特殊三角形知识点及例题

合集下载

浙教版-8年级-上册-数学-第2章《特殊三角形》分节知识点

浙教版-8年级-上册-数学-第2章《特殊三角形》分节知识点

浙教版-8年级-上册-数学-第2章《特殊三角形》分节知识点一、轴对称要点一、轴对称图形1、轴对称图形的定义:一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:(1)轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.要点二、轴对称1、轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点.要点诠释:(1)轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2、轴对称与轴对称图形的区别与联系(1)轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.要点三、轴对称与轴对称图形的性质1、轴对称、轴对称图形的性质(1)在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等要点诠释:(1)若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.二、等腰三角形性质定理要点一、等腰三角形的定义1、等腰三角形(1)有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.(2)如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2、等腰三角形的作法(1)已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1、作线段BC=a;2、分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3、连接AB,AC.△ABC为所求作的等腰三角形.3、等腰三角形的对称性(1)等腰三角形是轴对称图形;(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4、等边三角形(1)三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰直角三角形的两个底角相等,且都等于45°,等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=.(2)用尺规作图时,画图的痕迹一定要保留,这些痕迹一般是画的轻一些,能看清就可以了,题目中要求作的图要画成实线,最后一定要点题,即“xxx即为所求”.(3)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.(4)等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a的等边三角形它的高是,面积是.要点二、等腰三角形的性质1、等腰三角形的性质(1)性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.(2)推论:等边三角形的各个内角都等于60°.(3)性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2、等腰三角形的性质的作用(1)证明两条线段或两个角相等的一个重要依据.3、尺规作图:已知底边和底边上的高(1)已知线段a,h(如图)用直尺和圆规作等腰三角形ABC,使底边BC=a,BC边上的高线为h.作法:1、作线段BC=a.2、作线段BC的垂直平分线l,交BC与点D.3、在直线l上截取DA=h,连接AB,AC.△ABC就是所求作的等腰三角形.三、等腰三角形的判定定理要点一、等腰三角形的判定定理1、等腰三角形的判定定理(1)如果一个三角形有两个角相等,那么这个三角形是等腰三角形.可以简单的说成:在一个三角形中,等角对等边.2、等边三角形的判定定理(1)三个角相等的三角形是等边三角形.(2)有一个角是60°的等腰三角形是等边三角形.要点诠释:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)等边三角形是中考中常考的知识点,需要记住一下数据:边长为a的等边三角形它的高是,面积是.要点二、命题与逆命题,定理与逆定理(1)在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题.每个命题都有它的逆命题,但每个真命题的逆命题不一定是真命题.(2)如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的逆定理,这两个定理叫做互逆定理.要点诠释:(1)每一个定理不一定都有逆定理,如果它存在逆定理,那么它一定是正确的.要点三、线段垂直平分线定理的逆定理(1)到线段两端距离相等的点在线段的垂直平分线上.已知:AB是一条线段,P是一点,且PA=PB.求证:点P在线段AB的垂直平分线上.证明:(1)当点P在线段AB上时,结论显然成立.(2)当点P不在线段AB上时,作PC⊥AB于点O.PA=PB,PO⊥AB,∵OA=OB,∴PC是AB的垂直平分线.∴点P在线段AB的垂直平分线上.四、直角三角形要点一、直角三角形的概念(1)有一个角是直角的三角形是直角三角形.直角三角形表示方法:Rt△.如下图,可以记作“Rt△ABC”.要点诠释:(1)三角形有六个元素,分别是:三个角,三个边,在直角三角形中,有一个元素永远是已知的,就是有一个角是90°.直角三角形可分为等腰直角三角形和含有30°的直角三角形两种特殊的直角三角形,每种三角形都有其特殊的性质.要点二、直角三角形的性质(1)直角三角形的两个锐角互余.(2)直角三角形斜边上的中线等于斜边的一半.要点诠释:(1)直角三角形的特征是两锐角互余,反过来就是直角三角形的一个判定:两个角互余的三角形是直角三角形.(2)含有30°的直角三角形中,同样有斜边上的中线等于斜边的一半,并且30°的角所对的直角边同样等于斜边的一半.要点三、直角三角形判定(1)两个角互余的三角形是直角三角形.(2)在一个三角形中,如果一边的中线等于这边的一半,那么这个三角形是直角三角形.如图:已知:CD为AB的中线,且CD=AD=BD,求证:△ABC是直角三角形.证明:∵AD=CD,∴∠A=∠1.同理∠2=∠B.∵∠2+∠B+∠A+∠1=180°,即2(∠1+∠2)=180°,∴∠1+∠2=90°,即:∠ACB=90°,∴△ABC是直角三角形.五、勾股定理要点一、勾股定理(1)直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,,.要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的作用(1)已知直角三角形的任意两条边长,求第三边;(2)用于解决带有平方关系的证明问题;(3)利用勾股定理,作出长为的线段.六、勾股定理的逆定理要点一、勾股定理的逆定理(1)如果三角形的三条边长,满足,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如).(2)验证与是否具有相等关系.若,则△ABC是∠C=90°的直角三角形;若,则△ABC不是直角三角形.要点诠释:(1)当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.要点三、互逆命题(1)如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.要点诠释:(1)原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.要点四、勾股数(1)满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.(1)熟悉下列勾股数,对解题会很有帮助:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)(是自然数)是直角三角形的三条边长;(2)(是自然数)是直角三角形的三条边长;(3)(是自然数)是直角三角形的三条边长;七、直角三角形全等判定要点一、判定直角三角形全等的一般方法(1)由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理(1)斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“HL”时,虽只有两个条件,但必须先有两个Rt△的条件.要点三、角平分线的第二个性质定理(1)角的内部,到角两边距离相等的点,在这个角的平分线上.要点诠释:(1)这个性质定理和“角平分线上的点到角两边的距离相等”是互逆定理.它们的题设和结论交换了位置,运用的时候,一定要分清题设是什么,求证的结论又是什么.切不可发生混淆.。

三角形及特殊三角形知识点(经典完整版)

三角形及特殊三角形知识点(经典完整版)

三角形及特殊三角形知识点(经典完整版)
三角形及特殊三角形知识点(经典完整版)
三角形定义
三角形是一个由三条边和三个内角组成的图形。

根据边长关系,三角形可以分为以下三种情况:
1. 等边三角形:三条边的长度都相等。

2. 等腰三角形:两条边的长度相等。

3. 普通三角形:三条边的长度都不相等。

三角形内角和
三角形的三个内角之和始终为180度。

根据角度大小,三角形
可以进一步分类:
1. 直角三角形:一个内角为90度。

2. 钝角三角形:一个内角大于90度。

3. 锐角三角形:三个内角都小于90度。

三角形特性
三角形还有一些重要属性和特性:
1. 垂心:垂心是三角形三条高的交点,即垂直于三边的线段的交点。

2. 重心:重心是三角形三条中线的交点,即三角形三个顶点与对边中点的连线的交点。

3. 外心:外心是三角形外接圆的圆心,即可以过三角形三个顶点的圆的圆心。

4. 内心:内心是三角形内切圆的圆心,即可以切三角形三个边的圆的圆心。

特殊三角形
除了普通的三角形外,还有一些特殊的三角形:
1. 等边三角形:三条边的长度都相等,内角均为60度。

2. 等腰直角三角形:一个内角为90度,且两条直角边的长度相等。

3. 等腰钝角三角形:一个内角大于90度,且两条等腰边的长度相等。

4. 等腰锐角三角形:三个内角都小于90度,且两条等腰边的长度相等。

以上是关于三角形及特殊三角形的一些知识点。

掌握这些概念可以帮助我们更好地理解三角形的性质和特点。

直角三角形知识点

直角三角形知识点

直角三角形知识点直角三角形是一种特殊的三角形,其内部包含一个90度的直角。

本文将介绍直角三角形的定义、性质、勾股定理以及一些相关的例题。

一、直角三角形的定义直角三角形是指一个三角形内部有一个角度是90度的三角形。

在直角三角形中,较长的边称为斜边,与直角相邻的边称为直角边。

直角三角形的性质与常规三角形有着显著的不同。

二、直角三角形的性质1. 直角三角形中,直角边的长度相等。

2. 根据勾股定理,直角三角形中的斜边长度等于直角边长度的平方和的平方根。

3. 直角三角形的三个角度之和等于180度。

三、勾股定理勾股定理是直角三角形中最重要的定理之一,也是直角三角形应用最为广泛的原理。

勾股定理表述如下:直角三角形中,斜边的平方等于直角边的平方和。

公式表示为:c² = a² + b²其中,c表示斜边的长度,a和b分别表示直角三角形的两个直角边的长度。

勾股定理在日常生活中有许多应用,例如测量直角三角形的边长,计算三角形的角度等。

四、直角三角形的应用举例1. 求斜边长度:根据已知直角边的长度,可以利用勾股定理求出斜边的长度。

2. 求角度大小:已知两个直角边的长度,可以利用三角函数中的正弦、余弦和正切等函数求出各个角度的大小。

3. 判断三角形是否为直角三角形:通过测量三个角度的大小,如果发现其中一个角度为90度,则可以判断为直角三角形。

五、例题解析1. 已知一个直角三角形的直角边长为3cm和4cm,求斜边的长度。

根据勾股定理,斜边的长度c = √(3² + 4²) = √(9 + 16) = √25 = 5cm。

2. 已知一个直角三角形的斜边长为10cm,直角边的长度为6cm,求另一个直角边的长度。

根据勾股定理,直角边的长度a或b = √(c² - 直角边的长度²) = √(10² - 6²) = √(100 - 36) = √64 = 8cm。

特殊三角形(知识点汇总 浙教8上)

特殊三角形(知识点汇总 浙教8上)

第2章特殊三角形一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点34.轴对称的性质①关于某直线对称的两个图形是全等形。

①如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

①轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

①如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、角的平分线:1、(性质)角的平分线上的点到角的两边的距离相等.2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。

四、等腰三角形1.等腰三角形的性质(1)等腰三角形的两个底角相等。

(等边对等角)(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)(3)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°①等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

①等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a ①等腰三角形的三角关系:设顶角为顶角为①A ,底角为①B 、①C ,则①A=180°—2①B ,①B=①C=2180A∠-︒ 2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等 判定:SSS 、SAS 、ASA 、AAS 。

特殊三角形

特殊三角形

特殊三角形知识定位特殊三角形在初中几何或者竞赛中占据非常大的地位,不管三解形还是特殊三角形是平面几何中最重要的图形,它的有关知识是今后我们学习四边形、多边形乃至立体几何的重要基础。

特殊三角形的判定和性质是证明有关三角形问题的基础,必须熟练掌握。

本节我们通过一些实例的求解,旨在介绍数学竞赛中特殊三角形相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。

知识梳理三角形类型定义性质判定等腰三角形有两条边相等的三角形是等腰三角形,其中相等的两条边分别叫做腰,另一条边叫做底边,两腰的夹角叫顶角,腰和底边的夹角为底角1.等腰三角形是对称图形,顶角平分线所在直线为它的对称轴2.等腰三角形两底角相等,即在同一个等腰三角形中,等边对等角3.等腰三角形的顶角平分线,底边上的中线和高线互相重合,简称等腰三角形的三线合一1.(定义法)有两条边相等的三角形是等腰三角形2.如果一个三角形有两个角相等,那么这个三角形是等腰三角形,即,在同一个三角形中,等角对等边等边三角形三条边都相等的三角形是等边三角形,它是特殊的等腰三角形,也叫正三角形1.等边三角形的内角都相等,且为60°2.等边三角形是轴对称图形,且有三条对称轴3.等边三角形每条边上的中线,高线和所对角的角平分线三线合一,他们所在的直线都是等边三角形的对称轴1.三条边都相等的三角形是等边三角形2.三个内角都等于60°的三角形是等边三角形3.有一个角是60°的等腰三角形是等边三角形直角三角形有一个角是直角的三角形是直角三角形,即“R t△”1.直角三角形的两锐角互余2.直角三角形斜边上的中线等于斜边的一半3.直角三角形中30°角所对的直角边等于斜边的一半4.直角三角形中两条直角边的平方和等于斜边的平方(勾股定理)1.有一个角是直角的三角形是直角三角形2.有两个角互余的三角形是直角三角形3.如果一个三角形中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形(勾股定理逆定理)2、等腰三角形(1)有两条边相等的三角形叫做等腰三角形;三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形。

浙教版八年级数学上册第二章知识点+注意点+经典例题

浙教版八年级数学上册第二章知识点+注意点+经典例题

八年级上册第二章《特殊三角形》2.1图形的轴对称[轴对称图形]1.如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.2.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.3.折叠后重合的点是对应点,叫做对称点.[轴对称]有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.ﻭ[图形轴对称的性质]①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称.[轴对称与轴对称图形的区别][线段的垂直平分线](1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.2。

2等腰三角形+2。

3等腰三角形性质定理+2。

4等腰三角形判定定理[等腰三角形]★1. 有两条边相等的三角形是等腰三角形。

★2。

在等腰三角形中,相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.[等腰三角形的性质]★性质1:等腰三角形的两个底角相等(简写成“等边对等角”)★性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一).特别的:(1)等腰三角形是轴对称图形。

(2)等腰三角形两腰上的中线、角平分线、高线对应相等.[等腰三角形的判定定理]★如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边").特别的:(1)有一边上的角平分线、中线、高线互相重合的三角形是等腰三角形. (2)有两边上的角平分线对应相等的三角形是等腰三角形.(3)有两边上的中线对应相等的三角形是等腰三角形.(4)有两边上的高线对应相等的三角形是等腰三角形.[等边三角形]三条边都相等的三角形叫做等边三角形,也叫做正三角形.[等边三角形的性质]★等边三角形的三个内角都相等,•并且每一个内角都等于60°[等边三角形的判定方法]★(1)三条边都相等的三角形是等边三角形;★(2)三个角都相等的三角形是等边三角形;★(3)有一个角是60°的等腰三角形是等边三角形.2。

特殊三角形性质

特殊三角形性质
求:∠A,BC。
12.如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD= ,AB=20.求∠A的度数。
13.(2010•雅安)如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN。
10.如图,在△ABC中,∠B=∠C,D在BC上,∠BAD=50°AE=AD,则∠EDC的度数为()
A.15°B. 25°C. 30°D. 50°
11.如图,△ABC中,∠B=45°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=18㎝,求△DEB的周长。
12.在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、E.若∠CAB=∠B+30°,求∠AEB.
勾股定理:直角三角形斜边的平方等于两直角边的平方和。
【经典例题】
【例1】已知:如图,在△ABC中,∠A=45°,AC= ,AB= ,CD⊥AB,求BC边的长。
【例2】已知:如图,在△ABC中,∠A=30°,∠ACB=90°,M、D分别为AB、MB的中点.
求证:CD⊥AB。
【例3】如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.
9.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3 cm,BC=5 cm,则重叠部分△DEF的面积是cm2。
10.已知 三内角 的对边分别为 ,给出以下条件: ① 的度数之此为 ; ② =
③ ④
其中不能推导出 为直角三角形的条件是(写序号即可)。
11.在△ABC中,BD⊥AC,垂足为D点,已知,AB=8,AD=4,∠ABC=75°.

特殊三角形知识点及例题

特殊三角形知识点及例题

特殊三角形知识点及例题三角形是几何学中的基本形状之一,由三条边和三个角构成。

在三角形中,存在着一些特殊的三角形,它们具有一些特殊的性质和性质。

本文将介绍特殊三角形的知识点,并给出一些例题供读者练习。

一、等边三角形等边三角形是指三条边的边长相等的三角形。

等边三角形具有以下特点:1. 三条边相等。

2. 三个角都是60度。

3. 对称轴是三条中线,也是三条高线,也是三条角平分线。

例题:1. 在等边三角形ABC中,AB=BC=CA=6cm,求三角形的高度。

解:由于等边三角形的高线与中线重合且相等,所以三角形的高高线长等于边长。

二、等腰三角形等腰三角形是指两条边的边长相等的三角形。

等腰三角形具有以下特点:1. 两条边相等。

2. 两个底角(底边两侧的角)相等。

3. 对称轴是高线,也是角平分线。

例题:1. 在等腰三角形ABC中,AB=AC=4cm,BC=6cm,求三角形的高度。

解:由等腰三角形的性质可知,高线与底边垂直且平分底角,所以可以利用勾股定理求解。

三、直角三角形直角三角形是指其中一个角为90度的三角形。

直角三角形具有以下特点:1. 包含一个直角(90度)。

2. 两边的平方和等于斜边的平方(勾股定理)。

3. 对称轴是斜边的中线和中线的垂线。

例题:1. 在直角三角形ABC中,∠ABC=90度,AB=3cm,BC=4cm,求三角形的斜边长度。

解:利用勾股定理可以求得斜边的长度。

四、等腰直角三角形等腰直角三角形是指两条直角边的长度相等的直角三角形。

等腰直角三角形具有以下特点:1. 包含一个直角(90度)。

2. 两条直角边相等。

3. 对称轴是斜边的中线和中线的垂线。

例题:1. 在等腰直角三角形ABC中,∠ABC=90度,AB=AC=5cm,求三角形的斜边长度。

解:利用勾股定理可以求得斜边的长度。

五、等腰直角三角形等腰直角三角形是指两条直角边的长度相等的直角三角形。

等腰直角三角形具有以下特点:1. 包含一个直角(90度)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊三角形一、知识结构本章主要学习了等腰三角形的性质与判定、直角三角形的性质与判定以及勾股定理、HL 定理等知识,这些知识点之间的结构如下图所示:等腰Rt两直角三角形全等的判定直角三角形的性质和判定等边三角形的性质和判定等腰三角形的性质和判定直角三角形等边三角形等腰三角形特殊三角形二、重点回顾1.等腰三角形的性质:等腰三角形两腰_______;等腰三角形两底角______(即在同一个三角形中,等边对_____);等腰三角形三线合一,这三线是指________________、________________、________________,也就是说这三线为同一条线段;等腰三角形是________图形,它的对称轴有_________条。

2.等腰三角形的判定:有____边相等的三角形是等腰三角形;有_____相等的三角形是等腰三角形(即在同一个三角形中,等角对_____)。

3.等边三角形的性质:等边三角形各条边______,各内角_______,且都等于_____;等边三角形是______图形,它有____条对称轴。

4.等边三角形的判定:有____边相等的三角形是等边三角形;有三个角都是______的三角形是等边三角形;有两个角都是______的三角形是等边三角形;有一个角是______的______ 三角形是等边三角形。

5.直角三角形的性质:直角三角形两锐角_______;直角三角形斜边上的中线等于_______;直角三角形两直角边的平方和等于________(即勾股定理)。

30°角所对的直角边等于斜边的________ 6.直角三角形的判定:有一个角是______的三角形是直角三角形;有两个角_______的三角形是直角三角形;两边的平方和等于_______的三角形是直角三角形。

一条边上的中线等于该边长度的一半,那么该三角形是直角三角形,但不能直接拿来判断某三角形是直角三角形,但有助于解题。

7.直角三角形全等的判定:斜边和___________ 对应相等的两个直角三角形全等。

8.角平分线的性质:在角内部到角两边___________在这个角的平分线上。

三、重点解读1.学习特殊三角形,应重点分清性质与判定的区别,两者不能混淆。

一般而言,根据边角关系判断一个图形形状通常用的是判定,而根据图形形状得到边角关系那就是性质;2.等腰三角形的腰是在已知一个三角形是等腰三角形的情况下才给出的名称,即先有等腰三角形,后有腰,因此在判定一个三角形是等腰三角形时千万不能将理由说成是“有两腰相等的三角形是等腰三角形”;3.直角三角形斜边上的中线不仅可以用来证明线段之间的相等关系,而且它也是今后研究直角三角形问题较为常用的辅助线,熟练掌握可以为解题带来不少方便;4.勾股定理反映的是直角三角形两直角边和斜边之间的平方关系,解题时应注意分清哪条是斜边,哪条是直角边,不要一看到字母“c”就认定是斜边。

不要一看到直角三角形两边长为3和4,就认为另一边一定是5;5.“HL”是仅适用于判定直角三角形全等的特殊方法,只有在已知两个三角形均是直角三角形的前提下,此方法才有效,当然,以前学过的“SSS”、“SAS”、“ASA”、“AAS”等判定一般三角形全等的方法对于直角三角形全等的判定同样有效。

本章解题时用到的主要数学思想方法:⑴分类讨论思想(特别是在语言模糊的等腰三角形中)⑵方程思想:主要用在折叠之后产生直角三角形时,运用勾股定理列方程;还有就是在等腰三角形中求角度,求边长⑶等面积法四、典型例题(一)、角平分线+平行线1、在△ABC 中,三内角互不相等,BO 平分∠ABC ,CO 平分∠ACB 。

过O 点作EF, BC 。

(1)图中有几个等腰三角形?(2)猜测线段BE 、CF 、EF2、在△ABC 中,∠ABC=∠ACB ,BO 平分∠ABC , CO 平分∠ACB,过O 点作EF , 使EF ∥BC ,且∠EBO=30°。

若BE=5,△ABC 的周长为_________。

(二)、角平分线+垂线3、如图:AB=AC ,∠1=∠2,AE ⊥CD 于F 交BC 于点E ,求证:AB=CE4、如图,△ABC 是等腰直角三角形,其中∠A=90°,BD 平分∠ABC 交AC 于点D ,CE ⊥BD 交BD 的延长线于点E ,求证:BD=2CE(三)、直角三角形的一个锐角平分线+斜边上的高线5、如图,在△ABC 中,∠ACB=90°,AE 平分∠CAB ,CD ⊥AB 于D ,它们交于点F ,△CFE 是等腰三角形吗?试说明理由.(四)、等边三角形的几个基本图形:6、等边三角形ABC 中,BD=CE ,连接AD 、BE 交于点F 。

∠AFE=_________。

7、如图点A 、C 、E 在同一直线上,△ABC 和△CDE 都是等边三角形,M 、N 分别是AD 、BE 的中点。

说明: △CMN 是等边三角形。

A B CD EM N 图1 A B C DE M N图2 A BC D M N 图38、已知等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、BC•的距离分别是h 1,h 2,h 3,△ABC 的高为h ,若点P 在一边BC 上(图1),此时h 3=0,可得结论h 1+h 2+h 3=h ,请你探索以下问题:当点P 在△ABC 内(图2)和点P 在△ABC 外(图3)这两种情况时,h 1、h 2、h 3与h•之间有怎样的关系,请写出你的猜想,并简要说明理由.BA D CEB A DCEP BADCF E(五)、等腰直角三角形的几个基本应用9、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥M 于E 。

(1)当直线MN 绕点C 旋转到图1位置时,说明△ADC ≌△CEB 的理由; (2)当直线MN 绕点C 旋转到图2位置时,说明DE=AD -BE 的理由;(3)当直线MN 绕点C 旋转到图3位置时,试问DE 、 AD 、BE 有怎样的等量关系?请写出这个等量关系,并说明理由.10、如图,在直角△ABC 中,∠C=90,AC=BC ,D ,E 分别在BC 和AC 上,且BD=CE ,M 是AB 的中点。

求证:△MDE 是等腰直角三角形。

(六)、勾股定理、勾股定理的逆定理、勾股定理与方程11、观察下面表格中所给出的三个数a ,b ,c ,其中a ,b ,c 为正整数,且a<b<c (1):试找出他们的共同点,并证明你的结论 (2):当a=21时,求b ,c 的值12、如图,P 是等边三角形ABC 内的一点,连结PA 、PB 、PC ,•以BP 为边作∠PBQ=60°,且BQ=BP ,连结CQ 。

(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.(2)若PA :PB :PC=3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由.14、矩形纸片ABCD 的边AB=10cm,BC=6cm,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在DC 边上的点G 处,求BE 的长。

(七)、需要分类讨论的(主要是由语言的模糊造成要讨论)有一个角等于50°,另一个角等于__________的三角形是等腰三角形。

有一个直角三角形的两条直角边为3,4,则第三条边长为__________如图,等腰三角形ABC中,AB=AC,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长。

(八)作图题如图,求作一点P,使PC=PD,并且使点P到∠AOB两边的距离相等,并说明你的理由.【考点精练】一、基础训练1.如图1,在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=_____°.(1)(2)(3)2.如图2,是由9个等边三角形拼成的六边形,•若已知中间的小等边三角形的边长是a,则六边形的周长是_______.3.如图3,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=________度.4.如图4,在等腰直角△ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则∠BAC′等于________.(4)(5)5.如图5,沿AC方向开山修渠,为了加快施工进度,•要在小山的另一边同时施工.从AC上的一点B取∠ABD=135°,BD=520米,∠D=45°,如果要使A、C、E成一直线,那么开挖点E离D的距离约为_______米(精确到1米).6.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P•运动的时间应为________.7.如图7,在△ABC中,AB=AC ,∠BAD=20•°,且AE=•AD ,则∠CDE=________.(7) (8) (9)8.如图8,在等腰三角形ABC 中,AB=AC ,∠A=44°,CD ⊥AB 于D ,则∠DCB 等于( ) A .44° B .68° C .46° D .22°9.如图9,要在离地面5m 处引拉线固定电线杆,•使拉线和地面成60°角,若考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2m ,L 2=6.2m ,L 3=7.8m ,L 4=10m 的四种备用拉线材料中,拉线AC 最好选用( )A .L 1B .L 2C .L 3D .L 410.如图10,在△ABC 中,AB=AC ,D 为AC 边上一点,且BD=BC=AD .•则∠A 等于( )A .30° B.36° C .45° D .72°(10) (11)11.同学们都玩过跷跷板的游戏.如图11所示,•是一跷跷板的示意图,立柱OC 与地面垂直,OA=OB .当跷跷板的一头A 着地时,∠OAC=25°,•则当跷跷板的另一头B 着地时,∠AOA ′等于( ) A .25° B .50° C .60° D .130°12、直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( )A. ab=h 2B. a 2+b 2=2h 2C.a 1+b 1=h1D.21a +21b =21h如图所示,在△ABC 中,AB=6,AC=9,AD ⊥BC 于点D ,M 为AD 上任一点,则MC 2-MB 2等于二、能力提升 13.如图,已知等腰三角形一腰上的中线把三角形周长分为12cm 和15cm 两部分,求它的底边长.14.(计算型说理题)已知如图△ABC 是等边三角形,BD 是AC 边上的高,延长BC 到E 使CE=CD .•试判断DB 与DE 之间的大小关系,并说明理由。

相关文档
最新文档