中考找规律题

合集下载

初三找规律练习题

初三找规律练习题

初三找规律练习题
在初三数学学习中,找规律是一个非常基础且重要的内容。

通过找规律,可以提高解题的速度和准确性,也有助于培养逻辑思维和问题解决能力。

本文将为大家提供一些初三找规律练习题,帮助同学们巩固和提高这方面的能力。

1. 数列规律题
(1) 2,4,8,16,32,... 下一个数是多少?
(2) 1,3,6,10,15,... 下一个数是多少?
(3) 1,4,9,16,25,... 下一个数是多少?
2. 图形规律题
(1) 下面的图形中,哪个是不同的?
□ □ □ □
□ □ □ ■
■ □ ■ □
□ □ □ □
(2) 下面的图形中,第几个是和其他不同的?
▲ ▲
▲▲ ▲▲
▲▲▲ ▲▲▲
▲▲▲▲ ▲▲▲▲
(3) 继续下面的图形,形成一个规律:

★★
★★★
★★★★
★★★★★
3. 数字逻辑题
(1) 请写出下面数字序列的规律: 2,4,8,16,32,64
(2) 请写出下面数字序列的规律: 1,4,9,16,25,36
(3) 请写出下面阴影图案的规律并填写问号处的数字:
■■■
■■■
■?■
■■■
以上是一些初三找规律练习题,同学们可以根据自己的理解和思考,分析规律,并给出答案。

通过反复练习,可以提高自己的观察力和发
现规律的能力。

希望同学们能够善于思考,积极解题,提高数学能力。

祝愿大家在数学学习中取得好成绩!。

中考数学复习专题——找规律(含答案)

中考数学复习专题——找规律(含答案)

中考数学试复习专题——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 第2个图 第3个图 …6、如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子枚(用含有n的代数式表示,并写成最简形式).○○○○○○○○○○○○○●●○○●●●○○●○○●●○○●●●○○○○○○○○○●●●○○○○○○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需根火柴棒。

8、将正整数按如图5所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.9、如图2,用n表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n的关系是10、观察图4的三角形数阵,则第50行的最后一个数是()1-2 3-4 5 -67 -8 9 -10。

11、下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第n个图案中白色正方形的个数为.12、观察下列各式:3211=332123+=33221236++=33332123410+++=……猜想:333312310++++=.第一个第二个第三个……第n个第一排第二排第三排第四排6┅┅10 9 8 73 2154答案解析:1解析:1时,5.n再每增加一个数时,m就增加3个数.解答:根据所给的具体数据,发现:8=5+3,11=5+3×2,14=5+3×3,….以此类推,第n个圈中,5+3(1)=32.2解析:分析可得:第1幅图中有1×2-1=1个,第2幅图中有2×2-1=3个,第3幅图中有3×2-1=5个,…,故第n幅图中共有21个3解析:在4的基础上,依次多3个,得到第n个图中共有的棋子数.观察图形,发现:在4的基础上,依次多3个.即第n个图中有4+3(1)=31.当6时,即原式=19.故第6个图形需棋子19枚4解析:此题只要找出截取表一的那部分,并找出其规律即可解.解答:解:表二截取的是其中的一列:上下两个数字的差相等,所以15+3=18.表三截取的是两行两列的相邻的四个数字:右边一列数字的差应比左边一列数字的差大1,所24+25-20+1=30.表四中截取的是两行三列中的6个数字:18是3的6倍,则c应是4的7倍,即28.故选D.认真观察表格,熟知各个数字之间的关系:第一列是1,2,3,…;第二列是对应第一列的2倍;等三列是对应第一列的3倍5解析:据给出的四个图形的规律可以知道,组成大正方形的每个小正方形上有一个完整的圆,因此圆的数目是大正方形边长的平方,每四个小正方形组成一个完整的圆,从而可得这样的圆是大正方形边长减1的平方,从而可得若这样铺成一个10×10的正方形图案,则其中完整的圆共有102+(10-1)2=181个.解答:解:分析可得完整的圆是大正方形的边长减1的平方,从而可知铺成一个10×10的正方形图案中,完整的圆共有102+(10-1)2=181个.点评:本题难度中等,考查探究图形的规律.本题也只可以直接根据给出的四个图形中计数出的圆的个数,找出数字之间的规律得出答案.6解析:解:第1个正方形图案有棋子共32=9枚,其中黑色棋子有12=1枚,白色棋子有(32-12)枚;第2个正方形图案有棋子共42=16枚,其中黑色棋子有22=4枚,白色棋子有(42-22)枚;…由此可推出想第n个图案的白色棋子数为(2)22=4(1).故第n个图案的白色棋子数为(2)22=4(1).点评:根据图形提供的信息探索规律,是近几年较流行的一种探索规律型问题.解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论7解析:根据题意分析可得:搭第1个图形需12根火柴;搭第2个图形需12+6×1=18根;搭第3个图形需12+6×2=24根;…搭第n个图形需12+6(1)=66根.解答:解:搭第334个图形需6×334+6=2010根火柴棒8解析:寻找规律,然后解答.每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.解答:解:观察图表可知:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.实数15=1+2+3+4+5,则17在第6排,第5个位置,即其坐标为(6,5).故答案填:(6,5).对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9解析:根据题意分析可得:第n行有n个小圆圈.故f(n)和n的关系是ƒ(n)= (n2).10解析:根据题意可得:第n行有n个数;且第n行第一个数的绝对值为+1,最后一个数的绝对值为;奇数为正,偶数为负;故第50行的最后一个数是1275.解答:解:第n行第一个数的绝对值为+1,最后一个数的绝对值为,奇数为正,偶数为负,第50行的最后一个数是1275第一个图中白色正方形的个数为3×3-1;第二个图中白色正方形的个数为3×5-2第三个图中白色正方形的个数为3×7-3;…当其为第n个时,白色正方形的个数为3(21)5312解析:根据所给的等式,可以发现右边的底数是前边的底数的和,指数是平方,则最后的底数是1+2+310=5×11=55,则原式=552.解答:解:根据分析最后的底数是1+2+310=5×11=55,则原式=552.故答案552。

2022年中考数学专题复习 找规律题(含解析)

2022年中考数学专题复习 找规律题(含解析)

2022年中考数学专题复习:找规律1.以下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).假设圈出的9个数中,最大数与最小数的积为192,那么这9个数的和为【】.A.32 B.126 C.135 D.144【答案】D。

【考点】分类归纳〔数字的变化类〕,一元二次方程的应用。

【分析】由日历表可知,圈出的9个数中,最大数与最小数的差总为16,又最大数与最小数的积为192,所以设最大数为x,那么最小数为x-16。

∴x〔x-16〕=192,解得x=24或x=-8〔负数舍去〕。

∴最大数为24,最小数为8。

∴圈出的9个数为8,9,10,15,16,17,22,23,24。

和为144。

应选D。

2.某单位要组织一次篮球联赛,赛制为单循环形式〔每两队之间都赛一场〕,方案安排10场比赛,那么参加比赛的球队应有【】A.7队B.6队C.5队D.4队【答案】C。

【考点】分类归纳〔数字的变化类〕,一元二次方程的应用。

【分析】设邀请x个球队参加比赛,那么第一个球队和其他球队打〔x-1〕场球,第二个球队和其他球队打〔x-2〕场,以此类推可以知道共打〔1+2+3+…+x-1〕= x(x1)2-场球,根据方案安排10场比赛即可列出方程:x(x1)102-=,∴x2-x-20=0,解得x=5或x=-4〔不合题意,舍去〕。

应选C。

3.观察以下一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ . 【答案】2k2k+1。

【考点】分类归纳〔数字的变化类〕。

【分析】根据得出数字分母与分子的变化规律:分子是连续的偶数,分母是连续的奇数,∴第k 个数分子是2k ,分母是2k +1。

∴这一组数的第k 个数是2k2k+1。

4. 填在以下各图形中的三个数之间都有相同的规律,根据此规律,a 的值是 ▲ .【答案】900。

找规律练习题及答案

找规律练习题及答案

找规律练习题一.数字排列规律题1. 4、10、16、22、28……,求第n位数 ;2. 2、3、5、9,17增幅为1、2、4、8. 第n位数3. 观察下列各式数:0,3,8,15,24,……;试按此规律写出的第100个数是----,第n个数是---------;4. 1,9,25,49, , ,的第n项为 ,5: 2、9、28、65.....:第n位数6:2、4、8、16...... 第n位数.7:2、5、10、17、26……,第n位数.8 : 4,16,36,64,,144,196,…第一百个数9、观察下面两行数2,4,8,16,32,64, ...15,7,11,19,35,67...2根据你发现的规律,取每行第十个数,求得他们的和;10、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的11. =8 =16 =24 ……用含有N的代数式表示规律12. 12,20,30,42,127,112,97,82,3,4,7,12, ,2813 . 1,2,3,5, ,1314. 0,1,1,2,4,7,13,15 .5,3,2,1,1,16. 1,4,9,16,25, ,4917. 66,83,102,123, ,18. 1,8,27, ,12519; 3,10,29, ,12720, 0,1,2,9,21; ;则第n项代数式为:22 , 2/3 1/2 2/5 1/3 ; 则第n项代数式为23 , 1,3,3,9,5,15,7,24. 2,6,12,20,25. 11,17,23, ,35;26. 2,3,10,15,26, ;27. : 1,8,27,64,28. :0,7,26,63 ,29. -2,-8,0,64,30. 1,32,81,64,25,31. 1,1,2,3,5, ;32. 4,5, ,14,23,3733. 6,3,3, ,3,-334.1,2,2,4,8,32,35 ;2,12,36,80,36. 3/2, 2/3, 3/4,1/3,3/837.观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方…按此规律(1)试猜想:1+3+5+7+…+2005+2007的值2推广:1+3+5+7+9+…+2n-1+2n+1的和是多少38、下面数列后两位应该填上什么数字呢2 3 5 8 12 17 __ __39.请填出下面横线上的数字;1 123 5 8 ____ 2140、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么41、有一串数字3 6 10 15 21 ___ 第6个是什么数42、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是 .A.1 B.2 C.3 D.443、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为_________个.二.几何图形变化规律题44、观察下列球的排列规律其中●是实心球,○是空心球:●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.45、观察下列图形排列规律其中△是三角形,□是正方形,○是圆,□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是填图形名称.46. 2005年大连市中考题在数学活动中,小明为了求的值结果用n表示,设计如图a所示的图形;1请你利用这个几何图形求的值为 ;2请你利用图b,再设计一个能求的值的几何图形;年河北省中考题观察下面的图形每一个正方形的边长均为1和相应的等式,探究其中的规律:1写出第五个等式,并在下边给出的五个正方形上画出与之对应的图示;2猜想并写出与第n个图形相对应的等式;48; 右图是一回形图,其回形通道的宽与OB的长均为1,回形线与射线OA交于点A1,A2,A3,…;若从O点到A1点的回形线为第1圈长为7,从A1点到A2点的回形线为第2圈,……,依此类推;则第10圈的长为 ;49.瑞士中学教师巴尔末成功地从光谱数据,,,,……,中得到巴尔末公式,从而打开了光谱奥妙的大门;请你按这种规律写出第七个数据是 ;50、计算类2005年陕西省中考题观察下列等式:,……则第n个等式可以表示为 ;51.2005年哈尔滨市中考题观察下列各式:,,,……根据前面的规律,得: ;其中n为正整数52. 2005年耒阳市中考题观察下列等式:观察下列等式:4-1=3,9-4=5,16-9=7,25-16=9,36-25=11,……这些等式反映了自然数间的某种规律,设nn≥1表示了自然数,用关于n的等式表示这个规律为 ;53、图形类 2005年淄博市中考题在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点;观察图中每一个正方形实线四条边上的整点的个数,请你猜测由里向外第10个正方形实线四条边上的整点共有个;54、 2005年宁夏回自治区中考题“”代表甲种植物,“”代表乙种植物,为美化环境,采用如图所示方案种植;按此规律,第六个图案中应种植乙种植物株;55. 2005年呼和浩特市中考题如图,是用积木摆放的一组图案,观察图形并探索:第五个图案中共有块积木,第n个图案中共有块积木;56.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面-层有一个圆圈,以下各层均比上-层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n= .如果图1中的圆圈共有12层,1我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;2我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数-23,-22,-21,…,求图4中所有圆圈中各数的绝对值之和.57.例如、观察下列数表:根据数列所反映的规律,第行第列交叉点上的数应为______ .58; 要抓题目里的变量例如,用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第3个图形中有黑色瓷砖块,第个图形中需要黑色瓷砖块用含的代数式表示.海南省2006年初中毕业升考试数学科试题课改区这一题的关键是求第个图形中需要几块黑色瓷砖59.云南省2006年课改实验区高中中专招生统一考试也出有类似的题目:“观察图l至4中小圆圈的摆放规律,并按这样的规律继续摆放,记第n个图中小圆圈的个数为m,则,m= 用含 n 的代数式表示.”60.譬如,日照市2005年中等学校招生考试数学试题“已知下列等式:① 13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102;…………由此规律知,第⑤个等式是.”61、要善于寻找事物的循环节有譬如,玉林市2005年中考数学试题:“观察下列球的排列规律其中●是实心球,○是空心球:●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个;”62、你喜欢吃拉面吗拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示;这样捏合到第次后可拉出64根细面条;63.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是.–4 –3 –2 -10 1 2 4 564. 现有黑色三角形“▲”和“△”共200个,按照一定规律排列如下:▲▲△△▲△▲▲△△▲△▲▲……则黑色三角形有个,白色三角形有个;三、数、式计算规律题65、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是.66、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.67. 观察下列算式:,,,,请你在察规律之后并用你得到的规律填空:, 第n个式子呢___________________68. 一张长方形桌子可坐6人,按下列方式讲桌子拼在一起;①2张桌子拼在一起可坐______人;3张桌子拼在一起可坐____人,n张桌子拼在一起可坐______人;②一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐______人;③若在②中,改成每8张桌子拼成1张大桌子,则共可坐_________人;69 观察下列数据,按某种规律在横线上填上适当的数:1,,,,, ,…70. 平面内两两相交的6条直线,其交点个数最少为m个,最多为n个,则m+n= .71. 观察图1-27中有几个三角形由此你发现三角形的个数有什么规律呢一个三角形 3个三角形 ______个三角形 ______个三角形_________个三角形n个点归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是1通过对几个特例的分析,寻找规律并且归纳;2猜想符合规律的一般性结论;3验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方…按此规律(2)试猜想:1+3+5+7+…+2005+2007的值2推广:1+3+5+7+9+…+2n-1+2n+1的和是多少2、下面数列后两位应该填上什么数字呢2 3 5 8 12 17 __ __3、请填出下面横线上的数字;1 123 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么5、有一串数字3 6 10 15 21 ___ 第6个是什么数6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是.A.1 B.2 C.3 D.47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个.二、几何图形变化规律题1、观察下列球的排列规律其中●是实心球,○是空心球:●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律其中△是三角形,□是正方形,○是圆,□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是填图形名称.三、数、式计算规律题1、已知下列等式:①13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 .2、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n =观察下面三个特殊的等式 将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯ 读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221⑵()()=++++⨯⨯+⨯⨯21432321n n n⑶()()=++++⨯⨯+⨯⨯21432321n n n4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ 参考答案:一、1、11004的平方2n+1的平方2、23 30;数列中每两个相邻数字间的差分别是1,2,3,4,5,6,7;3、13;这一数列后面一个数是前面相邻两个数的和;4、34 ;考虑时,可以从第一个数开始,每3个数加一个括号1,2,3,2,3,4,3,4,5,……一共加了33个括号,剩下的一个必是第100个;每个括号的第一个数分别是1,2,3,……因此第100个数必然是34;5、28;3+3=6 6+4=10 10+5=15 15+6=21 21+7=28, 所以第6个是28;其实一般这类的规律题无非就是在数的基础上加减乘除,有些麻烦点的就是一个数乘上倍数后在加1或减1;6、A7、33二、 1、602 2、圆三、1、2333331554321=++++2、100003、 ⑴343400 或10210110031⨯⨯⨯ ⑵()()2131++n n n ⑶()()()32141+++n n n n 4、109.。

初中数学中考“找规律”专项练习题

初中数学中考“找规律”专项练习题

初中数学中考“找规律”专项练习题1.按一定观律排列的单项式:a ,–a 2,a 3,–a 4,a 5,–a 6,……,第n 个单项式是( )A .a nB .–a nC .(–1)n+1a n D .(–1) n a n2.如图,在平面直角坐标系中,函数y=x 和y=﹣x 的图象分别为直线l 1,l 2,过点A 1(1,﹣)作x 轴的垂线交11于点A 2,过点A 2作y 轴的垂线交l 2于点A 3,过点A 3作x 轴的垂线交l 1于点A 4,过点A 4作y 轴的垂线交l 2于点A 5,…依次进行下去,则点A 2018的横坐标为 .3.按一定顺序排列的一列数叫做数列,如数列:,,,,, 2011216121则这个数列的前2018个数列的和为_________________. 4.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b )n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b )8的展开式中从左起第四项的系数为( ) A .84B .56C .35D .285.下列图形都是由同样大小的黑色菱形纸片组成,其中第①个图中有3张黑色菱形纸片,第②个图中有5张黑色菱形纸片,第③个图中有7张黑色菱形纸片,..,按此规律排列下去,第⑥个图中黑色菱形纸片的张数为( )A.11B.13C.15D.17 6.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a ,b ,c 的值分别为( )A .a=1,b=6,c=15B .a=6,b=15,c=20C .a=15,b=20,c=15D .c=20,b=15,c=67.如图,小正方形是按一定规律摆放的,下面四个选项中的图片, 适合填补图中空白处的A B C D8.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是 .9.已知a >0,S 1=,S 2=﹣S 1﹣1,S 3=,S 4=﹣S 3﹣1,S 5=,…(即当n 为大于1的奇数时,S n =;当n 为大于1的偶数时,S n =﹣S n ﹣1﹣1),按此规律,S 2018= .10.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .1811.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有 个○.12.下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为【 】.A .32B .126C .135D .144第13.观察下列一组数:32,54,76,98,1110,……,它们是按一定规律排列的,那么这一组数的第k个数是14. 填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是.15.已知2+23=22×23,3+38=32×38,4+415=42×415…,若8+ab=82×ab(a,b为正整数),则a+b= .16.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是()17.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A—B—C-D—A一…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是【】A.(1,-1) B.(-1,1) C.(-1,-2) D.(1,-2)18.如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m= .19. 图中各圆的三个数之间都有相同的规律,据此规律,第n个圆中,m=(用含n的代数式表示).20. 将连续的正整数按下图规律排列,则位于第7行,第7列的数x是 .21.22.观察等式:331=,932=,2733=,8134=,24335=,72936=,218737=……解答下列问题:202143233333+⋯⋯++++的末尾数字是 .23. 如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2012的坐标为.24.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为.25.如图所示:已知点)(0,0A,),(03B,)(1,0C在ABC∆内依次做等边三角形,使一边在X轴上,另一顶点在BC边上,作出的等边三角形分别是:第1个11BAA∆,第2个221BAB∆,第3个332BAB∆,则第n个等边三角形的边长等于 .。

中考数学探索题训练找规律总结

中考数学探索题训练找规律总结

中考数学探索题训练找规律总结Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-中考数学找规律题专项训练 1、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是 。

2、小王利用计算机设计了一个计算程序,输入和输出的数据如下表: 输入 … 1 2 3 4 5 … 输出 … …那么,当输入数据是8时,输出的数据是( )A 、618B 、638C 、658D 、678 3、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.4、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了 块石子。

5、如下图是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字(1)(2)(3)第4题如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上” 字分别需用 和 枚棋子;(2)第n 个“上”字需用 枚棋子。

6、观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)通过猜想写出与第n 个点阵相对应的等式_____________________。

7. 观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,通过观察,用你所发现的规律确定272的个位数字是( )A . 2B . 4C .6D . 88. 观察下列各式:1×3=21+2×1,2×4=22+2×2,3×5=23+2×3,请你将猜想到的规律用自然数n (n ≥1)表示出来: 。

中考数学规律题(附答案).docx

中考数学规律题(附答案).docx

1.我们平常用的数是十进制数,如2 6 3 9=2 X 103+6 X 102+3 X 10*+9X 10°,表示十进制的数要用10个数码(又叫数字):0, 1, 2, 3, 4, 5, 6, 7, 8, 9。

在电子数字计算机中用的是二进制,只要两个数码:0和1。

如二进制中101=1 X 22+0X 2'+1 X 2°等于十进制的数5,10111=1 X 2*+0X23+1X 22+ 1X21 + 1X2°等于十进制中的数23,那么二进制中的1101等于十进制的数o2.任何•■个正整数〃都可以进行这样的分解:代,=sxt ( s, f是正整数,旦sWf),如果pxq在〃的所有这种分解中两因数之差的绝对值最小,我们就称pxq是〃的最佳分解,并规定:p 3 1 F(n)=L .例如18可以分解成1x18, 2x9, 3x6这三种,这时就有F(18)=- = -.给出q 6 21 3卜'列关于F(〃)的说法:(1) F(2) = —; (2) F(24) = -; (3) F(27) = 3; (4)若〃是28个完全平方数,则F(〃)=l.其中正确说法的个数是(B )A. 1B. 2C. 3D. 43.若(V—x—1)了+2=1,则工=. 2、一1、0、-24.观察下面的一列单项式:x , -2子,4x3, -8x4,…根据你发现的规律,第7个单项式为;第〃个单项式为. 64x7; (-2y~'x n5.已矢【I a n =—-~ (〃 = 1,2,3,...), 记气=2(1 —妃,"=2(1 一巧)(1 —a,),…,(〃 +1)- ~ ~如=2(1 —%)(1 —a?)...。

一%),则通过计算推测出如的表达式如=.(用含n的代数式表示)6.已知n是正整数,P[ (.%, M ), R(X,瑚),…,%%/,),…是反比例函数y =—图象上的一列点,其--~ x中= 1, x2= 2, • • •, x n=/?,•••.记Aj =x1y2, A2 = x2y3, ■■■, A n =x n y n+l,■--若A=a ( a 是非零常数),则A •& ••…A…的值是(用含a和〃的代数式表示). -H + 17 ? 3 37. 已知 2 — = 22 x — ,3 + — = 32 x —,3 3 8 84 4 n n4 + —= 42x —,……,若8 + - = 82X - (a 、力为正整数)则a + b=. 7115 15 b b8. 为 了求 1+ 22 + 23 + ••• + 22008 的值,可令 S = 1 + 22 + 23 +... + 22008 ,贝U 2S =22 +23 +24 +-.. + 22009 ,因此 2S-S= 22009 -1 ,所以 1 + 22 +23 +••. + 22008 = 22009 -1 仿照以 上推理计算出1 + 52 +53 +••• + 52009的值是. 5初°-19. --------------------------------------------------------------------------------------------------------- 设 S]=l + — 7 > S,=] H —— , $3=1 —7"! ,…,S“=l H ------------------------------------------------------------------ 71 1- 2-2 2- 3-3 32 4- " n- (zz + l)2M I +L 上,^=— n n +1 n+110. 如图,边长为1的菱形ABCD 中,ZDAB = 60° .连结对角线AC ,以AC 为边作第二个菱形ACC^ ,使 ZD.AC = 60° ;连结AC,,再以AC 】为边作第三个菱形AC.C^ ,使ZD.AC, - 60° ; ……,按此规律所作的第〃个菱形的边长 X 211. 如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA ,再以等腰直角三 角形ABA 的斜边为直角边向外作第3个等腰直角三角形A {BB {,……,如此作下去,若OA = OB = 1, 则第〃个等腰直角三角形的面积% = (n 为正整数).(用含n 的代数式表示,其中n 为正整数).设S1/1-13【思路分析】和上题很类似的几何图形外延拓展问题。

十道初中数学找规律的题型及解题思路

十道初中数学找规律的题型及解题思路

十道初中数学找规律的题型及解题思路这里有10道初中数学找规律的题目,涵盖了常见的数列、图形等多种类型,希望能帮助学生更好地掌握找规律的技巧:数列找规律1.等差数列:1.1, 4, 7, 10, ... 下一个数是多少?2.100, 97, 94, ... 第10个数是多少?2.等比数列:1.2, 4, 8, 16, ... 第8个数是多少?2.81, 27, 9, ... 第6个数是多少?3.混合数列:1.1, 4, 9, 16, 25, ... 下一个数是多少?(提示:考虑每个数的平方)2.2, 5, 10, 17, ... 下一个数是多少?(提示:观察相邻两数的差)4.周期数列:1.1, 2, 3, 1, 2, 3, ... 第20个数是多少?2.A, B, C, A, B, C, ... 第100个数是多少?图形找规律图形的变化:1.一组图形,每个图形由小方块组成,观察图形的变化规律,画出下一个图形。

图形的旋转:1.一个图形不断旋转,观察旋转的规律,画出旋转后的图形。

图形的翻转:1.一个图形不断翻转,观察翻转的规律,画出翻转后的图形。

数字与图形结合数字与图形对应:1.一组图形,每个图形对应一个数字,找出数字与图形之间的对应关系。

图形中的数字规律:1.一个图形中包含多个数字,找出数字之间的规律。

综合题型1.数字和图形的综合:1.一组图形和数字交替出现,找出数字和图形之间的关系。

解题技巧:•观察:仔细观察数列或图形的变化规律,找出其中的共同点和差异点。

•比较:比较相邻的数或图形,找出它们的递增、递减或其他变化关系。

•联想:将题目与以前学过的知识联系起来,寻找解题思路。

•归纳:根据观察和比较的结果,归纳出一般性的规律。

•验证:将得到的规律代入后面的数或图形中进行验证,确保规律的正确性。

注意事项:•找规律题的答案可能不唯一,只要找到一种合理的规律即可。

•遇到困难时,可以尝试从不同的角度去观察和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年中考试题专题之--------猜想、探索规律型一、选择题---1.(2009年四川省内江市)如图,小陈从O 点出发,前进5米后向右转20O , 再前进5米后又向右转20O ,……,这样一直走下去, 他第一次回到出发点O 时一共走了( )A .60米B .100米C .90米D .120米2.(2009年贵州黔东南州)某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子数( )粒。

A 、12+nB 、12-nC 、n 2D 、2+n3.(2009年江苏省)下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数 4.(2009年孝感)对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n nA B 表示这两点间的距离,则112220092009A B A B A B +++的值是A .20092008 B .20082009 C .20102009 D .200920105.(2009年重庆)观察下列图形,则第n 个图形中三角形的个数是( )A .22n +B .44n +C .44n -D .4n6.(2009年河北)古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )……第1个 第2个第3个O 20o20oA .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+31二、填空题1.(2009年四川省内江市)把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。

那么2007,2008,2009,2010这四个数中______________可能是剪出的纸片数2.(2009仙桃)如图所示,直线y =x +1与y 轴相交于点A 1,以OA 1为边作正方形OA 1B 1C 1,记作第一个正方形;然后延长C 1B 1与直线y =x +1相交于点A 2,再以C 1A 2为边作正方形C 1A 2B 2C 2,记作第二个正方形;同样延长C 2B 2与直线y =x +1相交于点A 3,再以C 2A 3为边作正方形C 2A 3B 3C 3,记作第三个正方形;…依此类推,则第n 个正方形的边长为________________.3.(2009年泸州)如图1,已知Rt △ABC 中,AC=3,BC= 4,过直角顶点C 作CA 1⊥A B ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,12C A ,…,则CA 1= ,=5554C A A C4.(2009年桂林市、百色市)如图,在△ABC 中,∠A =α.∠ABC 与∠ACD 的 平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相 交于点A 2,得∠A 2; ……;∠A 2008BC 与∠A 2008CD 的平 分线相交于点A 2009,得∠A 2009 .则∠A 2009= .5.(2009武汉)14.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.6.(2009重庆綦江)观察下列等式:221.4135-=⨯;BACD第4题图A 1A2第1个图形第2个图形第3个图形第4个图形…图14=1+3 9=3+616=6+10图7…222.5237-=⨯; 223.6339-=⨯ 224.74311-=⨯;…………则第n (n 是正整数)个等式为________. 7.(2009成都)已知21(123...)(1)n a n n ==+,,,,记112(1)b a =-,2122(1)(1)b a a =--,…,122(1)(1)...(1)n n b a a a =---,则通过计算推测出n b 的表达式n b =_______.(用含n 的代数式表示)8.(2009年淄博市)如图,网格中的每个四边形都是菱形.如果格点三角形ABC 的面积为S ,按照如图所示方式得到的格点三角形A 1B 1C 1的面积是7S ,格点三角形A 2B 2C 2的面积是19S ,那么格点三角形A 3B 3C 3的面积为.9.(2009年娄底)王婧同学用火柴棒摆成如下的三个“中”字形图案,依此规律,第n 个“中”字形图案需 根火柴棒.10(2009丽水市)如图,图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n-1= .11(2009恩施市)观察数表…① ② ③ ④A A 1A 2 A 3B 3B 2B 1B C 1 C 2 C 3(第17题) C 1 11 1 1 1 1 1 1-1-1-6-6-2-3-5-4-4-3 6 10 15 15 5 A 20- 1根据表中数的排列规律,则字母A 所表示的数是____________.12.(2009年广西南宁)正整数按图8的规律排列.请写出第20行,第21列的数字 .13.(2009年牡丹江市)有一列数1234251017--,,,,…,那么第7个数是 . 14.(2009年广州市)如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________15.(2009年益阳市)图6是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.-16.(2009年济宁市)观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三 角形有 个 .17.(2009年宜宾)如图,菱形ABCD 的对角线长分别为b a 、,以菱形ABCD 各边的中点为顶点作矩形A 1B 1C 1D 1,然后再以矩形A 1B 1C 1D 1的中点为顶点作菱形A 2B 2C 2D 2,……,如此下去,得到四边形A 2009B 2009C 2009D 2009的面积用含 b a 、的代数式表示为 .第20题图3第一行 第二行 第三行 第四行 第五行 第一列 第二列第三列 第四列 第五列 1 2 5 10 17 … 4 3 6 11 18 … 9 8 7 12 19 … 16 15 14 13 20 (25)2423 2221………图8图6(1)(2) (3) ……第1个第2个第3个18.(2009年日照)正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y kx b =+(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是______________.19.(2009年广西钦州)一组按一定规律排列的式子:-2a ,52a ,-83a ,114a ,…,(a ≠0)则第n 个式子是_ _(n 为正整数).20.(2009年广西梧州)图(3)是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为s ,则s = . (用n 的代数式表示s )21.(2009肇庆)15.观察下列各式:11111323⎛⎫=- ⎪⨯⎝⎭,111135235⎛⎫=- ⎪⨯⎝⎭,111157257⎛⎫=- ⎪⨯⎝⎭,…,根据观察计算:1111133557(21)(21)n n ++++⨯⨯⨯-+= .(n 为正整数)22.(2009年湖州) 如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则n S =________ABC S △(用含n 的代数式表示).……n =1 n =2n =3(第17题图)23.(2009年咸宁市)如图所示的运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,……第2009次输出的结果为___________. 【答案】324.(2009年湖北荆州)13.将四张花纹面相同的扑克牌的花纹面都朝上,两张一叠放成两堆不变.若每次可任选一堆的最上面的一张翻看(看后不放回),并全部看完,则共有 种不同的翻牌方式.25.(2009年广东省)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 __________块,第n 个图形中需要黑色瓷砖__________块(用含n 的代数式表示).26.(2009年山西省)下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为 .27.(2009 黑龙江大兴安岭)如图,边长为1的菱形ABCD 中,︒=∠60DAB .连结对角线AC ,以AC 为边作第二个菱形11D ACC ,使 ︒=∠601AC D ;连结1AC ,再以1AC 为边作第三个菱形221D C AC ,使︒=∠6012AC D ;……,按此规律所作的第n 个菱形的边长为 .D 1(1)(2)(3)…………(1) (2) (3)(第14题)BCAE 1 E 2 E 3D 4D 1D 2 D 328.(2009年本溪)16.如图所示,已知:点(00)A ,,B ,(01)C ,在ABC △内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B A B △,…,则第n 个等边三角形的边长等于 .29.观察下表,回答问题:第 个图形中“△”的个数是“○”的个数的5倍.30.(2009年绵阳市)将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置 是第 行第 列.32.(2009年青海)观察下面的一列单项式:x ,22x -,34x ,48x -,…根据你发现的规律,第7个单项式为 ;第n 个单项式为33.(2009年龙岩)观察下列一组数:21,43,65,87,…… ,它们是按一定规律排列的. 那么这一组数的第k 个数是 .34.(2009年抚顺市)观察下列图形(每幅图中最小..的三角形都是全等的),请写出第n 个图中最小..的三角形的个数有 个.16题图35.(2009年梅州市)如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有个,第n幅图中共有个.……第1幅第2幅第3幅第n幅图5。

相关文档
最新文档