -=-=,2200201R R R x ==zd xq lρo az 'q '2z 1z 1q 2q o q+q-xR 0R 0R 1q 1x 2x 2q2)(2002qq R R q =--=,2200202R R R x -=-=(2)=⎪⎪⎭⎫ ⎝⎛'-++πε=φR q R q R q R q z y x 2211041),,((略)2220)2(z y R x R ++-=, 22201)2/(z y R x R ++-=22202)2/(z y R x R +++=,2220)2(z y R x R +++='(3)x 轴上x >2R 0各点的电场强度:⎥⎦⎤⎢⎣⎡++++--+-=20202020)2()2/(2/)2/(2/)2(ˆR x qR x q R x q R x q e E x 12. 如图所示,两块半无限大相互垂直的接地导体平面,在其平分线上放置一点电荷q ,求(1)各镜像电荷的位置及电量;(2)两块导体间的电位分布。
Sol. (1)01q q -=,)0 ,0 ,(a - 02q q +=,)0 , ,0(a -03q q -=,)0 ,0 ,(a(2)⎪⎪⎭⎫ ⎝⎛+++πε=φ33221100041),,(R q R q R q R q z y x(略)其中: 2220)(z a y x R +-+=,2221)(z y a x R +++=2222)(z a y x R +++=,2223)(z y a x R ++-=yx0q 45 ()0,,0P a451q 2q 3q )0 ,,0(a -)0 ,0 ,(a -)0 ,0 ,(a1θ2θ1H 2H 1μ2μ第4章 恒定电场与恒定磁场1.线性和各项同性的均匀导电媒质内部电荷体密度等于0 ,净余电荷只能分布在该导电媒质的 表面 上。
2. 线性和各项同性的均匀导电媒质中,=⋅∇J 0 ;=⋅∇D0 。
3. 在电导率不同的导电媒质分界面上,电场强度E和电流密度J 的边界条件为: 、 。
4.在电导率为的导电媒质中,功率损耗密度p c 与电场强度大小E 的关系为 。
5. 恒定磁场的矢量磁位A 与磁感应强度B 的关系为 ;A所满足的泊松方程为 。
6.如图,1H 、2H 分别为两种理想介质内在交界面上的磁场强度,213μμ=,130θ=,则2θ、12B B 分别为: 答案:B (A )︒60、3。
(B )︒60、33。
(C )︒45、3。
(D )︒45、33。
7.对线性和各项同性磁介质(磁导率设为),恒定磁场(磁场强度大小为H )的磁能密度=m w ,V 空间磁能W m = 。
8. 已知恒定电流分布空间的矢量磁位为:Cxyz e x y e y x eA z y x ˆˆˆ22++=,C t t E E 21=nn J J 21=2E p c σ=A B⨯∇=JμA -=∇2221H μdV H V ⎰μ221为常数,且A满足库仑规范。
求(1)常数C ;(2)电流密度J;(3)磁感应强度B。
(直角坐标系中:)(ˆ)(ˆ)(ˆya x a e x a z a e z a y a e a x y z z x y y z x ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=⨯∇) Sol. (1) 库仑规范:0=⋅∇A 4022-=⇒=++=∂∂+∂∂+∂∂⇒C Cxy xy xy zA y A x Az y x (2) 由J μA-=∇2,xyz e x y e y x eA z y x 4ˆˆˆ22-+= 得:()x e y e z A y A x A A J y x 2ˆ2ˆ112222222+μ-=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂μ-=μ∇-=(3) A B⨯∇=)(ˆ4ˆ4ˆ22x y e yz e xz ez y x -++-= 9.(P.136. 习题4.2) 在平板电容器的两个极板间填充两种不同的导电媒质(11,εσ和22,εσ),其厚度分别为1d 和2d 。