电磁学基础知识

合集下载

电磁学基础知识汇总

电磁学基础知识汇总

电磁学基础知识汇总要理解电磁学必须要理解矢量标量,因为电磁学涉及到物理量中的矢量很多。

什么是“标量”和“矢量”?要学好电磁学还需要掌握“场”的思考方法。

如果能在脑海中形成印象就很容易了。

电磁学一:标量与矢量要理解电磁学必须要理解矢量标量,因为电磁学涉及到物理量中的矢量很多。

什么是“标量”和“矢量”?标量:只有大小和正负、没有方向的物理量。

比如:时间、质量、温度、功、能量等等矢量:即有大小和又有方向的物理量,又称向量。

比如:位移、速度、加速度、力等等。

但是,电磁学所涉及的物理量都是肉眼看不见的,所以很难想象。

笛卡尔坐标和矢量的成分表示真正的电磁学中,电磁场中矢量的正确计算十分有必要。

但是用箭头表示矢量的方法其实不能得出正确的计算结果。

这个时候我们应该怎么办呢?其实是可以用成分来表示矢量,再转换成代数计算。

下面来说明一下方法。

首先,画一个坐标,使x轴和y轴垂直。

这是因发明者名字命名的“笛卡尔坐标”,最基本的坐标系(除此之外,还有“极坐标”和“圆柱坐标”等,是根据我们考虑的问题的对称性进行区分的。

这类的单位矢量的计算太复杂,所以我们现在集中来看笛卡尔坐标)。

接下来,画出一个朝着坐标轴方向的单位矢量。

像这样,二元平面中的任何矢量都可以用含有和的单位矢量和标量的组合来表示:如果想表示三维空间,可以使用Z轴方向的单位矢量。

矢量的加减法矢量的乘积内积:计算结果为标量,所以也叫“数量积”,又因为用表示,也被叫做“点积”、“标积”。

比如:矢量和矢量的内积是指:的值与的值乘以和的夹角θ的余弦值。

由上可以看出相:相互垂直的两个矢量的内积为0。

外积:计算结果为矢量,所以也叫“矢量积”,又因为用表示,也被叫做“叉乘”。

比如:矢量和矢量的外积是矢量。

的大小:的值与的值乘以和的夹角θ的正弦值,即为。

的方向:含有矢量和矢量的面中的法线,为由到的右螺旋方向。

外积的结果是和的垂直方向,所以二元空间中没有外积。

“右螺旋方向”指:用右手沿着矢量到矢量的方向握住后,大拇指所指的方向。

电磁学基础知识

电磁学基础知识
几百到上万。材料如铁、钴、镍及其合金等。 所以电器设备如变压器、电机都将绕组套装在铁磁 性材料制成的铁心上。 注意
铁磁性物质的磁导率µ是个变量,它随磁场的强弱而变化。 电磁学基础知识
7.1.3 磁场强度
磁场强度H :介质中某点的磁感应强度 B 与介质
磁导率 之比。 H B
磁场强度H的单位 :安培/米(A/m)
在1831年英国科学家法拉第发现:,变化的磁场能使闭合的回路产生感应 电动势和感应电流。感应电动势的大小正比于回路内磁通对电流的变化率。
楞次定律:
1833年,楞次对法拉第电磁感应定律进行补充:闭合回路中感应 电流的方向,总是使它所产生的磁场阻碍引起感应电流的原磁通的变 化。这就是楞次定律。 具体地说,如果回路由于磁通增加而引起的电磁感应,则感应电流的磁场与原 来的磁场反向;如果回路由于磁通减少引起电磁感应,则感应电流的磁场与原 来的磁场相同。简要地说,感应电流总是阻碍原磁通的变化。
非线
对于铁心线圈来说,电感L不为常数。
性电
感 若为线性电感元件
eLdd t d(dL ti)Ld dti (2)

式(1)与式(2)是电动势的两种表达式,

一般当电感L为常数时,多采用式(2)。 而分析非线性电感时,由于L可变,一般采用式(1)。
电磁学基础知识
3、电感元件上电压与电流的关系
习惯上选择电感元件上的电流、电压、自感 电动势三者参考方向一致,则
1. 概述 电磁铁是利用通电的铁心线圈吸引衔铁或保
持某种机械零件、工件于固定位置的一种电器。 当电源断开时电磁铁的磁性消失,衔铁或其它零 件即被释放。电磁铁衔铁的动作可使其它机械装 置发生联动。
根据使用电源类型分为: 直流电磁铁:用直流电源励磁;

电磁学知识点

电磁学知识点

电磁学知识点引言:电磁学是物理学领域中的一个重要分支,研究电荷和电流所产生的电场与磁场及它们之间的相互作用。

本文将重点介绍电磁学的基础知识点,包括库仑定律、安培定律、麦克斯韦方程组以及电磁波等内容,以帮助读者更好地理解电磁学的基本原理和应用。

一、库仑定律库仑定律是电磁学的基础之一,描述了两个电荷之间的相互作用力。

根据库仑定律,两个电荷之间的力与它们的电荷量成正比,与它们之间的距离的平方成反比。

这一定律可以用以下公式表示:F = k * |q1 * q2| / r^2其中F是两个电荷之间的作用力,q1和q2分别是这两个电荷的电荷量,r是它们之间的距离,k是一个常数,被称为库仑常数。

二、安培定律安培定律是描述电流所产生的磁场的原理。

根据安培定律,通过一段导线的电流所产生的磁场的大小与电流的大小成正比,与导线到磁场点的距离成反比,磁场的方向则由右手螺旋定则确定。

安培定律可以用以下公式表示:B = (μ0 / 4π) * (I / r)其中B是磁场的大小,μ0是真空中的磁导率,约等于4π x 10^-7 T·m/A,I是电流的大小,r是观察点到电流所在导线的距离。

三、麦克斯韦方程组麦克斯韦方程组是电磁学的基本方程组,总结了电磁学的基本定律和规律。

麦克斯韦方程组包括四个方程,分别描述了电荷和电流的电场和磁场之间的关系,以及它们的传播规律。

这些方程是:1. 麦克斯韦第一方程(电场高斯定律):∇·E = ρ / ε02. 麦克斯韦第二方程(磁场高斯定律):∇·B = 03. 麦克斯韦第三方程(法拉第电磁感应定律):∇×E = -∂B/∂t4. 麦克斯韦第四方程(安培环路定律):∇×B = μ0 * J + μ0ε0 *∂E/∂t其中E是电场,B是磁场,ρ是电荷密度,ε0是真空中的介电常数,J是电流密度。

四、电磁波电磁波是由电场和磁场相互作用而形成的一种传播现象。

电磁学总结

电磁学总结

电磁学总结电磁学是物理学的一个重要分支,研究电荷的运动以及电荷与磁场之间的相互作用。

在这篇文章中,我将对电磁学的基本概念、重要定律以及应用进行总结和回顾。

一、电磁学基础知识电磁学的基础知识包括电场、磁场和电磁场三个概念。

电场是由电荷产生的力场,描述了电荷之间的相互作用。

磁场是由磁体产生的力场,描述了磁铁与带电体之间的相互作用。

电磁场是电场和磁场的综合体现,描述了电荷和磁铁之间的相互作用。

二、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本定律,包括四个方程:高斯定律、安培定律、法拉第电磁感应定律和法拉第电磁感应定律的积分形式。

这些方程统一了电磁学的基本原理,揭示了电磁场的本质和规律。

三、电磁波电磁波是电磁场的一种传播形式,由电场和磁场相互耦合而成。

电磁波具有电磁场的振荡和传播性质,分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等不同频率的波长。

四、电磁辐射和天线电磁辐射是电荷加速运动时产生的电磁波在空间中的传播。

常见的电磁辐射包括天线发射的无线电波、太阳的电磁辐射以及人造卫星的电磁辐射等。

天线是用于接收和发射电磁波的装置,常见的天线有平面天线、偶极子天线和波导天线等。

五、电磁感应和电磁力学电磁感应是指通过磁场的变化产生电流的现象。

根据法拉第电磁感应定律,当磁场通过闭合线圈时,就会在线圈中产生感应电流。

电磁力学是研究电流和磁场之间相互作用的学科,重要的内容包括洛伦兹力和电磁场的能量、动量守恒定律等。

六、电磁光学和电磁场计算电磁光学是研究光与电磁场相互作用的学科。

常见的现象有折射、反射、干涉和衍射等。

电磁场计算是通过数学方法求解电荷和电流产生的复杂电场和磁场分布,在电磁场计算中,常用的方法有静电场计算方法、静磁场计算方法和时变场计算方法。

七、电磁学的应用电磁学广泛应用于现代科学技术中。

无线电通信是通过电磁波在空间中传播来实现的,包括手机通信、无线电广播和卫星通信等。

电磁波在医学中也有重要应用,如核磁共振成像(MRI)和电磁波治疗等。

高中物理复习电磁学部分

高中物理复习电磁学部分

高中物理复习电磁学部分电磁学是高中物理中的重要内容之一,也是学生们较为困惑的部分之一。

本文将对电磁学的相关知识进行复习和总结,帮助学生们更好地理解和掌握这一内容。

一、电磁学基础知识1. 电荷和电场在电磁学中,电荷是基本粒子,可以带正电荷或负电荷。

同性电荷相斥,异性电荷相吸。

电场是电荷周围产生的一个物理场,描述了电荷之间相互作用的规律。

2. 静电场和静电力静电场是指电荷静止时产生的电场。

静电力是指电荷之间由于电场作用而产生的力。

根据库仑定律,两个电荷之间的电力与电荷的大小和距离的平方成正比。

3. 电场线电场线是描述电场分布形态的一种图示方法。

电场线的特点是从正电荷出发,指向负电荷,密集区域代表电场强,稀疏区域代表电场弱。

电场线不会相交,且垂直于导体表面。

二、电磁感应和法拉第电磁感应定律1. 磁感线和磁感应强度磁感线是描述磁场分布形态的一种图示方法。

磁感应强度是磁场对单位面积垂直于磁力线方向的力的大小。

2. 法拉第电磁感应定律法拉第电磁感应定律是指导体中的磁感应强度变化会诱导出感应电动势的规律。

根据法拉第电磁感应定律,感应电动势的大小与磁感应强度变化速率成正比。

3. 感应电流和楞次定律根据楞次定律,感应电流的方向总是阻碍引起它产生的因素,如磁感应强度的变化。

感应电流具有闭合电路的特点。

三、电磁波和麦克斯韦方程组1. 电磁波的特点电磁波是由电场和磁场交替变化产生的一种波动现象。

电磁波可以传播在真空中和介质中,具有波长、频率和速度等特性。

2. 麦克斯韦方程组麦克斯韦方程组是描述电场和磁场相互作用的基本定律。

包括麦克斯韦第一和第二个定律、高斯定律和法拉第定律。

3. 电磁波的分类根据频率的不同,电磁波可以分为射线、微波、红外线、可见光、紫外线、X射线和γ射线等。

四、电磁学的应用1. 电磁感应的应用电磁感应在发电机、变压器等电器设备中有广泛应用。

电磁感应还可以用于磁悬浮列车、无线充电等领域。

2. 电磁波的应用电磁波在通信、雷达、医学影像等方面有重要应用。

电磁基本知识

电磁基本知识

电磁基本知识一、电流的磁场1.磁的性质人们把具有吸引铁、镍、钴等物质的性质称为磁性。

具有磁性的物体叫作磁体。

磁铁具有N极和S极,称为磁极。

磁极附近区域的磁性最强。

如图1-7所示,用细条线把条形磁铁悬挂起来进行实验,可知同性磁极互相排斥,异性磁极互相吸引。

2.磁场和磁力线磁体周围存在的磁力作用的空间称为磁场。

互不接触的磁体之间具有的相互作用力,就是通过磁场这一特殊物质进行传递的。

图1-7 磁铁的同性相斥,异性相吸磁场是用磁力线进行形象描述的,在磁体外部,磁力线由N极指向S极;在磁体内部,磁力线由S极指向N极。

这样磁力线在磁体内外形成一条闭合曲线,在曲线上任何一点切线方向就是磁针在磁力作用下N极所指的方向。

磁力线可以用实验方法显示出来。

如果在条形磁铁上放一块玻璃或纸板,当撒上一些铁屑并轻敲时,铁屑便会有规则地排列成图1-8所示的线条形状。

同时还可以看出,在磁极附近磁力线最密,表示磁场最强;磁体中间磁力线较稀,则磁场较弱。

因此,我们可以用磁力线根数的多少和疏密程图1-8 磁力线度来描绘磁场的强弱。

电流产生磁场电流周围存在着磁场,产生磁场的根本原因是电流。

磁场总是伴随着电流而存在,而电流则永远被磁场所包围。

我们把电流产生磁场的现象称为电流的磁效应。

通电导线(或线圈)周围磁场(磁力线)的方向,可用安培定则(右手螺旋定则)来判断。

(1)通有电流的直导线,其周围的磁场可以用同心圆环的磁力线来表示。

电流愈大,线圆环愈密,磁场愈强。

磁场的方向可用右手螺旋定则来描述:用右手握直导线,大姆指伸直,指向电流的方向,则其余四指弯曲所指方向即为磁场的方向。

如图1-9所示。

图1-9 通电直导线周围的磁场方向(右手螺旋定则之一)单根通电导线通过电流时产生磁场的方向也可以用图1-10的平面图来表示。

图中1-10中 表示电流的方向对准拇指内,⊙表示电流的方向从拇指内指向读者。

导线周围的磁力线呈圆环状,其方向如箭头所示。

如电流方向改变,则磁场方向也改变。

电磁学的基础知识

电磁学的基础知识

电磁学的基础知识电磁学是物理学中的一个重要分支,研究电荷和电磁场之间的相互作用。

从静电学到电动力学,从麦克斯韦方程组到电磁辐射,掌握电磁学的基础知识对于理解电磁现象和应用电磁技术具有关键意义。

一、电荷和电场在电磁学中,最基本的概念是电荷和电场。

电荷是物质的基本属性,可以分为正电荷和负电荷。

正负电荷之间相互吸引,同类电荷之间相互排斥。

电场则是电荷周围所产生的力场,负责传递相互作用力。

二、库仑定律库仑定律描述了电荷之间的相互作用力。

根据库仑定律,电荷对之间的相互作用力与电荷之间的距离成正比,与电荷的大小成正比。

三、电场强度电场强度是电场中单位正电荷所受的力,用E表示。

对于点电荷,电场强度的大小与距离的平方成反比。

由于电荷的性质,电场是以向外的径向方向存在。

四、电势差和电位电势差是指电场中两点之间的电势能差,用V表示。

单位正电荷从一个点移动到另一个点时所做的功,就是电势差。

电势差与电场强度的积成正比。

五、电场线电场线是描述电场空间分布的图形。

电场线以电场强度方向为切线,线的密度表示电场强度的大小。

电场线从正电荷出发,进入负电荷或者无穷远。

六、电荷分布电荷分布可以分为均匀分布和非均匀分布。

对于均匀分布的电荷,可以通过积分来求解电场。

对于非均匀分布的电荷,则需要运用高斯定律或者数值计算来求解。

七、电场能量电场能量是指电荷在电场中所具有的能量。

电场能量与电荷的大小和电势差的平方成正比。

八、电场的叠加原理在多个电荷存在的情况下,各电荷所产生的电场可以叠加。

即总电场等于各电荷所产生的电场之和。

九、电流和电阻电流是指电荷在单位时间内通过导体的数量,用I表示。

电流的方向被约定为正电荷从正极流向负极。

电阻则是导体对电流的阻碍程度。

根据欧姆定律,电流与电压成正比,与电阻成反比。

十、电阻与电导率电阻与电导率成反比,电导率是导体的属性。

电导率越大,电阻越小。

常见的导体包括金属和电解质。

十一、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程。

物理认识电磁学的基础知识

物理认识电磁学的基础知识

物理认识电磁学的基础知识电磁学是物理学中的一门重要学科,研究电荷和电流之间的相互作用以及电磁场的性质和行为。

在物理学中,电磁学的基础知识是我们理解和应用电磁学的关键。

本文将介绍电磁学的基础知识,包括静电学、电流和磁场以及电磁波。

一、静电学静电学研究的是电荷和静电场的性质。

电荷是物质中的基本粒子,带有正电荷的粒子叫做正电荷,带有负电荷的粒子叫做负电荷。

根据库仑定律,同种电荷之间的相互作用力是斥力,异种电荷之间的相互作用力是引力。

静电场是由电荷形成的,可以通过电场线来描述静电场的分布。

电场线指示了电场的方向,从正电荷流向负电荷,表示电场的方向。

静电势能是由电荷在电场中的位置所具有的能量,可以通过电势差来表示。

二、电流和磁场电流是电荷的流动,是电荷在导体中的移动。

电流的大小可以通过单位时间内通过截面的电荷量来描述,单位是安培(A)。

根据欧姆定律,电流和电压之间的关系是电阻的倒数,即I=V/R,其中I是电流,V是电压,R是电阻。

磁场是电荷运动产生的,与电流和导体的形状有关。

磁场可以通过磁感线来描述,磁感线是从磁南极流向磁北极,表示磁场的方向。

磁场的强弱可以通过磁感应强度来描述,单位是特斯拉(T)。

三、电磁波电磁波是由变化的电场和磁场相互作用产生的一种波动现象。

电磁波的传播速度是光速,约为3x10^8米/秒。

电磁波可以分为有线性偏振和没有线性偏振两种。

当电场和磁场在时间上振动方向相同且垂直于传播方向时,电磁波就是有线性偏振的。

没有线性偏振的电磁波是指电场和磁场在时间上振动方向不一致。

电磁波的频率和波长之间存在关系,即v = λf,其中v是电磁波的速度,λ是波长,f是频率。

总结:物理认识电磁学的基础知识对我们理解和应用电磁学非常重要。

静电学研究电荷和电场的性质,电流和磁场研究电荷的流动和磁场的强弱,电磁波研究电场和磁场相互作用产生的波动现象。

通过掌握这些基础知识,我们可以深入了解电磁学的原理和应用,并将其运用于各个领域,促进科学技术的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁学基础知识电场一、场强E (矢量,与q 无关)1.定义:E = 单位:N/C 或V/m方向:与+q 所受电场力方向 电场线表示E 的大小和方向 2.点电荷电场:E =静电力恒量 k = Nm 2/C 2匀强电场:E = d 为两点在电场线方向上的距离 3.E 的叠加——平行四边形定则4.电场力(与q 有关) F =库仑定律:F = (适用条件:真空、点电荷) 5.电荷守恒定律(注意:两个相同带电小球接触后,q 相等) 二、电势φ(标量,与q 无关)1.定义:φA = = = 单位:V说明:φ=单位正电荷由某点移到φ=0处的W ⑴沿电场线,电势降低 ⑵等势面⊥电场线;等势面的疏密反映E 的强弱 2.电势叠加——代数和 3.电势差:U AB = = 4.电场力做功:W AB = 与路径无关5.电势能的变化:Δε=W 电场力做正功,电势能 ;电场力做负功,电势能需要解决的问题:①如何判电势的高低以及正负(由电场线判断) ②如何判电场力做功的正负(由F 、v 方向判)③如何判电势能的变化(由W 的正负判) 三、电场中的导体 1.静电平衡:远端同号,近端异号2.静电平衡特点 ⑴E 内=0;⑵E 表面⊥表面;⑶等势体(内部及表面电势相等);⑷净电荷分布在外表面 四、电容器1.定义:C = (C 与Q 、U 无关) 单位:1 F =106 μF =1012 pF 2.平行板电容器: C =3.两类问题:①充电后与电源断开, 不变;②始终与电源相连, 不变 五、带电粒子在电场中的运动 1.加速:qU =2.偏转:v ⊥E 时,做类平抛运动位移:L = ; y = = =速度:v y = = ; v = ; tan θ= 六、实验:描绘等势线1.器材: 2.纸顺序:从上向下恒定电流一、概念及规律1.电流:⑴产生条件:①有自由电荷;②有电压⑵定义:I=微观:I=2.电阻定律:R=说明:金属的电阻率随温度升高而半导体的电阻率随温度升高而3.欧姆定律⑴部分电路:I=闭合电路:I=(或:E====⑵路端电压(电源输出电压、电源两极间电压、外电路总电压等)①U==断路:I=0,U=E短路:EIr=短,U=0内阻为零:r=0,U=E(恒压)②U随R增大而4.⑴电功:W=电功率:P=⑵电热:Q==电热功率:P热==⑶注意:①纯电阻电路中,W=Q,即:IE=②非纯电阻电路中,W>Q,即:IE=;而IU=二、电路1.串联电路:I=U=R=2.并联电路:I=U=1R=(两电阻并联:R=)3.电表改装:⑴电压表=G 联电阻R=⑵电流表=G 联电阻4.电源的最大输出功率:当Rr时,P最大,P m=三、本章实验1.伏安法测电阻:⑴测小电阻时,用电流表接,R测==;R测R x⑵测大电阻时,用电流表接,R测==;R测R x1 R =线性元件的伏安特性曲线电源的U-I图象电源输出功率与外电阻的关系x 电流表外接x 电流表内接2.描绘小灯泡的伏安特性曲线⑴在方框1内画出实验电路原理图⑵注意:应采用电流表 接法, 电路 ⑶小灯泡的伏安特性曲线是 线 3.测定金属的电阻率⑴用 测金属丝的直径d ;用 测金属丝的长度L ⑵在方框2内画出实验电路原理图注意:应采用电流表 接法,分压电路或限流电路均可 ⑶金属丝的电阻率ρ= 4.把电流表改装为电压表⑴在方框3内画出测电流表内阻的实验电路原理图 简要实验步骤:①闭合S 1,调 ,使电流表满偏 ②闭合S 2,调 ,使电流表半偏 ③当R 比R /大很多时,有R g R /⑵计算改装成量程为U 的电压表所需的电阻R = , 并从电阻箱上调出所需的电阻值,然后将电阻箱与电流表 G 联⑶在方框4内画出核对电压表的实验电路原理图 ①注意:应采用 电路②满刻度时的百分误差的计算式是;百分误差= 5.测定电源的电动势和内电阻⑴在方框5内画出实验电路原理图⑵改变R 的阻值,测出两组I 、U 数值,由闭合电路欧姆定律得: E = ;E = ;联立可求得E 、r⑶多测几组I 、U 数值,作U -I 图象由图象可得:直线与U 轴交点= ;r = = = 6.练习使用示波器7.用多用电表探索黑箱内的电学元件(掌握多用电表的读数)磁场一、磁感应强度B :单位:T1.方向:小磁针静止时 极的指向;小磁针 极的受力方向或磁感线上的 方向 2.磁感线表示磁感应强度的大小和方向,是 曲线 3.电流的磁场( 定则判定)直线电流的磁场 环形电流的磁场 通电螺线管的磁场二、磁场力( 定则判定)1.安培力(磁场对电流的作用力)⑴大小:I ⊥B 时,F = I ∥B 时,F = ⑵同向电流相互 ,反向电流相互× ×× × × × ···· · ·方框22.洛仑兹力(磁场对运动电荷的作用力)⑴大小:v⊥B时,F=v∥B时,F=⑵F洛不做功三、带电粒子在匀强磁场中运动1.仅受F洛,v⊥B时,作匀速圆周运动,有:①轨道半径:R=②运动周期:T==(T与v无关)③运动时间:t===⑴如何找圆心?求半径R2.电场、磁场知识的综合应用⑴速度选择器(图1)原理:粒子作匀速直线运动时,有:⑵磁流体发电(电磁流量计、霍尔效应)图2等离子体通过时,+q向上偏,-q向下偏,稳定时有:⑶质谱仪(图3)经加速电场:;经速度选择器:经偏转磁场:;解得:q/m=⑷回旋加速器(图4)最大动能:E km==交流电频率:f电=f粒=加速次数:n=加速时间:t=××××××××v+q-q×××2图1 图2图3 图4电磁学基础知识 参考答案电场一、1.F E q =;相同 2.2Q E k r =;9×109;UE d = 4.F =qE ;122q q F k r= 二、1.AO AA AO W U qq εϕ=== 3.AB AB A B WU qϕϕ==- 4.W AB =qU AB 5.Δε=W ;减小;增加四、1.Q C U =2.4πS C kd ε= 3.电荷量;电势差 五、1.212qU m =v2.0L t =v 222111222qE qU y at t t m md==⋅=⋅y at ==v=v 0tan y θ=v v六、1.木板、白纸、复写纸、导电纸、灵敏电流计、探针、尺子、圆柱形电极两个、直流电源(6 V )、导线若干、图钉 2.导电纸、复写纸、白纸恒定电流一、1.⑵q I t =;I =nqS v 2.LR S ρ=;升高;降低 3.⑴U I R =;E I R r =+;或:()r UE U U U Ir I R r U r R=+=+=+=+⑵①U =E -Ir =IR ②增大4.⑴W =IUt ;P =IU ; ⑵22U Q I Rt t R ==;22U P I R R==热 ⑶①2()IE I R r =+;②2IE IU I r =+;2IU P I R =+机机 二、1.I =I 1=I 2=I 3;U =U 1+U 2+U 3;R =R 1+R 2+R 32.I =I 1+I 2+I 3;U =U 1=U 2=U 3;1231111R R R R =++ (1212R R R R R =+) 3.⑴串;大;g g UR R I =- ⑵并;小;g g gI R R I I =- 4.=;24m E P r=三、1.⑴外;V V R R U R I R R ⋅==+测;< ⑵内;A U R R R I==+测;> 2.⑴如图1 ⑵外;分压 ⑶曲3.⑴螺旋测微器;刻度尺 ⑵如图2;外 ⑶2π4Ud ILρ=4.⑴如图3;①R ;②R /;③= ⑵g gUR R I =-;串 ⑶如图4;①分压;②改装表示数-标准表示数百分误差=%改装表示数5.⑴如图5;⑵E =U 1+I 1r ;E =U 2+I 2r ; ⑶电动势;tan E U r I Iθ∆===∆短 磁场一、1.北(或N );北;切线 2.闭合 3.安培二、左手 1.⑴F =BIL ;0 ⑵吸引;排斥 2.⑴F =qB v ;0三、1.2qB m R=v v ;①m R qB =v ;②2π2πR m T qB ==v ;③2πR mt T qB θθθ===v2.⑴qB v =qE ⑵UqqB d=v ⑶2112qU m =v ;21U q qB d=v ;22qB m R =v v ;212U q m B B Rd =⑷2222122kmm q B R E m m ==v ;2πqB f f m ==电粒;km E n qU =;2T t n =图1图2图3图4图5。

相关文档
最新文档