(完整版)新人教版八年级下册数学第十七章勾股定理教案

合集下载

人教版数学八年级下册第十七章勾股定理集体备课教学设计

人教版数学八年级下册第十七章勾股定理集体备课教学设计
1.培养学生对勾股定理的兴趣,激发他们学习数学的热情。
2.通过勾股定理的学习,使学生感受到数学的简洁美和统一美,增强他们对数学的热爱。
3.培养学生勇于探索、严谨求实的科学态度,使他们认识到数学在科学技术发展中的重要作用。
4.引导学生学会合作、分享,培养他们的人际沟通能力,增强团队意识。
5.培养学生具备良好的数学素养,使他们能够用数学的眼光观察世界,用数学的思维分析问题,用数学的语言表达观点。
二、学情分析
八年级下册的学生已经在之前的学习中掌握了直角三角形的基本性质,能够识别和运用直角三角形的边长关系。在此基础上,本章勾股定理的学习将是对学生已有知识的拓展和深化。学生在此阶段的认知发展水平逐渐从具体运算向形式运算过渡,他们具备了一定的逻辑推理能力和空间想象能力。因此,本章内容能够引导学生通过观察、思考、探究的方式,发现并理解勾股定理及其应用。
(2)注重培养学生的团队合作意识,引导学生在小组合作中相互学习、共同进步。
(3)关注学生的个体差异,因材施教,使每个学生都能在课堂上得到充分关注。
(4)创设轻松愉快的学习氛围,让学生在愉悦的情感状态下学习,提高学习效率。
5.教学反思:
教学结束后,教师应认真反思教学过程中的优点和不足,针对学生的反馈,调整教学策略,以提高教学效果。同时,关注学生在学习过程中遇到的问题,及时给予指导,帮助他们克服困难,提高自信心。
2.教师对学生的解答进行点评,针对共性问题进行讲解,提高学生的解题能力。
3.鼓励学生运用勾股定理解决实际问题,如计算建筑物的高度、距离等。
4.课堂练习过程中,关注学生的解题思路和方法,及时给予指导和鼓励。
(五)总结归纳
1.教师引导学生回顾本节课的学习内容,总结勾股定理的概念、证明方法和应用。

(完整版)新人教版八年级下册数学第十七章勾股定理教案

(完整版)新人教版八年级下册数学第十七章勾股定理教案

八年级下册数学第十七章勾股定理集体备课(教课设计)17.1 勾股定理(一)一、教课目的1.认识勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培育在实质生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所获得的成就,激发学生的爱国热忱,促其勤劳学习。

二、教课要点、难点1.要点:勾股定理的内容及证明。

2.难点:勾股定理的证明。

三、讲堂引入当前生界上很多科学家正在试图找寻其余星球的“人”, 为此向宇宙发出了很多信号,如地球上人类的语言、 音乐、各样图形等。

我国数学家华罗庚曾建议,发射一种反应勾股定理的图形, 假如宇宙人是“文明人”, 那么他们必定会辨别这类语言的。

这个事实能够说明勾股定理的重要意义。

特别是在两千年前, 是特别了不起的成就。

让学生画一个直角边为 3cm 和 4cm 的直角△ ABC ,用刻度尺量出 AB 的长。

以上这个事实是我国古代 3000 多年前有一个叫商高的人发现的, 他说:“把一根直尺折成直角,两段连接得向来角三角形,勾广三,股修四,弦隅五。

”这句话意思是说一个直角三角形较短直角边(勾)的长是 3,长的直角边(股)的长是 4,那么斜边(弦)的长是 5。

再画一个两直角边为 5 和 12 的直角△ ABC ,用刻度尺量 AB 的长。

你能否发现 32 +42 与 52 的关系, 52+122 和 132 的关系,即 32+42 =52,52+122=132,那么就有勾 2 +股 2=弦 2 。

关于随意的直角三角形也有这个性质吗?达成 23 页的研究,增补下表,你能发现正方形 A 、B 、C 的关系吗?A 的面积(单位面B 的面积(单位面C 的面积(单位面 积) 积) 积)图 1 图 2由此我们能够得出什么结论?可猜想:命题 1:假如直角三角形的两直角边分别为 a 、b ,斜边为 c , 那么 。

四、合作研究:方法 1:已知:在△ ABC 中,∠ C=90°,∠ A 、∠ B 、 DC∠ C 的对边为 a 、b 、c 。

人教版八年级数学下册《17.1勾股定理》教案

人教版八年级数学下册《17.1勾股定理》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
举例解释:
-在讲解勾股定理的表达式时,教师应通过图示和实际例子,让学生明确a、b、c分别代表直角三角形的哪三条边,并强调只有直角三角形才满足这一关系;
-在应用勾股定理解决实际问题时,教师应选取贴近学生生活的例子,如房屋的斜边长度计算,使学生理解数学与生活的紧密联系;
-在介绍证明方法时,教师应详细讲解每种方法的思路和步骤,让学生理解证明的逻辑过程。
-勾股定理在直角三角形中的运用,如求斜边或直角边的长度;
-结合实际情境,运用勾股定理解决问题,如房屋建筑、道路设计等;
-了解勾股定理的数学证明,包括几何证明和代数证明;
-了解勾股定理在古代数学史上的发现和应用。
二、核心素养目标
1.培养学生的逻辑推理能力:通过探索勾股定理的证明过程,让学生体会数学逻辑的严谨性,提高推理和证明能力;
五、教学反思
在今天的教学中,我发现学生们对勾股定理的概念和应用表现出很大的兴趣。通过引入日常生活中的实际问题,他们能够更直观地理解数学知识的应用。在讲授理论时,我注意到有些学生对于几何证明的部分感到困惑,这提示我需要在这个环节上多下功夫。
我尝试使用了不同的教学方法,比如通过动画和模型来展示证明过程,这样有助于学生理解抽象的数学原理。在实践活动环节,分组讨论和实验操作让学生们积极参与,他们不仅学会了如何应用勾股定理,还提高了团队合作能力。
这些核心素养目标与新教材要求相符,注重培养学生的综合能力和人文素养,为学生的终身发展奠定基础。

人教版八年级下册第十七章17.1勾股定理(教案)

人教版八年级下册第十七章17.1勾股定理(教案)
程度不同的练习题,使他们在原有基础上得到提高。
其次,在实践活动和小组讨论中,学生们表现出了很高的热情,积极投入到讨论和实验操作中。但我也观察到,有些小组在讨论过程中容易偏离主题,讨论内容与勾股定理的实际应用关系不大。针对这个问题,我需要在今后的教学中加强对学生的引导,确保讨论主题紧扣教学内容,提高课堂效率。
此外,在课堂总结环节,虽然大部分学生能较好地掌握勾股定理的知识点,但仍有少数学生存在疑问。为了帮助这部分学生更好地消化吸收课堂内容,我计划在课后设置答疑时间,鼓励他们提出问题,并及时给予解答。
-对勾股数的理解和应用:学生需要掌握勾股数的概念,并能够找出勾股数,这对于数感和数学直觉有一定要求。
举例解释:
a.在证明过程的难点上,例如,使用面积法证明勾股定理时,学生可能会难以理解如何从一个大正方形中分割出四个相同的直角三角形和一个中间的小正方形,以及如何通过这些图形的面积关系得出勾股定理。
b.在解决复杂问题的难点上,如在一个不规则图形中识别出直角三角形并应用勾股定理,或者在一个实际问题中,如测量旗杆高度时,学生可能不知道如何将问题抽象为直角三角形的模型,并应用勾股定理。
c.在勾股数的应用上,例如,学生可能知道3、4、5是一组勾股数,但不知道如何找出其他勾股数,或不理解勾股数在建筑、工程等领域中的应用。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情形?”比如,在篮球场地的角落,或是楼梯的形状。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
(二)新课讲授(用时10分钟)

人教版数学八下17.1《勾股定理》教案3篇

人教版数学八下17.1《勾股定理》教案3篇

初中数学教学案例18.1勾股定理(第一课时)教学目标知识技能数学思考解决问题情感态度教学重点教学难点教具教学过程教学流程教师活动学生活动设计意图情景引人[活动1]讲述资料故事提出问题1:数学家大会为什么用该图做会徽呢?它有什么特殊的含义吗?教师作补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”.问题2:你听说过“勾股定理”吗?教师关注:学生对“赵爽弦图”及勾股定理的历史是否感兴趣.引人课题18.1《勾股定理》(板书课题)[活动2]学生观察图片发表见解.生1.会徽是很具有代表性的东西,比如2008年体育奥运会的会徽是五环旗.生2.我在其他的资料里见过这个图案.生3.课本面上也有这样的图案.(同学们积极踊跃的发言,学习积极性很高)学生当听到是“赵爽弦图”时,好奇之心更加强烈,学习热情很高.对“勾股定理”表示不从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料.探究新知A BC你知道他是通过什么途径找到怎样的三边关系的吗?问题1.你能发现S A 、S B 、S C之间的关系吗?问题2.等腰直角三角形的三边a、b、c之间有什么关系?出示幻灯片3169254913否也有这样的性质呢?在本次活动中,教师重点关注:(1)教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形C的面积.理解观察图片后结合课本上的内容,学生很快就发现这一关系式SA+ SB=SCa2 + b2 = c2纷纷举手回答,并总结:等腰直角三角形的两条的平方问题是思维的起点,通过问题激发学生好奇心和主动学习的欲望.为学生提供参与数学活动的时间和组内交流(2)幻灯片展示答案(3)引导学生将三个正方形面积的关系转化为直角三角形三条边之间的关系,并用自己的语言叙述出来:[活动3] 实践验证早在公元3世纪,我国数学家赵爽就用赵爽弦图验证了“勾股定理”幻灯片展示赵爽弦图教师详细介绍赵爽弦图的拼割过程.问题:.你能利用手中的材料通过其他的拼法验证勾股定理吗?试试看,你能拼几种在独立探究的基础上,学生分组(前后位四人一组)合作交流.用不同的方法得出大正方形C的面积生1:把C“补” 成边长为7的正方形面积的一半.生2:将正方形C分“割”成若干个直角边为整数的三角形当答案不同、意见有分歧时,所有同学都在积极思考,大胆发言,各抒己见,直到探求出正确结果.学生总结命题:直角三角形的两条直角边的平方和等于斜边的平方空间,让学生积极动手,发挥学生的主体作用,使学生在相互欣赏、争辩、互助中得到提高.,得出猜想实践验证在本次活动中,教师重点关注:(1)学生能否进行合理的拼图.对不同层次的学生有针对性地给予分析、帮助;(2)学生能否用语言准确的表达自己的观点.勾股定理(毕达哥拉斯定理)(板书)直角三角形两直角边的平方和等于斜边的平方。

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。

2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。

3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。

教学重点:知道勾股定理的结果,并能运用于解题。

教学难点:进一步发展学生的说理和简单推理的意识及能力。

教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。

教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。

今天我们就来一同探索勾股定理。

二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。

这个事实是我国古代3000多年前有一个叫XXX的人发现的。

他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。

讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。

下面这个古老的精彩的证法出自我国古代无名数学家之手。

已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

人教版八年级数学下册17.1《勾股定理》教学设计

人教版八年级数学下册17.1《勾股定理》教学设计
3.遇到问题及时请教同学或老师,解决问题,提高自身能力。
4.作业完成后,进行自我检查,确保答案正确。
2.勾股数的判断和应用,使学生能够灵活运用勾股数解决相关问题。
3.学生在解决实际问题时,能够将勾股定理与其他数学知识相结合,形成综合解决问题的能力。
教学设想:
1.创设情境,引入新课:通过讲述古希腊数学家毕达哥拉斯在朋友家发现勾股定理的故事,激发学生的学习兴趣,为新课的学习营造良好的氛围。
2.自主探究,合作交流:引导学生通过观察、分析、归纳等思维活动,发现勾股定理。在此基础上,组织学生进行小组讨论,分享各自的发现和证明方法,培养学生的合作意识和交流能力。
2.提问引导:请学生们思考直角三角形的特点,回顾已学的直角三角形相关知识,为新课的学习做好铺垫。
(二)讲授新知
1.勾股定理的概念及表述:
"勾股定理是关于直角三角形的一个基本定理,它描述了直角三角形三条边之间的关系。具体来说,直角三角形的两条直角边的平方和等于斜边的平方。"
2.勾股定理的证明:
a.利用具体的直角三角形进行演示,引导学生观察、思考、发现勾股定理。
8.融入数学文化,培养人文素养:在教学过程中,适时融入数学历史文化,让学生了解勾股定理在人类文明发展中的地位和作用,培养他们的人文素养。
四、教学内容与过程
(一)导入新课
1.情境引入:通过古希腊数学家毕达哥拉斯在朋友家发现勾股定理的故事,引发学生对勾股定理的好奇心,激发学习兴趣。
"同学们,你们听说过古希腊数学家毕达哥拉斯吗?今天我们要学习的勾股定理,就是他在一次偶然的机会中发现的。让我们一起走进这个故事,探寻勾股定理的奥秘吧!"
"有兴趣的同学可以研究一下勾股数在三角形中的应用,以及它与三角形类型之间的关系,这将有助于你们更深入地理解勾股定理。"

人教版八年级数学下册17.1.1勾股定理(教案)

人教版八年级数学下册17.1.1勾股定理(教案)
在教学内容方面,我意识到需要更加强调勾股定理在生活中的应用。学生们对于理论知识的学习往往感到枯燥,但如果能让他们了解到这些知识在实际生活中的重要作用,相信他们会更有兴趣去学习。
最后,我会继续关注学生的学习反馈,以便在今后的教学中更好地满足他们的需求。通过不断反思和改进,我希望能够帮助学生们在数学学习上取得更好的成绩。
举例:在讲解勾股定理的应用时,可以给出具体例子,如直角三角形中,一边长为3,另一边长为4,求斜边长。强调学生需要将已知信息与勾股定理直接联系起来,得出斜边长为5的结论。
2.教学难点
-难点内容:勾股定理的证明及其在复杂问题中的应用。
-学生可能遇到的难点:
a.理解和掌握勾股定理的证明过程,尤其是割补法等几何证明方法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情况?”(如测量墙壁上的画作高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
b.在实际问题中,如何将问题抽象为直角三角形模型并应用勾股定理。
c.对于非整数勾股数或非标准直角三角形的识别和应用。
d.在计算过程中,对平方根的理解和运用。
举例:对于割补法的证明,教师可以通过动态演示或实际操作教具,帮助学生形象地理解证明过程。对于实际问题的应用,可以设计一些综合性的题目,如建筑物的高度测量,要求学生能够将实际问题转化为直角三角形的斜边求解问题。针对非整数勾股数,可以引导学生通过探索发现勾股定理在分数和根号下的应用。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表述和计算方法这两个重点。对于难点部分,如割补法的证明,我会通过图示和实际操作来帮助大家理解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学第十七章勾股定理集体备课(教案)17.1 勾股定理(一)一、教学目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

二、教学重点、难点1.重点:勾股定理的内容及证明。

2.难点:勾股定理的证明。

三、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。

我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。

这个事实可以说明勾股定理的重大意义。

尤其是在两千年前,是非常了不起的成就。

让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。

以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。

你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。

对于任意的直角三角形也有这个性质吗?命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么 。

四、合作探究:方法1:已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正 AB4×21ab +(b -a )2=c 2,化简可证。

⑶发挥学生的想象能力拼出不同的图形,进行证明。

⑷ 勾股定理的证明方法,达300余种。

这个古老的精彩的证法,出自我国古代无名数学家之手。

激发学生的民族自豪感,和爱国情怀。

方法2:已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

分析:左右两边的正方形边长相等,则两个正方形的面积相等。

左边S=4×21ab +c 2 右边S=(a+b )2 左边和右边面积相等,即4×21ab +c 2=(a+b )2 化简可证。

五、课堂小结六、作业 P28页习题第1题七、教学反思17.1 勾股定理(二)一、教学目标1.会用勾股定理进行简单的计算。

2.树立数形结合的思想、分类讨论思想。

二、重点、难点1.重点:勾股定理的简单计算。

2.难点:勾股定理的灵活运用。

三、课堂引入复习勾股定理的文字叙述;勾股定理的符号语言及变形。

学习勾股定理重在应用。

四、合作探究问题(1)在长方形ABCD 中AB 、BC 、AC 大小关系?(2)一个门框的尺寸如图1所示.①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过? ②若薄木板长3米,宽1.5米呢?③若薄木板长3米,宽2.2米呢?为什么?b b b cccc a a a a bb b b a ac c a C2例:如图2,一个3米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为2.5米.①求梯子的底端B距墙角O多少米?②如果梯的顶端A沿墙下滑0.5米至C.算一算,底端滑动的距离近似值(结果保留两位小数).O五、课堂小结六、作业 P28页习题第2、5题七、教学反思17.1 勾股定理(三)一、教学目标1.会用勾股定理解决较综合的问题。

2.树立数形结合的思想。

二、重点、难点1.重点:勾股定理的综合应用。

2.难点:勾股定理的综合应用。

三、课堂引入复习勾股定理的内容。

本节课探究勾股定理的综合应用。

四、合作探究:分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。

如图,已知OA=OB,(1)说出数轴上点A所表示的数。

图17.2-2(2)在数轴上作出8对应的点?AO 1B变式训练:在数轴上画出表示22,13--的点。

五、课堂小结六、作业 P28页习题第6题七、教学反思17.2 勾股定理的逆定理(一)一、教学目标1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。

2.探究勾股定理的逆定理的证明方法。

3.理解原命题、逆命题、逆定理的概念及关系。

二、重点、难点1.重点:掌握勾股定理的逆定理及证明。

2.难点:勾股定理的逆定理的证明。

三、课堂引入创设情境:⑴怎样判定一个三角形是等腰三角形?⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。

四、合作交流:1、如图17.2-2,若△ABC 的三边长a 、b 、c 满足222c b a=+,试证明△ABC是直角三角形,请简要地写出证明过程.分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。

⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。

⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。

⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A 1B 1=c ,则通过三边对应相等的两个三角形全等可证。

⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。

充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。

证明略。

2、.此定理与勾股定理之间有怎样的关系? (1)什么叫互为逆命题。

(2)什么叫互为逆定理。

(3)任何一个命题都有 _____,但任何一个定理未必都有 __ 3.说出下列命题的逆命题。

这些命题的逆命题成立吗? (1) 两直线平行,内错角相等;(2) 如果两个实数相等,那么它们的绝对值相等; (3) 全等三角形的对应角相等;(4) 角的内部到角的两边距离相等的点在角的平分线上。

分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。

⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。

解略。

例1:判断由线段a 、b 、c 组成的三角形是不是直角三角形: (1)17,8,15===c b a ; (2)15,14,13===c b a . (3)25,24,7===c b a ; (4)5.2,2,5.1===c b a ;五、课堂小结六、作业 P34页习题第1题七、教学反思17.2 勾股定理的逆定理(二)一、教学目标1.灵活应用勾股定理及逆定理解决实际问题。

2.进一步加深性质定理与判定定理之间关系的认识。

二、重点、难点1.重点:灵活应用勾股定理及逆定理解决实际问题。

2.难点:灵活应用勾股定理及逆定理解决实际问题。

三、课堂引入创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。

四、自学展示:已知:如图,四边形ABCD ,AD ∥BC ,AB=4,BC=6,CD=5,AD=3。

求:四边形ABCD 的面积。

归纳:求不规则图形的面积时,要把不规则图形分析:⑴作DE ∥AB ,连结BD ,则可以证明△ABD ≌△EDB (ASA );⑵DE=AB=4,BE=AD=3,EC=EB=3;⑶在△DEC 中,3、4、5勾股数,△DEC 为直角三角形,DE ⊥BC ;⑷利用梯形面积公式可解,或利用三角形的面积。

五、合作探究例2 “远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗? 分析:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24, QR=30; ⑷因为242+182=302,PQ 2+PR 2=QR 2,根据勾股定理 的逆定理,知∠QPR=90°; ⑸∠PRS=∠QPR-∠QPS=45°。

六、课堂小结让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

七、作业 P34页习题第3题EABCD E八、教学反思第17章 勾股定理复习(一)教学目标1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边.2.勾股定理的应用.3.会运用勾股定理的逆定理,判断直角三角形. 重点:掌握勾股定理及其逆定理.难点:理解勾股定理及其逆定理的应用. 一、复习回顾在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定理以及它的应用.其知识结构如下:1.勾股定理:(1)直角三角形两直角边的______和等于_______的平方.就是说,对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有: 这就是勾股定理.(2)勾股定理揭示了直角三角形___之间的数量关系,是解决有关线段计算问题的重要依据.22222222,,b a c a c b b c a +=-=-=,2222,a c b b c a -=-=.勾股定理的探索与验证,一般采用“构造法”.通过构造几何图形,并计算图形面积得出一个等式,从而得出或验证勾股定理. 2.勾股定理逆定理“若三角形的两条边的平方和等于第三边的平方,则这个三角形为________.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a 2+b 2=c 2),先构造一个直角边为a,b 的直角三角形,由勾股定理证明第三边为c,进而通过“SSS ”证明两个三角形全等,证明定理成立. 3.勾股定理的作用:(1)已知直角三角形的两边,求第三边;(2)在数轴上作出表示n (n 为正整数)的点.勾股定理的逆定理是用来判定一个三角形是否是直角三角形的.勾股定理的逆定理也可用来证明两直线是否垂直,勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.(3)三角形的三边分别为a 、b 、c ,其中c 为最大边,若222c b a =+,则三角形是直角三角形;若222c b a >+,则三角形是锐角三角形;若2<+c b a 22,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的最大边. 二、合作交流:例1:如果一个直角三角形的两条边长分别是6cm 和8cm ,那么这个三角形的周长和面积分别是多少?例2:如图,在四边形ABCD 中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD ⊥BD .例3:.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长例4:.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E21EDCBA四、学习检测:1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .321,421,521 C .3,4,5 D .4,721,821 2.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍 B .2倍 C .3倍 D .4倍 3.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( )A .6cmB .8.5cmC .1330cm D .1360cm4.在△ABC 中,三条边的长分别为a ,b ,c ,a =n 2-1,b =2n ,c =n 2+1(n >1,且n 为整数),这个三角形是直角三角形吗?若是,哪个角是直角5.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )A .50cmB .100cmC .140cmD .80cm6.等腰△ABC 的面积为12cm 2,底上的高AD =3cm ,则它的周长为 . 7.等边△ABC 的高为3cm ,以AB 为边的正方形面积为 .8.一个三角形的三边的比为5∶12∶13,它的周长为60cm ,则它的面积是 。

相关文档
最新文档