反比例函数复习课-教学设计

合集下载

人教版九年级数学下册第二十六章反比例函数复习教学设计

人教版九年级数学下册第二十六章反比例函数复习教学设计
2.教师针对学生的总结进行补充,强调反比例函数在实际问题中的应用,以及与其他函数的关系。
3.鼓励学生提出疑问,针对学生的疑问进行解答,巩固所学知识。
4.布置课后作业,要求学生运用所学知识解决实际问题,提高学生的数学素养。
五、作业布置
为了巩固学生对反比例函数的理解和应用,特布置以下作业:
1.请同学们结合课堂所学,完成课后练习题第1、2、3题,重点掌握反比例函数的定义、性质和图像特点。
3.讲解反比例函数在实际问题中的应用,如速度与时间、物体在水平面上的运动等。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,针对反比例函数的性质、图像和应用进行讨论。
2.各小组分享自己的观点,讨论如何利用反比例函数解决实际问题。
3.教师巡回指导,针对学生的疑问进行解答,引导学生运用所学知识分析问题。
针对九年级学生,他们在之前的学习中已经掌握了函数的基本概念、一次函数、二次函数的性质和应用。在此基础上,学生对反比例函数的学习具备了一定的基础。然而,反比例函数作为函数学习的重要组成部分,其图像、性质和实际应用方面仍存在一定的难度。因此,在本章节的教学过程中,需要关注以下几点:
1.学生在理解反比例函数图像和性质时可能遇到困难,如对双曲线、渐近线等概念的理解。
5.针对课堂所学内容,编写一道反比例函数的应用题,要求题目具有一定的挑战性和趣味性。
6.阅读教材中关于反比例函数的相关内容,总结反比例函数的性质、图像和应用,形成自己的学习笔记。
2.自主探究,合作交流
-引导学生回顾一次函数、二次函数的性质,自主发现反比例函数的性质,组织学生进行小组讨论,共同总结反比例函数的图像特点及其应用。
3.精讲精练,突破难点
-对反比例函数的图像、性质进行详细讲解,结合具体例子,使学生深入理解双曲线、渐近线等概念。

反比例函数复习课教案

反比例函数复习课教案

反比例函数复习课教案第一章:反比例函数的定义及性质1.1 反比例函数的定义引导学生回顾反比例函数的定义:形如y = k/x (k 为常数,k ≠0) 的函数,称为反比例函数。

强调反比例函数中x 和y 成反比例关系,即xy = k。

1.2 反比例函数的性质分析反比例函数的图像特征:反比例函数的图像是一条通过原点的曲线,称为双曲线。

探讨反比例函数的渐近线:当x 趋向于正无穷或负无穷时,y 趋向于0,x 轴和y 轴是反比例函数的渐近线。

讲解反比例函数的单调性:在第一象限和第三象限,反比例函数是减函数;在第二象限和第四象限,反比例函数是增函数。

第二章:反比例函数的图像与几何意义2.1 反比例函数的图像利用图形软件绘制反比例函数的图像,引导学生观察图像的形状和特点。

引导学生理解反比例函数图像的四个象限特点:当k > 0 时,图像位于第一象限和第三象限;当k < 0 时,图像位于第二象限和第四象限。

2.2 反比例函数的几何意义解释反比例函数表示的是点(x, y) 在坐标平面上的分布情况,且这些点满足xy = k。

引导学生思考反比例函数与面积的关系:反比例函数图像与坐标轴围成的封闭区域的面积等于k 的绝对值。

第三章:反比例函数的性质与应用3.1 反比例函数的性质引导学生利用反比例函数的性质解决问题,如判断两个函数是否为反比例函数、确定反比例函数的单调区间等。

3.2 反比例函数的应用举例说明反比例函数在实际问题中的应用,如物理学中的电流与电压的关系、化学中的浓度与体积的关系等。

引导学生运用反比例函数解决实际问题,培养学生的数学应用能力。

第四章:反比例函数的运算4.1 反比例函数的基本运算复习反比例函数的基本运算规则,如反比例函数的加减乘除、乘积和商的运算。

4.2 反比例函数的复合运算讲解反比例函数的复合运算,如反比例函数与一次函数、二次函数的复合运算。

引导学生运用反比例函数解决复合运算问题,提高学生的数学运算能力。

(完整版)九年级数学:反比例函数复习专题教案

(完整版)九年级数学:反比例函数复习专题教案

《反比例函数》复习教学设计横龙中学朱利艳复习目标1.知识与技能理解反比例函数定义、图象及其主要性质,能根据所给信息确定反比例函数表达式,能利用反比例函数的图象和性质解决问题,体会函数的应用价值。

.函数的相交问题,主要探究函数相交的交点个数及如何计算交点坐标,并进一步探究x取何值时,一次函数与反比例函数值的大小比较、相交时所围成的三角形的面积问题。

2.过程与方法利用回顾反比例函数的概念、性质、图象的过程,把数学与实际问题相结合,渗透数形结合思想。

3.情感、态度与价值观进一步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性。

复习重点、难点【复习重点】能根据所给信息确定反比例函数表达式,掌握反比例函数的图象特点及性质,利用反比例函数的图象及性质解决问题;反比例函数中面积问题涉及题型的掌握。

【复习难点】对反比例函数图像及性质的理解和一次函数的综合应用,利用反比例函数解决实际问题。

反比例函数与一次函数结合出现的面积问题所涉及的解题方法的归纳。

复习过程一、知识梳理1.反比例函数的定义:一般地,形如y=kx (1y kx xy k或)(k为常数,k____0)的函数叫做反比例函数.2.反比例函数的性质:反比例函数y=kx(k≠0)的图象是___ ___.当k>0时,两分支分别位于第__ ___象限内,且在每个象限内,y随x的增大而_______;当k<0时,两分支分别位于第_______象限内,且在每个象限内,y随x的增大而_______.3.反比例函数的图象是中心对称图形,其对称中心为_______;反比例函数还是_______图形,它有两条_______,分别是直线__ _____.4.在双曲线y =kx上任取一点P 向两坐标轴作垂线,与两坐标轴围成的矩形的面积等于_______.5.因在反比例函数的关系式y =kx(k ≠0)中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数的关系式,因而一般只要给出一组x 、y 的值或图象上任意一点的坐标,然后代入y =k x中即可求出_______的值,进而确定出反比例函数的关系式.6.利用反比例函数中|k|的几何意义求解与面积有关的问题。

《反比例函数复习课》教学设计

《反比例函数复习课》教学设计

《反比例函数复习课》教学设计一、学生知识状况分析通过本章的学习,学生已经经历抽象反比例函数概念的过程,理解了反比例函数的概念,会作出反比例函数的图象,并探索和掌握其性质,能从函数图象中获取信息来解决实际问题。

本章的教学主要以直观操作,观察,概括和交流作为主要的活动方式。

通过这些活动,对函数的三种表示方法进行有机的整合,逐步形成对函数概念的整体性认识,逐步提高从函数图象中获取数学信息的能力,提高学生的感知水平,逐步形成从函数视角处理问题的意识,体验数形结合的数学思想方法.教师应从现实情境和学生已有的知识经验出发,以本章三维教学目标为标准来考查学生的学习情况,考查学生对反比例函数的定义,图象,性质及其应用掌握的程度,以及从函数图象中敏锐地获取相关信息、分析问题、解决问题的能力.二、教学任务分析函数是在探索具体问题中数量关系和变化规律的基础上抽象出来的数学概念, 是研究现实世界变化规律的重要内容及数学模型, 学生已经在七年级下册和八年级上册学习过变量之间的关系、一次函数等内容, 对函数已有了初步的认识, 在此基础上讨论反比例函数, 可以进一步领悟函数的概念,并积累研究函数性质的方法及用函数观点处理和解决实际问题的经验,为后继学习二次函数等产生积极的影响。

教学目标(一)知识与能力:1.理解反比例函数的概念.2.会作反比例函数的图象,并探索和掌握反比例函数的主要性质.3.会从函数图象中获取信息,能运用反比例函数的概念、图象和主要性质解决实际问题.(二)过程与方法:1.熟练掌握本章的整体知识结构,培养学生的概括和归纳能力,形成知识体系.2.在经历抽象反比例函数概念的过程中,领会反比例函数的意义,理解反比例函数的概念,进一步培养学生的抽象思维能力.3.经历一次函数的图象及其性质的探索过程,在合作与交流中发展学生的合作意识和交流能力.4.能根据所给信息确定反比例函数的表达式、会作反比例函数的图象,并能运用数形结合思想解决与反比例函数相关的数学问题和实际应用问题.(三)情感与价值观通过本章内容的回顾与思考,发展学生的数学应用能力,经历函数图象信息的识别与应用过程,发展学生的形象思维能力,激发学生学习的热情,培养学生学习数学的兴趣。

数学《反比例》教学设计5篇

数学《反比例》教学设计5篇

数学《反比例》教学设计篇5一、知识与技能1.能灵活列反比例函数表达式解决一些实际问题2.能综合利用几何、方程、反比例函数的知识解决一些实际问题二、过程与方法1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力三、情感态度与价值观1.积极参与交流,并积极发表意见2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具教学重点:掌握从实际问题中建构反比例函数模型教学难点:从实际问题中寻找变量之间的关系。

关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想.教具准备1.教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)2.学生准备:(1)复习已学过的反比例函数的图象和性质(2)预习本节课的内容,尝试收集有关本节课的情境资料教学过程一、创设问题情境,引入新课复习:反比例函数图象有哪些性质?反比例函数y?kx是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大二、讲授新课[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。

设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。

反比例函数教学设计(甄选8篇)

反比例函数教学设计(甄选8篇)

反比例函数教学设计(甄选8篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!反比例函数教学设计(甄选8篇)反比例函数教学设计(1)一、教材分析反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。

初中数学_反比例函数复习课教学设计学情分析教材分析课后反思

初中数学_反比例函数复习课教学设计学情分析教材分析课后反思

九年级上册第一章《反比例函数》复习课《复习课——反比例函数》教学设计【课标要求】1. 结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式.2. 能画出反比例函数的图象,根据图象的表达式)0(≠=k xky 探索并理解0>k 和0<k 时,图象的变化情况.3.能用反比例函数解决简单实际问题. 【学习目标】1.进一步理解反比例函数的概念,能根据已知条件确定反比例函数的表达式;2.能画出反比例函数的图象,并能借助图象和表达式探索并理解反比例函数的性质,体会数形结合思想;3.进一步体会用函数解决实际问题的方法与思想; 【教材分析】《反比例函数》是在前面已经学习了“图形与坐标”、“一次函数”基础上研究的另一类基本函数.本单元复习是以函数图象为载体,以数形结合思想为主线,围绕“概念(表达式)、图象、性质及应用”展开的,核心内容是“结合图象应用性质比较大小、解方程与不等式、函数实际应用”,学生在解决问题过程中进一步领悟反比例函数的概念并积累研究函数性质的方法及用函数观点解决问题的经验,为后续函数的学习及复习引路.因此,我确定本节课的重点是:依据反比例函数的图象理解运用性质解决问题,体会数形结合思想.九年级的学生在前面已经学习了图形与坐标、一次函数、反比例函数,在上初四以后又学习了二次函数,对函数的研究方向及方法有了一定的认识。

从学生学习情况分析,反比例函数的增减性与一次函数增减性容易相混,用函数观点看待方程、不等式、函数间的关系在理解上、思维方式上存在一定困难,用反比例函数解决实际问题需要建模的思想与策略,需要一定的生活背景知识,对学生有较高的要求. 本节课的复习从学习函数最本质的思想——数形结合思想入手,结合函数图象,在学生疑难问题解决过程中加深对反比例函数乃至对三类函数的理解.基于以上分析,我确定本节课的教学难点是:反比例函数性质的理解与应用。

【评价设计】1.通过环节一实现目标1的达成.2.通过环节二实现目标2的达成.3.通过环节三实现目标3的达成.【课前准备】布置学生根据自己学习所得将《反比例函数》的知识进行梳理、归纳、整合,形成本章的知识结构网络,自主绘制本章的思维导图. 【设计意图】学生在课前将这一章节的基本知识点和基本方法,个人进行自主复习理解,并寻找知识点间的关联性,画出思维导图,让每个学生都经历一次汇总整理,每个同学所画的思维导图体现了各自独特的理解,闪烁着每一个学生智慧的火花,同时也包含了每个学生的不足与错误.也能让老师了解学情.一:辨一辨,明晰概念1:集体展示这节课我们一起复习九年级第一章《反比例函数》,请大家拿出你课前自己自主复习时归纳的本章知识思维导图,老师展示三位同学的作品,大家认真观察,有什么共同的特点?有什么优点?你还有哪些建议?【教师活动】学生的归纳绝大多数是整理本章知识点的,不能体现以“函数”的图象为核心,不能展示知识间的联系.老师展示问题,引领学生复习,渗透本节课的核心思想“图象”,归纳知识间的联系.2:归纳定义【教师活动】PPT出示问题:出示一条反比例函数的图象,给出图象上一点A(3,1),提问:①你能求出该函数图象的表达式吗?②你判断这是什么函数?③你的根据是什么?④你能说出它的定义吗?【学生活动】思考后口答,归纳出反比例函数的定义、表达式及待定系数法求表达式,并感受定义与图象的关系.【教师活动】板书:3:检测目标1、在下列函数中,哪些是反比例函数?并指出其中每一个反比例函数中对应的k 值.()()()()()()()();.8,6.7,13.6,21.5,3.4,28.3,6.2,21.112xay x y x y x y xy x x y xy x y ==-===-+===-2、如果()232m x m y --=是反比例函数,则=m .3、判断下列各点是否在函数xy 3=的图象上.B (-3,-1),C (3,-1), D (-3,1),E (-1,-3),F(1,3);*4、若x 与y 满足xy+1=0,则y 是x 的 函数.【备用题】k 为何值时,关于x 的函数4-+=k 3)x (k y 是反比例函数? 【学生活动】问题1.2.3口答,不单说结果还要说想法, 【教师活动】对学生的说法要进行点评,利用PPT 展示过程.引导学生要进行解题知识方法的总结.【设计意图】通过本题组,由图象认识反比例函数及表达式中的条件,观察图象的信息会利用待定系数法求反比例函数的表达式。

湘教版数学九年级上册第一章《反比例函数》复习教学设计

湘教版数学九年级上册第一章《反比例函数》复习教学设计

湘教版数学九年级上册第一章《反比例函数》复习教学设计一. 教材分析湘教版数学九年级上册第一章《反比例函数》是学生在学习了正比例函数和一次函数的基础上,进一步拓展反比例函数的知识。

本章主要内容包括反比例函数的定义、性质、图像和反比例函数的应用等。

通过本章的学习,使学生能理解反比例函数的概念,掌握反比例函数的性质和图像,能运用反比例函数解决实际问题。

二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数和一次函数有一定的了解。

但反比例函数的概念和性质相对较为抽象,学生可能难以理解。

因此,在教学过程中,要注重引导学生从实际问题中提出反比例函数的概念,并通过大量的实例和练习,使学生掌握反比例函数的性质和应用。

三. 教学目标1.知识与技能:理解反比例函数的概念,掌握反比例函数的性质和图像,能运用反比例函数解决实际问题。

2.过程与方法:通过观察、实验、探究等方法,引导学生发现反比例函数的性质,培养学生的动手能力和探究能力。

3.情感态度与价值观:激发学生学习反比例函数的兴趣,培养学生积极参与数学学习的态度,提高学生解决问题的能力。

四. 教学重难点1.反比例函数的概念和性质。

2.反比例函数的图像。

3.反比例函数的应用。

五. 教学方法1.情境教学法:通过实际问题引入反比例函数的概念,激发学生的学习兴趣。

2.探究教学法:引导学生通过观察、实验、探究等方法,发现反比例函数的性质。

3.案例教学法:通过典型的实例,使学生理解反比例函数的应用。

4.小组合作学习:引导学生分组讨论,培养学生的合作意识。

六. 教学准备1.教学课件:制作反比例函数的教学课件,包括反比例函数的定义、性质、图像和应用等内容。

2.教学素材:准备一些实际问题,用于引入反比例函数的概念,以及一些典型的实例,用于讲解反比例函数的应用。

3.学具:准备一些反比例函数的模型或图示,帮助学生直观地理解反比例函数的性质。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生从实际问题中提出反比例函数的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数复习课-教学设计反比例函数复习课教学设计济南市第五十六中学米伟伟一、学生知识状况分析通过学习,学生已经经历抽象反比例函数概念的过程,理解了反比例函数的概念,会作出反比例函数的图象,并探索和掌握其性质,能从函数图象中获取信息来解决实际问题。

本章的教学主要以直观操作,观察,概括和交流作为主要的活动方式。

通过这些活动,对函数的三种表示方法进行有机的整合,逐步形成对函数概念的整体性认识,逐步提高从函数图象中获取数学信息的能力,提高学生的感知水平,逐步形成从函数视角处理问题的意识,体验数形结合的数学思想方法.教师应从现实情境和学生已有的知识经验出发,以本章三维教学目标为标准来考查学生的学习情况,考查学生对反比例函数的定义,图象,性质及其应用掌握的程度,以及从函数图象中敏锐地获取相关信息、分析问题、解决问题的能力.二、教学任务分析函数是在探索具体问题中数量关系和变化规律的基础上抽象出来的数学概念, 是研究现实世合作与交流中发展学生的合作意识和交流能力.4.能根据所给信息确定反比例函数的表达式、会作反比例函数的图象,并能运用数形结合思想解决与反比例函数相关的数学问题和实际应用问题.(三)情感与价值观通过本章内容的回顾与思考,发展学生的数学应用能力,经历函数图象信息的识别与应用过程,发展学生的形象思维能力,激发学生学习的热情,培养学生学习数学的兴趣。

教学重点反比例函数的概念.会作反比例函数的图象,并掌握其性质.反比例函数的相关应用.教学难点利用反比例函数的图像,探索反比例函数的主要性质.反比例函数的相关应用.教学方法自主探究、合作交流.三、教学过程分析本节课设计了五个教学环节:第一环节:复习提问,引人入胜;第二环节:知识串联,形成体系;第三环节:例题精练,巩固新知;第四环节:交流探讨 、收获小结;第五环节:课后作业第一环节:复习提问,引人入胜活动目的 给学生设置疑问,激发学生的思考和回顾,明确本节课的学习任务。

活动过程:请大家先回忆一下,反比例函数中我们学习了哪些主要内容? 学生回答预设:反比例函数的定义;反比例函数的图象及性质;反比例函数的应用。

. 教师引入:下面我们就来系统全面地对反比例函数的有关知识进行复习。

第二环节:知识串联,形成体系 活动目的:引导学生对本章的所学的基础知识进行系统的归纳和整理,使学生明确各个知识点之间的联系, 将基础知识网络化,形成本章知识的框架结构体系。

活动过程:(一)反比例函数的概念一般地,函数xk y =(k 是常数,k ≠0)叫做反比例函数。

反比例函数的解析式也可以写成1-=kxy或xy=k的形式。

(二)反比例函数的图像及性质反比例函数的图像是(双曲线),由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x 轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

表达式请写出反比例函数表达式:;还有哪些形式?图象k>0 k<0 画出图象:画出图象:性质1.图象在第、象限;2.每个象限内,函数y的值随x的增大而______________.1.图象在第、象限;2.在每个象限内,函数y值随x的增大而________________.在一个反比例函数图象上任取一点P,过点P分别作x、轴,y轴的平行线,与坐标轴围成的矩形面积为S则矩形的面积S=|y|·|x|=|xy|=|k|。

对称性: 反比例函数既是 图形,又是 图形。

(三)反比例函数解析式的确定确定反比例函数解析式的方法仍是待定系数法。

由于在反比例函数xk y =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。

第三环节:例题精练,巩固新知活动目的:使学生运用反比例函数的概念、图象和主要性质熟练的解决实际问题,提高学生获取信息、分析问题、解决问题的能力。

活动过程:课件展示知识点一、反比例函数的图象与性质【例1】已知反比例函数2y x=,下列结论中,不正..确.的是( ) A .图象必经过点(12),B .在每一个象限内,y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <【例2】 已知点A (-2,y 1)、B (-1,y 2)、C (4,y 3)都在反比例函数4y x =的图象上,则( ) (A )y 1<y 2<y 3 (B) y 3<y 2<y 1 (C) y 3<y 1<y 2(D) y 2<y 1<y 3知识点二、确定反比例函数关系式及xy =k 的应用【例3】 已知反比例函数k y x=的图象经过点(1,-4),则这个函数的解析式为___________.【例4】双曲线1y 、2y 在第一象限的图像如图,14y x =, 过1y 上的任意一点A ,作x 轴的平行线交2y 于B , 交y 轴于C ,若1AOB S∆=,则2y 的解析式是 . 【例5】如图所示,等边三角形ABC 放置在平面直角坐标系中,已知A (0,0)、B (2,0),反比例函数的图象经过点C .求此反比例函数的解析式.【基础演练】1、反比例函数图象经过点(1,﹣1)的反比例函数关系式______________.2、已知反比例函数3yx=的图象过A(m,1),则m=________.3. 如果反比例函数x my-=2的图象在第一、第三象限内,那么m的取值范围是:4、已知反比例函数kyx=的图像过点P(1,3),则反比例函数图像位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限5、如图,已知直线y=mx与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是()A(﹣3,4) B(﹣4,﹣3)C(﹣3,﹣4) D(4,3)6、反比例函数x k y =(k >0)的部分图象如图所示,A 、B是图象上两点,AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,若△AOC 的面积为S 1, △BOD 的面积为S 2,则S 1和S 2的大小关系为( )A . S 1> S 2B . S 1= S 2C . S 1<S 2D . 无法确定7.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_________.注意事项:在本环节教学中,教师可以引导学生首先进行独立思考,避免替代思维,然后可以通过小组讨论、合作交流等形式,启发学生对问题进行探究,分析,完善解题思路,进而感悟和总结解决此类问题的一般方法和规律。

【综合提升】1.如图,点A 在双曲线1y x =上,点B 在双曲线3y x=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .2.如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数6(0)=>的图象上,y xx则点C的坐标为.3.如图,菱形OABC的顶点O是原点,顶点B在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为_________ .第四环节:交流探讨收获小结活动内容:教师引导学生进行回顾和整理,然后通过师生交流和生生交流,回答以下问题:本节课我们都一起回顾和复习了哪些内容?交流预设:1.反比例函数概念2.反比例函数图像的做法及性质3.反比例函数在生活中的应用4.做题时要注意数形结合5.具体题目的解题思路活动目的:使学生通过再次的回顾和总结,完善自己知识框架,进一步培养了学生归纳和交流能力。

第五环节:课后作业(一)复习题(二)活动与探究反比例函数图象与矩形的面积若点A是反比例函数y=xk (k≠0)图象上的任意一点,且AB垂直于x轴,垂足为B,AC垂直于y轴,垂足为C,则矩形面积SABOC=|k|.如图(1).1.如图(2),P是反比例函数)y=xk (k≠O)图象上的一点,由P点分别向x轴,y轴引垂线,得阴影部分(矩形)的面积为3,则这个反比例函数的表达式______.2. 如图(3)过双曲线y=x2上两点A、B分别作x轴,y轴的垂线,若矩形ADDC与矩形BFOE的面积分别为S1,S2,则S1与S2的关系是_____.答案:1.解:由题意得|k |=3.又双曲线的两支分布在第二、四象限,所以k<0,故k =-3.∴k=x 3-.2.解:由题意得S 1=S 2=|k |=2.(三)反比例函数与正比例函数图象性质比较分析正比例函数y=kx(k ≠0) x k y = (k 为常数,且k ≠0) 关系式K >0 K <0 K >0K <0 图象 x y 0 xy 0性质 图象经过点 ,与第 象限。

y 随着x 的增大而 。

图象经过点 ,与第 象限。

y 随着x 的增大而 。

双曲线的两个分支分别位于第 象限;在 ,y 随着x 的增大而 。

双曲线的两个分支分别位于第 象限;在 ,y 随着x的增大而 。

第六环节:课堂检测 及时反馈活动目的:出示幻灯片给出课堂检测的题目,围绕本节的重要的知识进行测评,要求会画图,会计算线段的长度和角的度数。

及时反馈学生课堂上学习的效果,以便与掌握学生的学习情况及时查漏补缺。

四、教学反思本节作为反比例函数的复习课,涉及到了中学数学里所有的数学思想方法,包括待定系数法、数形结合法、方程思想等等,这些方法相互渗透,相互融合,构成了函数应用的广泛性,解法的多样性,和思维的创造性。

函数的性质、图象及函数与方程、不等式知识的联系和综合应用是命题的热点,尤以探索性题型考查较多,其主要特点是要求学生能够建立数学模型,对相关知识进行综合应用。

相关文档
最新文档