2.2.2 椭圆的简单几何性质 2

合集下载

全国高中数学 青年教师展评课 椭圆的简单几何性质教学设计

全国高中数学 青年教师展评课 椭圆的简单几何性质教学设计

诚西郊市崇武区沿街学校2.2.2椭圆的简单几何性质设计一.教学内容解析:椭圆是生活中常见的曲线,研究它的几何性质,对于后续学习圆锥曲线有重要的指导作用,也为研究双曲线和抛物线奠定了根底。

研究曲线的性质,可以从整体上把握曲线的形状,大小和位置。

利用方程研究椭圆的简单几何性质之前,先引导学生想一想我们应该关注椭圆哪些方面性质。

研究椭圆的详细性质之前,先让学生观察图形直观得到性质,而后利用方程去研究。

根据曲线的条件求出曲线的方程,假设说是解析几何的手段,那么根据曲线的方程研究它的几何性质那么可以说是解析几何的一个手段。

方程研究曲线性质,即代数方法解决几何问题,将复杂的几何关系的研究转化为对曲线方程特点的分析,代数方法可以程序化地进展运算,代数法研究曲线的性质有较强的规律性,这是当年Descartes 创立解析几何的直接目的。

二.教学目的设置: (一)知识与技能:1.给定椭圆标准方程,能说出椭圆的范围,对称性,顶点坐标和离心率;2.在图形中,能指出椭圆中e c b a ,,,的几何意义及其互相关系;3.知道离心率大小对椭圆扁平程度的影响; (二)过程与方法:1.通过画图并观察得到椭圆的一些性质,培养学生观察分析意识;2.方程研究椭圆性质,让学生感受到解析几何的目的——代数法研究几何问题;3.让学生注意“顶点〞“椭圆中心〞的概念,体会到特殊与一般的区别;4.通过设置填表和例2〔2〕,让学生体会类比法和分类讨论的重要性。

(三)情感态度与价值观:讨论打破难点,培养学生意识;通过对椭圆对称性及离心率对椭圆形状影响的研究,让学生感受到数学美;方程研究曲线的性质,可以程序化运算,感悟数学家创立解析几何的目的;结合之前的学习,学生发现曲线与方程的互相结合,体会出事物的辩证统一,互相转化的唯物主义。

三.学生学情分析:本班学生数学根底参差不齐,学习程度开展不平衡;学生已熟悉和掌握椭圆定义及其标准方程,学生有动手体验和探究的兴趣,有一定的观察分析和逻辑推理的才能;学生接触过由函数解析式研究函数图像的性质,由方程求过直线和圆的一些特殊点;离心率概念比较抽象,直接引入比较突兀,给学生明确的问题,结适宜当的点拨与演示,是非常必要的。

《课程讲解》-2.2.2椭圆的第二定义及焦半径公式3

《课程讲解》-2.2.2椭圆的第二定义及焦半径公式3

a
OF x
x
c
a2
x
c
椭圆上的点M(x,y)到焦点F(c,0)的距
离与它到直线 x a 2 的距离之比等于离
心率.
c
新知探究
若点F是定直线l外一定点,动点M到点 F的距离与它到直线l的距离之比等于 常数e(0<e<1),则点M的轨迹是椭圆.
l
M H
F
新知探究
直线 x
a2 c
叫做椭圆相应于焦
点F2(c,0)的准线,相应于焦点
课堂小结
2.一个椭圆有两条准线,并与两个 焦点相对应,两条准线在椭圆外部, 且与长轴垂直,关于短轴对称.
课堂小结
3.椭圆焦半径公式的两种形式与焦点 位置有关,可以记忆为“左加右减, 下加上减”.
布置作业
1、P49习题2.2A组:
3,4,5,10.
y B2 M
A1
O F2 x
新知探究 1.对于椭圆的原始方程,
( xc ) 2 y 2 ( xc ) 2 y 2 2 a
变形后得到 a2 cx a(x c)2 y2,
再变形为
( x - c )2 y 2 x a2 c
c
a.
这个方程的几何意义如何?
新知探究
y
l
( x - c )2 y 2 c
MH
a2
F1(-c,0)的准线方程是
y
a2 x
c
a2 x
c
F1 O F2
x
新知探究
椭圆上的点到椭圆焦点的距离的最大
值和最小值分别是什么?
y M
OF
x
练习:已知F1 、F2椭圆的左右焦点,椭 圆上存在点M使得MF1⊥MF2,求椭圆的 离心率的范围.

高中数学 椭圆的简单几何性质教案(2) 新人教A版选修2-1

高中数学 椭圆的简单几何性质教案(2) 新人教A版选修2-1

§2.2.2 椭圆的简单几何性质(2)●教学目标1.熟悉椭圆的几何性质;2.利用椭圆几何性质求椭圆标准方程; 3.了解椭圆在科学研究中的应用. ●教学重点:椭圆的几何性质应用 ●教学过程:Ⅰ、复习回顾:利用椭圆的标准方程研究了椭圆的几何性质. Ⅱ、讲授新课:例6.点 ),(y x M 与定点 )0,4(F 的距离和它到定直线 425:=x l 的距离的比是常数54,求点的轨迹.解:设 是点 直线 的距离,根据题意,如图所求轨迹就是集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==54d MF M P 由此得54425)4(22=-+-x y x .将上式两边平方,并化简得 22525922=+y x即192522=+y x所以,点M 的轨迹是长轴、短轴分别是10、6的椭圆说明:椭圆的一个重要性质:椭圆上任意一点与焦点的距离和它到定直线的距离的比是常数(e 为椭圆的离心率)。

其中定直线叫做椭圆的准线。

对于椭圆 ,相应于焦点 的准线方程是 .根据椭圆的对称性,相应于焦点 的准线方程是,所以椭圆有两条准线.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.【典例剖析】 [例1]已知椭圆2222by a x +=1(a >b >0)的焦点坐标是F 1(-c ,0)和F 2(c ,0),P (x 0,y 0)是椭圆上的任一点,求证:|PF 1|=a +ex 0,|PF 2|=a -ex 0,其中e 是椭圆的离心率.[例2]已知点A (1,2)在椭圆121622y x +=1内,F 的坐标为(2,0),在椭圆上求一点P 使|PA |+2|PF |最小.[例3]在椭圆92522y x +=1上求一点P ,使它到左焦点的距离是它到右焦点距离的两倍. Ⅲ、课堂练习: 课本P52,练习 5 再练习:已知椭圆上一点 到其左、右焦点距离的比为1:3,求 点到两条准线的距离.(答案: 到左准线的距离为 ,到右准线的距离为.)思考: 已知椭圆 内有一点 ,是椭圆的右焦点,在椭圆上有一点 ,使的值最小,求的坐标.(如图)分析:若设,求出 ,再计算最小值是很繁的.由于 是椭圆上一点到焦点的距离,由此联想到椭圆的第二定义,它与到相应准线的距离有关.故有如下解法. 解:设在右准线 上的射影为.由椭圆方程可知,,.根据椭圆的第二定义,有 即.∴.显然,当 、、 三点共线时,有最小值.过 作准线的垂线.由方程组 解得 .即 的坐标为.【随堂训练】1.椭圆2222ay b x +=1(a >b >0)的准线方程是( )A .y =±222b a a + B.y =±222b a a -C.y =±222ba b - D.x =±222ba a -2.椭圆4922y x +=1的焦点到准线的距离是( )A .554和559 B .559和5514 C .554和5514 D .5514 3.已知椭圆2222by a x +=1(a >b >0)的两准线间的距离为3316,离心率为23,则椭圆方程为( ) A .3422y x +=1 B .31622y x +=1 C .121622y x +=1 D .41622y x +=14.两对称轴都与坐标轴重合,离心率e =0.8,焦点与相应准线的距离等于49的椭圆的方程是( )A .92522y x +=1或92522x y +=1B .92522y x +=1或162522y x +=1C .162x +92y =1 D .162522x y +=15.已知椭圆2222by a x +=1(a >b >0)的左焦点到右准线的距离为337,中心到准线的距离为334,则椭圆的方程为( ) A .42x +y 2=1 B .22x +y 2=1C .42x +22y =1D .82x +42y =16.椭圆22)2()2(-+-y x =25843++y x 的离心率为( )A .251 B .51 C .101 D .无法确定【强化训练】1.椭圆2222by a x +=1和2222by a x +=k (k >0)具有( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴2.椭圆92522y x +=1上点P 到右焦点的最值为( )A .最大值为5,最小值为4B .最大值为10,最小值为8C .最大值为10,最小值为6D .最大值为9,最小值为13.椭圆的一个顶点与两个焦点构成等边三角形,则此椭圆的离心率是( )A .51 B .43 C .33 D .214.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为( )A .41 B .22 C .42 D .215.椭圆m y m x 21322++=1的准线平行于x 轴,则m 的取值范围是( )A .m >0B .0<m <1C .m >1D .m >0且m ≠16.椭圆92522y x +=1上的点P 到左准线的距离是2.5,则P 到右焦点的距离是________.7.椭圆103334)1()1(22--=-++y x y x 的长轴长是______.8.AB是过椭圆4522y x +=1的一个焦点F 的弦,若AB 的倾斜角为3π,求弦AB 的长.9.已知椭圆的一个焦点是F (1,1),与它相对应的准线是x +y -4=0,离心率为22,求椭圆的方程.10.已知点P在椭圆2222bx a y +=1上(a >b >0),F 1、F 2为椭圆的两个焦点,求|PF 1|·|PF 2|的取值范围.【学后反思】椭圆的离心率是焦距与长轴的比,椭圆上任意一点到焦点的距离与这点到相应..准线的距离的比也是离心率,这也是离心率的一个几何性质.椭圆的离心率反映了椭圆的扁平程度,它也沟通了椭圆上的点的焦半径|PF|与到相应准线距离d之间的关系.左焦半径公式是|PF1|=a+ex0,右焦半径公式是|PF2|=a-ex0.焦半径公式除计算有关距离问题外还证明了椭圆上离焦点距离最远(近)点实a2,但必须注意这是椭圆的为长轴端点.椭圆的准线方程为x=±c中心在原点,焦点在x轴上时的结论.。

2.2.2椭圆的简单几何性质2(第二定义)

2.2.2椭圆的简单几何性质2(第二定义)
2.2.2椭圆的简单几何性质(二)
复习练习:
1.椭圆的长短轴之和为18,焦距为6,则椭圆 的标准方程为( C ) 2 2 2 2 x y x y A. 1. B. 1. 9 16 25 16 2 2 2 2 2 2 x y x y x y C. 1或 1. D. 1 25 16 16 25 16 25
M
F (c,0) 0
F (c,0)
a xቤተ መጻሕፍቲ ባይዱ c
2
a2 x c
x y 对于椭圆 2 2 1(a b 0) a b 相应于焦点 F (c,0) 的准线 x a2 方程是 x c
由椭圆的对称性,相应于焦点
a2 F (c,0) 的准线方程是 x c
三.知识迁移,深化认识
a2 x c
这是椭圆的标准方程,所以P点的轨迹是长轴长为2a, 短轴长为 2b 的椭圆.
二.问题探究,构建新知
概念分析
由此可知,当点M与一个定点的距离和它到一条定直 c F -c ,, 0 ) 2 线的距离的比是一个常数 时 这个点的 e (0 M e 1 ) ( 能不能说 到 a a 的距离与到直线 x 轨迹是椭圆,这就是椭圆的第二定义,定点是椭圆的 c 的距离比也是离 焦点,定直线叫做椭圆的准线 心率,, e常数 呢? e是椭圆的离心率. y 2 2
二.课题引入 已知动点P到定点(4,0)的距离与到定直线
4 25 的距离之比等于 ,求动点P的轨迹. x 5 4
问1:椭圆的焦点坐标和离心率分别是什么? 问2:将上述问题一般化,你能得出什么猜想? 若动点P(x,y)和定点F(c,0)的距离与它 c a2 到定直线l:x 的距离的比是常数 e a c (0<c<a),则动点P的轨迹是椭圆.

椭圆的简单几何性质

椭圆的简单几何性质

2.2 椭圆2.2.2椭圆的简单几何性质 第一课时 椭圆的简单几何性质【学习目标】1、理解椭圆的范围、对称性、顶点、长轴长及短轴长;2、掌握椭圆的离心率及c b a ,,的几何意义。

【重难点】重点:椭圆的简单几何性质 难点:求椭圆的离心率 【学习过程】复习引入:1、椭圆的定义我们把平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹叫做椭圆。

这两个定点21,F F 叫做椭圆的焦点,两焦点21,F F 间的距离||21F F 叫做椭圆的焦距。

2、椭圆的标准方程焦点在x 轴上:12222=+b y a x )0(>>b a 焦点在y 轴上:12222=+ay b x )0(>>b a3、重要结论:222c b a +=知识点一:椭圆的简单几何性质 1、范围由图形及椭圆的标准方程12222=+b y a x 可知,122≤a x 且122≤by ,即⎩⎨⎧≤≤-≤≤-by b ax a 故椭圆12222=+by a x 位于直线a x ±=和b y ±=所形成的矩形框里。

2、对称性观察椭圆的形状,可以发现椭圆既是轴对称图形,又是中心对称图形。

在椭圆12222=+by a x 中,用y -代替y ,方程不变,所以椭圆关于x 轴对称;用x -代替x ,方程不变,所以椭圆关于y 轴对称;用x -代替x ,用y -代替y ,方程不变,所以椭圆关于原点对称。

结论:椭圆关于x 轴和y 轴都对称,所以x 轴、y 轴叫做椭圆的对称轴;对称轴的交点原点,叫做椭圆的对称中心。

3、顶点椭圆与对称轴的交点,叫做椭圆的顶点。

显然12222=+by a x 有四个顶点,其中在x 轴上有)0,(),0,(21a A a A -,在y 轴上有),0(),,0(21b B b B -。

线段2121,B B A A 分别叫做椭圆的长轴和短轴,它们的长分别和a 2和b 2,b a ,分别叫做椭圆的长半轴长和短半轴长。

§2.2.2_椭圆的简单几何性质(2)

§2.2.2_椭圆的简单几何性质(2)
1 2
y
,演 操作打开的几何画板 . 示椭圆镜面工作原理
B E
O
反射镜面
解 建立图 . −
所示
A
F1
的直角坐标系, 设所求椭 x y 圆方程为 + = . a b 在Rt∆BF F 中,
C
F2
x
D
透明窗
图 . −
| F B |= | F B | + | F F | =
.
+ . .
由椭圆的性质知, | F B | + | F B |= a, 所以
1+ k | x1 − x2 | , 其中 k 是直线的斜率 2 2 = 1 + k (x1 + x2 ) − 4 x1 x2
2
课后作业: 《金榜》素能综合检测( ) 课后作业:1.《金榜》素能综合检测(13) 2.抓紧时间进行中段考复习!! 抓紧时间进行中段考复习!! 抓紧时间进行中段考复习
y
B 例 如图 . − ,一种 反射镜面 E 电影放映灯泡的反射镜 O F ( 是旋转椭圆面椭圆绕 A F x D 其对称轴旋转一周形成 透明窗 C ) .过对 的曲面的一部分 BAC是椭圆的一部分灯丝位于椭圆 , 称轴的截口 , F . 一个焦点F 上片门位于另一个焦点 上由椭圆 , 一个焦点F 发出的光线经过旋转椭圆面反射后 F 已知BC ⊥ F F ,| F B |= . 集中到另一个焦点 . cm,| F F |= . cm, ,求截口 BAC所在的椭圆方程 .
>0 =0 <0
解:联立方程组 x ⋅ x = − 1 1 1 2 5 y = x − 消去 消去y 2 2 5x − 4x −1 = 0 ----- (1) x2+4y2=2 有两个根, 因为 ∆=36>0,所以方程(1)有两个根, ,所以方程( 则原方程组有两组解. 所以该直线与椭圆相交. 则原方程组有两组解 所以该直线与椭圆相交

2.2.2椭圆的简单几何性质2

2.2.2椭圆的简单几何性质2
2 2

2、若椭圆的两个焦点及一个短轴端点构成正三角 、 1 形,则其离心率为 2 。 3、若椭圆的 的两个焦点把长轴分成三等分,则其 、 的两个焦点把长轴分成三等分, 1 离心率为 3 。
4、若某个椭圆的长轴、短轴、焦距依次成等差数列, 、若某个椭圆的长轴、短轴、焦距依次成等差数列,
3 则其离心率e=__________ 则其离心率 5
如图,我国发射的第一颗人造地球卫星的运行轨道 我国发射的第一颗人造地球卫星的运行轨道,是以地 例1 如图 我国发射的第一颗人造地球卫星的运行轨道 是以地 地球的中心)F 已知它的近地点A(离 心(地球的中心 2为一个焦点的椭圆 已知它的近地点 离 地球的中心 为一个焦点的椭圆,已知它的近地点 地面最近的点)距地面 距地面439km,远地点 距地面 远地点B距地面 地面最近的点 距地面 远地点 距地面2384km.并且 并且 F2、A、B在同一直线上,地球半径约为 在同一直线上, 、 在同一直线上 地球半径约为6371km,求卫星运 求卫星运 行的轨道方程(精确到1km). 行的轨道方程(精确到
( x − c)2 + y2 a2 −x c
c = . a
将上式两边平方,并化 ,得 将上式两边平方, 简
a ( 2 − c2 )x2 + a2 y2 = a2(a2 − c2 ). a 设 2 − c2 = b2 ,则方程可化成 x2 y2 + 2 = 1(a > b > 0). 2 a b
这是椭圆的标准方程, 所以点 的轨迹是长轴、短轴长 M 的轨迹是长轴、 这是椭圆的标准方程,
x y + 2 =1 2 a b
(a > b > 0),
F1 B D
Y

2.2.2椭圆的简单几何性质

2.2.2椭圆的简单几何性质

知识巩固 1. 椭圆的一个焦点和短轴的两端点构 成一个正三角形,则该椭圆的离心率 是
3 2
.
书本47页例6
新知探究 1.对于椭圆的原始方程,
(x + c) + y + (x - c) + y = 2a
2 2 2 2
变形后得到 a - cx = a (x - c) + y ,
(x-c)+ y
2 2
A1(-a,0)
F1
o

F2
A2(a,0)x
B2(0,-b)
顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。
长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。
长轴长:2a,短轴长:2b。 a、b分别叫做椭圆的长半轴长和短半轴长。
3.对称性
x y 2 1(a b 0) 2 a b
②当c=-25时直线m’与椭圆的交点P’到直线l的距离最大, 40 25 65 41 9 此时 P(4,- ), d最大 5 41 42 52 9 15 41 所以,椭圆上点 P(-4, )到直线l的最小距离为 , 5 41 9 65 41 点P(4,- )到直线l的最大距离为 . 5 41
(3)已知椭圆的两个焦点为F1、F2,A为椭圆上一 点,且 AF1 AF2 0,∠AF2F1=60°,求该椭圆的离 心率.
题型四:直线与椭圆的位置关系
例1.已知椭圆4x2+y2=1及直线y=x+m.当直线和椭圆 有公共点时,求实数m的取值范围.
老师你双11怎么过~
2 y2 x 练1.已知椭圆C: 1及直线L:y=2x+m.求当m取 4 2
一.复习
1.椭圆的定义
平面内与两个定点F1,F2的距离的和等于常数2a (2a>|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆 的焦点,两个焦点的距离叫做焦距2c.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 a 20 e b
2
20 ,离心率是
3 5

a 10 3 5 c
2
c a

2
c 6 10
2
a
6
2
8
2
2 2
b 8
当焦点在 x 轴时,椭圆的标准方程是
x

y
1
当焦点在 y 轴时,椭圆的标准方程是
100 2 y

64 2 x
1
100
64
焦点坐标
半轴长 离心率
a, b, c 的关系
( c , 0 )、( c , 0 )
长半轴长为 短半轴长为
e c a
( 0 , c )、( 0 , c )
同左 同左 同左
a, b, (a b 0)
( 0 e 1)
a2=b2+c2
练习6.已知椭圆方程为 6 x y 6 则

y b
2 2
1( a b 0 )
从图形上看,椭圆关于x轴、y轴、原点对称。 如何从方程来分析这些对称性呢? (1)把y换成-y方程不变,椭圆关于x轴对称; (2)把x换成-x方程不变,椭圆关于y轴对称;
(3)把x换成-x,同时把y换成-y方程不变, 椭圆 关于原点成中心对称。
P 2 ( x, y)
*顶点:椭圆与它的对称轴的 四个交点,叫做椭圆的顶点。 这四个顶点的坐标是什么?
A1 ( a , 0 )、A B 1 ( 0 , b )、B
2 2
y
B2
A1
b
a
A2
( a ,0 ) (0, b )
o
B1
c
x
*长轴、短轴:线段A1A2、
B1B2分别叫做椭圆的长轴和短轴。
*a , b分别叫做椭圆的长半轴长 和短半轴长。
B2
椭圆落在直线
b
a
A2
a
A1
b
F1
o
B1
c
F2 a
x
b
练习 1 . 口答下列椭圆的范围。 x
2

y
2
1
25
16
5 ≤ x ≤ 5, 4 ≤ y ≤ 4
2.对称性
x a
2 2

y b
2 2
1( a b 0 )
根据椭圆的图形,观察它有何对称性?
y
o
x
2.对称性:
x a
2 2
第二章 圆锥曲线与方程
2.2.2 椭圆的简单几何性质
一、复习回顾:
1.椭圆:
到两定点F1、F2的距离之和为常数(大于|F1F2 |) 的动点的轨迹叫做椭圆。
| P F1 | | P F2 | 2 a (2 a | F1 F2 |)
2.椭圆的标准方程:
x
2
当焦点在x轴上时 当焦点在y轴上时
它的长轴长是:
短轴长是:
2 6
2
2
;
;
2
2 5
30 6
(0,- 5 )
焦距是:
离心率等于: 焦点坐标是:
;
;
___;
(0, 5)
1, 顶点坐标是:(0, 6) (0,- 6) (1, 0)(- 0) ; _______
外切矩形的面积等于:
4 6

例 . 已知椭圆的长轴长是 求该椭圆的标准方程。
解:由题意得:
A2
A1
A2 x
-5 -4 -3 -2 -1 0 1 2 3 4 5 -1 -2 -3 -4
x -5 -4 -3 -2 -1 0 1 2 3 4 5 -1
B1
4.椭圆的离心率
x a
2 2

y b
2 2
1( a b 0 )
离心率:椭圆的焦距与长轴长的比 e 叫做椭圆的离心率。
(1)离心率的取值范围: 0<e<1 (2)离心率对椭圆形状的影响: 1)离心率e 越大,椭圆就越扁(瘦); 2)离心率e 越小,椭圆就越圆(胖);
c a
练习5
Hale Waihona Puke 下面两个椭圆中,哪个2
更接近于圆?
2
x 3y 9 与
2
2
x

y
1
16
12
标准方程
范围 对称性 顶点坐标 焦点坐标
x
x a
2 2

y b
2 2
y
1( a b 0 )
o
x
a ≤ x≤ a , b≤ y ≤ b 关于x轴、y轴成轴对称;---对称轴 关于原点成中心对称-----对称中心 ( a , 0 )、( a , 0 )、( 0 , b )、( 0 , b )
a b 2 2 y x 2 1(a b 0) 2 a b
2

y
2 2
1(a b 0)
3.椭圆中a,b,c的关系:
2=b2+c2 a

二、椭圆
1.范围:
x a

2 2
简单的几何性质
≤1,
y b
2 2
≤1得:
a
x ≤ a , b≤ y ≤ b
x a , y b 组成的矩形中。 y
( c , 0 )、( c , 0 )
长半轴长为
e c a
半轴长 离心率
a, b, c 的关系
a , 短半轴长为
( 0 e 1)
b, (a b 0)
a2=b2+c2
标准方程 图形 范围 对称性 顶点坐标
x a
2 2

y b
2 2
1( a b 0 )
y
x b
2 2

y a
o
2 2
1( a b 0 )
y
x
o
x
a ≤ x ≤ a , b ≤ y ≤ b a ≤ y≤ a , b≤ x ≤ b
关于x轴、y轴成轴对称;
同左
关于原点成中心对称
( a , 0 )、( a , 0 )、( 0 , b )、( 0 , b ) ( 0 , a )、( 0 , a )、( b , 0 )、( b , 0 )
y
P (x, y)
o
P 3 ( x, y)
x
P 1 (x, y)
练习2.
下列方程所表示的曲线 中,关于原点对称的是 ( D)
A. x
2
2y
B. y
2
4x 0
C. x
2
4y
2
5x
D. 9 x
2
y
2
4
3.椭圆的顶点
x a
2 2

y b
2 2
1( a b 0 )
练习3
口答下列椭圆的顶点坐 x
2
标及长轴和短轴长。

y
2
1
9
4
顶点是: 3,0)、 3,0)、 0,2)、 0,2) ( ( ( ( 长轴长是6,短轴长是4.
练习4. 画出下列椭圆的草图
(1)
x
2

y
2
1
(2)
x
2

y
2
1
25
16
25
4
y B 2 A1
4 3 2 1
y
4 3 B 2 2 1 -2 -3 B1 -4
相关文档
最新文档