电磁场理论基础柯亨玉第六章部分答案

合集下载

电磁场理论 武汉大学 柯亨玉chap6[1]

电磁场理论 武汉大学   柯亨玉chap6[1]

其中
A
0
r j0 P e jkr 4 πr
J r' dV
V V
dr' dP ni r qi dV jP dt i dt
1 ˆ ˆ ˆ J r r' dV r r' J dV r r' J Jr' r' J Jr' dV 2 V V V dr dr 1 1 ˆ r' r' ˆ r'J dV r r' dV r 2 V 2 dt dt V 1 d 1 1 ˆ ˆ ˆ ˆ r 3 r' r' r dV r r'J dV r D r m 6 dt V 2 6 V
dV dV
r r' J r' exp j t a 0 4 π r r' V Ar e jt
E r ,t r ,t Ar ,t E r r jAr t Br Ar Br ,t Ar ,t

r r'

1
场点与源区的距离大约在一个波长的数量级,在 这个范围中,源直接产生的场与变化电磁场相互 激发所产生的电磁场同时并存,量级上相当。在 这个区域中,既有变化的电磁场相互激发形成的 电磁波,将源的能量以电磁波形式辐射出去。同 时也存在不向外辐射的静态场,将源提供能量的 一部分存储在空间中,这一区域称为感应区。
2 I 0 Lk 3cos 1 j jkr ˆ E r H r er e 2 3 j0 4π0 kr kr 1 2 I 0 Lk 3cos j 1 j jkr ˆ e e 4π0 kr kr 2 kr 3

电磁场理论 柯亨玉 著 人民邮电出版社 课后答案

电磁场理论  柯亨玉 著 人民邮电出版社 课后答案
(2) 利用(1)式的结果即可。 (3) 据 ∇ 算子的微分性质,并按乘积的微分法则,有
v v v v v v ∇ ⋅ ( E × H ) = ∇ ⋅ ( Ec × H ) + ∇ ⋅ ( E × Hc )
再 ∇ 算子的矢量性,并据公式
v v v v v v v v v a ⋅ (b × c ) = c ⋅ (a × b ) = b ⋅ (c × a )
1-6. (1) 证: ∇ ⋅ A =
v
∂Ax ∂Ay ∂Az + + ∂z ∂x ∂y dAx ∂u dAy ∂u dAz ∂u + + du ∂x du ∂y du ∂z
=
v dA = ∇u ⋅ du
ˆx ( (2) 证: ∇ × A(u ) = e
v
∂Ax ∂Az ∂Ay ∂Ax ∂Az ∂Ay ˆy ( ˆz ( − )+e − )+e − ) ∂y ∂y ∂z ∂z ∂x ∂x
v
性质
a)偶函数: δ ( x ) = δ ( − x ) b)取样性:


−∞
f ( x)δ ( x − a)dx = f (a)
有机会用到的表达式:
δ (r − r ') = −
v
1 2 1 ∇ v 4π r − r'
1-1.
证明:
v v ˆx9 + e ˆy 2 − e ˆz 6) ⋅ (e ˆx 2 + e ˆy3 + e ˆz 4) A ⋅ B = (e =18+6-24
1 ∂u ∂ 2 u 1 ∂ 2u ∂ 2u + 2 + 2 + ρ ∂ρ ∂ρ ρ ∂ϕ 2 ∂z 2

合肥工业大学电磁场与电磁波第6章答案

合肥工业大学电磁场与电磁波第6章答案

合肥⼯业⼤学电磁场与电磁波第6章答案第6章习题答案6-1 在1=r µ、4=r ε、0=σ的媒质中,有⼀个均匀平⾯波,电场强度是)3sin(),(πω+-=kz t E t z E m若已知MHz 150=f ,波在任意点的平均功率流密度为2µw/m 265.0,试求:(1)该电磁波的波数?=k 相速?=p v 波长?=λ波阻抗?=η(2)0=t ,0=z 的电场?)0,0(=E (3)时间经过µs 1.0之后电场)0,0(E 值在什么地⽅(4)时间在0=t 时刻之前µs 1.0,电场)0,0(E 值在什么地⽅解:(1))rad/m (22πεπµεω== =r cfk)m/s (105.1/8?==r p c v ε)m (12==kπλ )Ω(60120πεµπη=rr=(2)∵ 6200210265.02121-?===m rm av E E S εεµη∴ (V /m)1000.12-?=m E)V/m (1066.83sin)0,0(3-?==πm E E(3)往右移m 15=?=?t v z p(4)在O 点左边m 15处6-2 ⼀个在⾃由空间传播的均匀平⾯波,电场强度的复振幅是⽶伏/1010)202(j 420j 4yx e e E z zeeπππ----+=试求:(1)电磁波的传播⽅向(2)电磁波的相速?=p v 波长?=λ频率?=f (3)磁场强度?=H (4)沿传播⽅向单位⾯积流过的平均功率是多少解:(1)电磁波沿z ⽅向传播。

(2)⾃由空间电磁波的相速m/s 1038?==c v p )m (1.02022===πππλk ∵πω20==ck∴ c πω20=∴ Hz 1031029?===c f πω(3))A/m )((10652120j )220(j 7y z x z z e e .e e E e H πππη-+--+?=?=(4))W/m (106522)Re(21211*z z av .e e H E S *-?=?=?=ηE E6-3 证明在均匀线性⽆界⽆源的理想介质中,不可能存在z e E kz e E j 0-=的均匀平⾯电磁波。

电磁场与电磁波理论第6章习题解答

电磁场与电磁波理论第6章习题解答

第6章习题解答已知空气中存在电磁波的电场强度为 ()80cos 6π102πy E e E t z =⨯+r rV /m试问:此波是否为均匀平面波传播方向是什么求此波的频率、波长、相速以及对应的磁场强度H r。

解:均匀平面波是指在与电磁波传播方向相垂直的无限大平面上场强幅度、相位和方向均相同的电磁波。

电场强度瞬时式可以写成复矢量j 0e kzy E e E -=r r &。

该式的电场幅度为0E ,相位和方向均不变,且0z E e ⋅=r r ⇒z E e ⊥r r ,此波为均匀平面波。

传播方向为沿着z -方向。

由时间相位86π10t t ω=⨯ ⇒ 86π10ω=⨯ 波的频率Hz 1038⨯=f 波数2πk =波长2π 1 m k λ== 相速p 310 m/s v kω==⨯ 由于是均匀平面波,因此磁场为j 0w w1() e kz z x EH e E e Z Z -=-⨯=r r r v &&有一频率为600MHz 的均匀平面波在无界理想介质(r r 4,1εμ==)中沿x +方向传播。

已知电场只有y 分量,初相位为零,且010t t ==s 时,1x =m 处的电场强度值为800kV/m 。

试写出E v 和H v的瞬时表达式。

解:根据题意,角频率812π10ω=⨯,r r 0028πk cωεμεμεμ====,因此 80cos(12π108π)y E e E t x =⨯-r r由s 10=t ,m 1=x 处的电场强度值为kV /m 800,可以得到kV/m 8000=E8800cos(12π108π) kV/m y E e t x =⨯-r r根据电场的瞬时表达式可以写出电场的复矢量为j8π800e kV/m x y E e -=r r&波阻抗为()0r w r 060π ΩZ μμμεεε===。

因此磁场强度复矢量为 j8πw 140() e kA/m 3πx x z H e E e Z -=⨯=r r r r &&因此,磁场的瞬时表达式为840cos(12π108π)3πz H e t x =⨯-r r在无界理想介质中,均匀平面波的电场强度为 ()80sin 2π102πx E e E t z =⨯-r rV /m已知介质的r 1μ=,试求其r ε,并写出H r的表达式。

电磁场与电磁波(第4版)第6章部分习题参考解答

电磁场与电磁波(第4版)第6章部分习题参考解答

G ex
Erm
cos(ωt
+
β1
z
)
=
G ex
Eim
cos(2πft
+
β1
z
)
= =
eGxGηη22
−η1 + η1
−ex18.37
100 cos(2π ×109t + 20.93z) cos(2π ×109t + 20.93z) V/m
G H1r
(
z,
t
)
= =
1 ηG 1 ey
G (−ez × E1r ) = 0.049 cos(2π
距离导体平面最近的合成波电场 G
E1

0
的位置;(5) 距离导体平面最近的合成波磁场 H1 为 0 的位置。
解:(1) ω = 2πf = 2π ×108 rad/s
β
=
ω c
=
2π ×108 3 ×108
=
2 3
π
rad/m
η1 = η0 =
μ0 = 120π Ω ε0
G
G
则入射波电场 Ei 和磁场 Hi 的复矢量分别为
G Ei (x)
=
G
− j2 πx
ey10e 3
G V/m , Hi (x)
=1 η1
G ex
G × Ei (x)
G = ez
1
− j2 πx
e3
12π
A/m
G
G
(2) 反射波电场 Er 和磁场 Hr 的复矢量分别为
G Er (x) =
G
j2 πx
−ey10e 3
G V/m , Hr (x)

电磁学课后习题答案及解析

电磁学课后习题答案及解析

第五章 静 电 场5 -9若电荷Q 均匀地分布在长为L 的细棒上.求证:<1>在棒的延长线,且离棒中心为r 处的电场强度为<2>在棒的垂直平分线上,离棒为r 处的电场强度为若棒为无限长<即L →∞>,试将结果与无限长均匀带电直线的电场强度相比较.分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为整个带电体在点P 的电场强度接着针对具体问题来处理这个矢量积分.<1>若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,<2>若点P 在棒的垂直平分线上,如图<A >所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是证 <1>延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r -x 统一积分变量,则 ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.<2>根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为利用几何关系 sin α=r /r ′,22x r r +='统一积分变量,则当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度此结果与无限长带电直线周围的电场强度分布相同[图<B >].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线.5 -14设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而解1由于闭合曲面内无电荷分布,根据高斯定理,有依照约定取闭合曲面的外法线方向为面元d S 的方向,解2取球坐标系,电场强度矢量和面元在球坐标系中可表示为①5 -17设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析通常有两种处理方法:<1>利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2S π4d r E ⋅=⋅⎰S E 根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. <2>利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场由电场叠加可解得带电球体内外的电场分布解1因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内<0≤r ≤R > 球体外<r >R >解2将带电球分割成球壳,球壳带电由上述分析,球体内<0≤r ≤R >球体外<r >R >5 -20一个内外半径分别为R 1和R 2的均匀带电球壳,总电荷为Q 1,球壳外同心罩一个半径为R 3的均匀带电球面,球面带电荷为Q 2.求电场分布.电场强度是否为离球心距离r 的连续函数?试分析.分析以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d r πE ⋅=⎰S E .在确定高斯面内的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布.解取半径为r 的同心球面为高斯面,由上述分析r <R 1,该高斯面内无电荷,0=∑q ,故01=ER 1<r <R 2,高斯面内电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4rR R εR r Q E --= R 2<r <R 3,高斯面内电荷为Q 1,故r >R 3,高斯面内电荷为Q 1+Q 2,故电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图<B >所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3的带电球面两侧,电场强度的跃变量这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1和R 2>R 1>,单位长度上的电荷为λ.求离轴线为r 处的电场强度:<1>r <R 1,<2> R 1<r <R 2,<3>r >R 2.分析电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解作同轴圆柱面为高斯面,根据高斯定理r <R 1,0=∑q 在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1<r <R 2,L λq =∑r >R 2,0=∑q 在带电面附近,电场强度大小不连续,电场强度有一跃变这与5-20题分析讨论的结果一致.5 -22如图所示,有三个点电荷Q 1、Q 2、Q 3沿一条直线等间距分布且Q 1=Q 3=Q .已知其中任一点电荷所受合力均为零,求在固定Q 1、Q 3的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析由库仑力的定义,根据Q 1、Q 3所受合力为零可求得Q 2.外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:<1>根据功的定义,电场力作的功为 其中E 是点电荷Q 1、Q 3产生的合电场强度.<2>根据电场力作功与电势能差的关系,有其中V 0是Q 1、Q 3在点O 产生的电势<取无穷远处为零电势>.解1由题意Q 1所受的合力为零解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1、Q 3激发的电场在y 轴上任意一点的电场强度为将Q 2从点O 沿y 轴移到无穷远处,<沿其他路径所作的功相同,请想一想为什么?>外力所作的功为解2与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1、Q 3在点O 的电势将Q 2从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.5 -23已知均匀带电长直线附近的电场强度近似为为电荷线密度.<1>求在r =r 1和r =r 2两点间的电势差;<2>在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取?试说明.解 <1>由于电场力作功与路径无关,若沿径向积分,则有<2>不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.5 -27两个同心球面的半径分别为R 1和R 2,各自带有电荷Q 1和Q 2.求:<1>各区域电势分布,并画出分布曲线;<2>两球面间的电势差为多少?分析通常可采用两种方法<1>由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.<2>利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为在球面内电场强度为零,电势处处相等,等于球面的电势其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 <1>由高斯定理可求得电场分布由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1时,有当R 1≤r ≤R 2时,有当r ≥R 2时,有<2>两个球面间的电势差解2 <1>由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1,则若该点位于两个球面之间,即R 1≤r ≤R 2,则若该点位于两个球面之外,即r ≥R 2,则<2>两个球面间的电势差第六章 静电场中的导体与电介质6 -1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将〔 〔A 升高 〔B 降低 〔C 不会发生变化 〔D 无法确定分析与解不带电的导体B 相对无穷远处为零电势。

电磁场与电磁波 习题6

电磁场与电磁波 习题6

www×
⎡ ⎢ ⎢⎣

10−4
sin(ωt − 120π
20πz
)evx
+
10−4
cos(ωt − 120π
20πz)evy
)
⎤ ⎥ ⎥⎦
=
10−8 120π
evz
(W/m2 )
v S av
=
1
Re[
v E
×
v H
*
]
2
86
课后答案网
《电磁场与电磁波》——习题详解
=
1 2
课后答案网
《电磁场与电磁波》——习题详解
第六章 平面电磁波
6-1 理想媒质中一平面电磁波的电场强度矢量为
v E
(t
)
=
evx
5
cos

(108
t

z
)
(V/m)
(1) 求媒质及自由空间中的波长。
(2) 已知媒质 µ = µ0 , ε = ε 0ε r ,求媒质的 ε r 。
v
m H
=1 η
evz
×
v E
=1 η0
(evy
+
jevx )10−4 e− j20π z
课 后 答 案 网
o = 10−4e− j20π z (jevx + evy ) (A/m) c 120π
(3) 电磁波的瞬时值为
. v
E(t)
=
v Re[E
e

t
]
w = evx10−4 cos(ω t − 20π z) + evy10−4 sin(ω t − 20π z) (V/m)
(mV/m) (mA/m)

电磁场与电磁波第六章答案

电磁场与电磁波第六章答案


v

20
则位移电流的瞬时表达式为: J D
a x 5 10 7 cos(6 10 9 t 20z ) 2
3.海水的电导率约为 0.4ms / m ,其相对介电常数为 81。求海水中位移电流密度等于传导 电流密度时的界限频率。 3 解答:
5 1 时的频率为界限频率。则得 f 8.9 10 Hz
6.若空气的磁感应强度如题 2 所示,求磁场强度和电场强度的复数形式、坡印廷矢量的 瞬时值及平均值。
6 解答
1 j 20z H aye
0
,E

1 a x e j 20z , c
1 S EH a z cos 2 (6 109 t 20z ) , 0c


7 解答:由 E j 0 H


得H

0 0 E ym e jkz a x E xm e jkz a y 0 0
瞬时形式为: H

0 0 E ym cos(t kz)a x E xm cos(t kz)a y 0 0
1 1 S av Re E H az 2 2 0 c



(c
3 108 m / s)

7.在空气中,已知电场强度 E Exm cos(t kz)ax E ym cos(t kz)a y 。求坡印廷矢 量的瞬时值 S 及平均值 S av 。


j ( kz 0 )
,其中
0 为常数, k 2 2 0 0 。①求两个波的坡印廷矢量的平均值 S av1 和 S av2 ;②证明空间
中总的 Sav Sav1 Sav2 。 11 解答:1)由 E j 0 H ,得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档