江苏省南通田家炳中学 2019—2020 学年度第一学期七年级上数学期末试题
江苏省南通市2019-2020学年数学七上期末考试试题

注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短 2.已知A B 与∠∠互为余角,C ∠与B Ð互为补角,则C ∠比A ∠大( )A.45︒B.90︒C.135︒D.180︒3.如图,点A 在点O 的北偏西60°的方向上,点B 在点O 的南偏东20°的方向上,那么∠AOB 的大小为( )A .150°B .140°C .120°D .110°4.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( ) A .851060860x x -=- B .851060860x x -=+ C .851060860x x +=- D .85108x x+=+ 5.在一次革命传统教育活动中,有n 位师生乘坐m 辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程6010628m m +=-①;6010628m m +=+②; 1086062n n -+=③;1086062n n +-=④中,其中正确的有( ) A.①③ B.②④C.①④D.②③6.在如图所示的2019年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是( )A.27B.51C.65D.727.组成多项式2x 2-x-3的单项式是下列几组中的( ) A .2x 2,x ,3B .2x 2,-x ,-3C .2x 2,x ,-3D .2x 2,-x ,38.已知实数,,x y z 满足5422x y z x y z ++=⎧⎨+-=⎩则代数式441x z -+的值是( )A . 3-B .3C . 7-D .7 9.单项式4x 2的系数是( ) A .4B .3C .2D .110.计算(-3)×(-5)的结果是( ) A .15 B .-15 C .8 D .-8 11.若a+b <0,ab <0,则( ) A .a >0,b >0 B .a <0,b <0C .a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D .a ,b 两数一正一负,且负数的绝对值大于正数的绝对值 12.计算(﹣6)+(﹣3)的结果等于( )A .-9B .9C .-3D .3 二、填空题13.如图,已知EOC ∠是平角,OD 平分BOC ∠,在平面上画射线OA ,使AOC ∠和COD ∠互余,若50BOC ∠=︒,则AOB ∠是__________.14.如图,将一副三角板的直角顶点重合,摆放在桌面上,若∠BOC=14∠AOD ,则∠AOD=______°.15.若某服装店同时以300元的价钱出售两件不同进价的衣服,其中一件赚了20%,而另一件亏了20%,则这单买卖是___了(填“赚”或“亏”). 16.方程320x -+=的解为________.17.单项式23x y-的系数是____.18.若()2520x y -++=,则x-y=________.19.对于有理数a ,()b a b ≠,我们规定:2*5a b a ab =--,下列结论中:()()3*22--=-①;**a a b b =②;**a b b a =③;()()**.a b a b -=-④正确的结论有______.(把所有正确答案的序号都填在横线上)20.若x ,y 互为相反数,a 、b 互为倒数,则 32x 2y ab+- 代数式的值为________. 三、解答题21.如图,在正方形格中,每个小正方形的边长为1,对于两个点P ,Q 和线段AB ,给出如下定义:如果在线段AB 上存在点M ,N (M ,N 可以重合)使得PM=QN ,那么称点P 与点Q 是线段AB 的一对关联点. (1)如图,在Q1,Q2,Q3这三个点中,与点P 是线段AB 的一对关联点的是 ;(2)直线l ∥线段AB ,且线段AB 上的任意一点到直线l 的距离都是1.若点E 是直线l 上一动点,且点E 与点P 是线段AB 的一对关联点,请在图中画出点E 的所有位置.22.如图,点C 是线段AB 的中点.(1)尺规作图:延长AB 到D ,使BD =AB (不写作法,保留作图痕迹).(2)若AC =2cm ,求AD 的长.23.在做解方程练习时,学习卷中有一个方程“2y–12=12y+■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x=2时代数式5(x –1)–2(x –2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?24.如图1,已知数轴上两点A 、B 对应的数分别为﹣2、5,点P 为数轴上的一动点,其对应的数为x .(1)PA= ;PB= (用含x 的式子表示)(2)在数轴上是否存在点P ,使PA+PB=10?若存在,请直接写出x 的值;若不存在,请说明理由. (3)如图2,点P 以2个单位/s 的速度从点O 向右运动,同时点A 以4个单位/s 的速度向左运动,点B 以16个单位/s 的速度向右运动,在运动过程中,M 、N 分别是AP 、OB 的中点,问:AB OPMN-的值是否发生变化?请说明理由.25.(1)化简 :()()222252423-+-+-a b ab c c a b ab;(2)先化简,再求值:2212322232a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭;其中 a = -2 ,b = 32 26.数学问题:计算等差数列5,2,﹣1,﹣4……前n 项的和. 问题探究:为解决上面的问题,我们从最简单的问题进行探究. 探究一:首先我们来认识什么是等差数列.数学上,称按一定顺序排列的一列数为数列,其中排在第一位的数称为第1项,用a 1表示:排在第二位的数称为第2项,用a 2表示……排在第n 位的数称为第n 项,用a n 表示.一般地,如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差,公差通常用字母d 表示.如:数列2,4,6,8,….为等差数列,其中a 1=2,公差d =2. (1)已知等差数列5,2,﹣1,﹣4,…则这个数列的公差d = ,第5项是 . (2)如果一个数列a 1,a 2,a 3,a 4,…是等差数列,且公差为d ,那么根据定义可得到:a 2﹣a 1=d ,a 3﹣a 2=d ,a 4﹣a 3=d ,……a n ﹣a n ﹣1=d ,所以a 2=a 1+d ,a 3=a 2+d =a 1+2d ,a 4=a 1+3d ,……:由此可得a n = (用a 1和d 的代数式表示)(3)对于等差数列5,2,﹣1,﹣4,…,a n = 请判断﹣2020是否是此等差数列的某一项,若是,请求出是第几项:若不是,说明理由.探究二:二百多年前,数学王子高斯用他独特的方法快速计算出1+2+3+4+…+100的值.我们从这个算法中受到启发,用此方法计算数列1,2,3,…,n 的前n 项和:由121121(1)(1)(1)(1)n nn n n n n n ++⋯+-++-+⋯+++++⋯++++ 可知(1)1232n nn +⨯+++⋯+=(4)请你仿照上面的探究方式,解决下面的问题:若a 1,a 2,a 3,…,a n 为等差数列的前n 项,前n 项和S n =a 1+a 2+a 3+…+a n .证明:S n =na 1+(1)2n n d -. (5)计算:计算等差数列5,2,﹣1,﹣4…前n 项的和S n (写出计算过程). 27.-15-(-8)+(-11)-12.28.某粮库3天内粮食进出库的吨数如下:(“+”表示进库,“-”表示出库)(1)经过这3天,库里的粮食是增多了还是减少了?(2)经过这3天,仓库管理员结算发现库里还存有480吨粮食,那么3天前库里存粮多少吨? (3)如果进出的装卸费都是每吨5元,那么这3天要付多少元装卸费?【参考答案】*** 一、选择题 1.D 2.B 3.B 4.C 5.A 6.D 7.B8.A 9.A 10.A 11.D 12.A 二、填空题13. SKIPIF 1 < 0 或 SKIPIF 1 < 0解析:115︒或15︒ 14.144° 15.亏16. SKIPIF 1 < 0 解析:23x =17.- SKIPIF 1 < 0 解析:-1318.719. SKIPIF 1 < 0 解析:①②④ 20.-3 三、解答题21.(1)Q 2、Q 3;(2)8个点E ,见解析. 22.(1)见解析;(2)8cm . 23.见解析24.(1)|x+2|,|x ﹣5|;(2)x=6.5或﹣3.5;(3)不发生变化,理由见解析. 25.(1)﹣7a 2b ﹣6ab 2﹣3c ;(2)2833a b -+,12. 26.(1)﹣3,﹣7;(2)a n =a 1+(n ﹣1)d ;(3)﹣3n+8;(4)详见解析;(5)231322n n S n =-+27.-3028.(1)库里的粮食减少了;(2)3天前库里存粮食是525吨;(3)3天要付装卸费825元.。
江苏省南通市年七年级上学期数学期末考试试卷含解析答案

七年级上学期数学期末考试试卷一、单项选择题1.的相反数是〔〕A. B. C. 5 D.2.苏中国际集装箱码头位于国家一类开放口岸——如皋港,2021年该码头集装箱吞吐量目标突破500000箱,致力打造长江下游集装箱港口“小巨人〞.请将数500000用科学记数法表示为〔〕A. B. C. 500000 D.3.将以下平面图形绕轴旋转一周,能得到图中所示立体图形的是〔〕A. B. C. D.4.如果是关于的方程的解,那么的值是〔〕A. B. C. D.5.以下各式中,与3x2y3是同类项的是〔〕A. B. C. D.6.如图,,以为一边作,那么的度数为〔〕A. B. C. 或 D. 或7.九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x人,那么〔〕A. B. C. D.8.延长线段到,使,假设,点为线段的中点,那么的长为〔〕A. 2B. 4C. 6D. 89.在有理数范围内定义运算“ 〞:,如:.如果成立,那么的值是〔〕A. B. 5 C. 0 D. 210. 都是不等于0的有理数,假设,那么等于1或;假设,那么等于2或或0;假设,那么所有可能等于的值的绝对值之和等于〔〕A. 0B. 110C. 210D. 220二、填空题11.计算:________.12.,那么的补角等于 .13.某正方体每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“爱〞字所在面相对的面上的汉字是 .14.古代名著?算学启蒙?中有一题:“良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.〞意思是:“跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马天可追上慢马.〞15.关于的多项式与多项式的和不含项,那么的值为 .16.如图,平分,,那么 .17.历史上数学家欧拉最先把关于的多项式用记号来表示,把等于某数时的多项式的值用来表示.例如,对于多项式,当时,多项式的值为,假设,那么 .18.“数形结合〞思想在数轴上得到充分表达,如在数轴上表示数5和的两点之间的距离,可列式表示为,或;表示数和的两点之间的距离可列式表示为.,那么的最大值为 .三、解答题19.计算:〔1〕;〔2〕.20.解方程〔1〕;〔2〕21.化简求值:,其中,.22.某公司去年1~3月平均每月亏损3.8万元,4~6月平均每月盈利3.6万元,7~10月平均每月盈利2.5万元,11~12月平均每月亏损3.5万元.〔1〕如果把7~10月平均每月的盈利额记为万元,那么,11~12月平均每月的盈利额可记为________万元;〔2〕请通过计算说明这个公司去年的盈亏情况;〔3〕这个公司去年下半年平均每月盈利比上半年平均每月盈利多多少万元?23.如图,线段,,射线.点,为射线上两点,且,.〔1〕请用尺规作图确定,两点的位置〔要求:保存作图痕迹,不写作法〕;〔2〕假设,,求的长.24.某超市第一次用7000元购进甲、乙两种商品,其中甲商品的件数是乙商品件数的2倍,甲、乙两种商品的进价和售价如下表:〔1〕该超市第一次购进的甲、乙两种商品各多少件?〔2〕该超市第一次购进的甲、乙两种商品售完后,该超市第二次又以第一次的进价购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都售完以后获得的总利润比第一次获得的总利润少400元,求笫二次乙商品是按原价打几折销售?25.如图是一个运算程序:〔1〕假设,,求的值;〔2〕假设,输出结果与相同,求的值.26.定义:在同一平两内,有公共端点的三条射线中,一条射线是另两条射线组成夹角的角平分线,我们称这三条射线为“共生三线〞.如图为一量角器的平面示意图,为量角器的中心.作射线,,,并将其所对应的量角器外圈刻度分别记为,,.〔1〕假设射线,,为“共生三线〞,且为的角平分线.①如图1,,,那么▲;②当,时,请在图2中作出射线,,,并直接写出的值;③根据①②的经验,得▲〔用含,的代数式表示〕.〔2〕如图3,,.在刻度线所在直线上方区域内,将,,按逆时针方向绕点同时旋转,旋转速度分别为每秒,,,假设旋转秒后得到的射线,,为“共生三线〞,求的值.答案解析局部一、单项选择题1.【解析】【解答】由相反数的定义可知,−5的相反数为5.故答案为:C.【分析】相反数:根据只有符号不同的两个数互为相反数解答即可.2.【解析】【解答】解:将500000用科学记数法表示为:5×105.故答案为:B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.3.【解析】【解答】解:A、绕轴旋转一周,图中所示的立体图形,故此选项符合题意;B、绕轴旋转一周,可得到圆台,故此选项不合题意;C、绕轴旋转一周,可得到圆柱,故此选项不合题意;D、绕轴旋转一周,可得到圆锥,故此选项不合题意;故答案为:A.【分析】所示立体图形上半局部是圆锥,下半局部是圆柱,然后结合面动成体的相关知识判断即可.4.【解析】【解答】解:∵x=3是关于x的方程2x-3m=4的解,∴2×3-3m=4,解得m= ,故答案为:D.【分析】根据方程解的概念,将x=3代入方程中可得2×3-3m=4,求解可得m的值.5.【解析】【解答】解:A. 与不是同类项,故本选项不符合题意;3y2与不是同类项,故本选项不符合题意;C. 与是同类项,故本选项符合题意;D. 与不是同类项,故本选项不符合题意;故答案为:C.【分析】所含字母相同,并且相同字母指数也相同的项,叫做同类项,据此判断即可.6.【解析】【解答】解:如图,∠AOB=60°,∠AOC=15°,当点C在∠AOB内部时,∠BOC=∠AOB-∠AOC=45°,当点C在∠AOB外部时,∠BOC=∠AOB+∠AOC=75°,故答案为:D.【分析】画出图形,分①点C在∠AOB内部;②点C在∠AOB外部,结合角的和差关系计算即可.7.【解析】【解答】设男生x人,那么女生有(30-x)人,由题意得:,故答案为:D.【分析】先设男生x人,根据题意可得.8.【解析】【解答】解:∵AC=12,BC= AB,∴AB= AC=8,∵D是AC中点,∴AD= AC=6,∴BD=AB-AD=8-6=2,故答案为:A.【分析】由条件可求得AB的长,然后由线段中点的概念求得AD的长,接下来根据BD=AB-AD计算即可.9.【解析】【解答】解:∵,∴可化为,解得:x=5,故答案为:B.【分析】由定义的新运算可得方程,求解即可.10.【解析】【解答】解:假设,那么等于1或-1;假设,那么等于2或或0;…,假设y20中有20项为1,0项为-1,那么y20=20,假设y20中有19项为1,1项为-1,那么y20=18,…以此类推,假设y20中有0项为1,20项为-1,那么y20=-20,∴y20的所有可能的取值为-20,-18,…,0,…,18,20,那么y20的这些所有的不同的值的绝对值的和等于0+〔2+4+…+20〕×2=220,故答案为:D.【分析】根据绝对值的性质,分①y20中有20项为1,0项为-1;②y20中有19项为1,1项为-1;…y20中有0项为1,20项为-1,分别求出y20,进而求得这些所有的不同的值的绝对值的和.二、填空题11.【解析】【解答】解:.故答案为:3.【分析】根据有理数的减法法那么,减去一个数等于加上这个数的相反数将减法转变为加法,再利用有理数加减法法那么进行计算即可.12.【解析】【解答】解:根据题意,∠α=24°37′,那么∠α的补角=180°-24°37′=155°23′.故答案为:155°23′.【分析】由补角的概念可得:∠α的补角=180°-24°37′,然后结合1°=60′计算即可.13.【解析】【解答】解:正方体的外表展开图,相对的面之间一定相隔一个正方形,“我〞与“伟〞是相对面.“爱〞与“大〞是相对面.“祖〞与“国〞是相对面.故答案为:大.【分析】正方体的外表展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.14.【解析】【解答】解:设快马x天可以追上慢马,据题题意:240x=150x+12×150,解得:x=20.答:快马20天可以追上慢马.故答案为:20【分析】设快马x天可以追上慢马,那么可得:240x=150x+12×150,求解即可.15.【解析】【解答】解:∵多项式与多项式的和不含项,∴∴.故答案为:.【分析】根据合并同类项法那么可得:x2+2axy-xy2+3xy-axy2-y3=x2+(2a+3)xy-(1+a)xy2-y3,结合题意可得2a+3=0,求解即可.16.【解析】【解答】解:∵∠AOB=∠BOC,∠BOC:∠COD:∠DOA=2:5:3,∴设∠AOB=∠BOC=2x,∠COD=5x,∠DOA=3x,∴2x+2x+5x+3x=360°,解得:x=30°,那么2x=60°,∴∠AOB=60°,故答案为:60°.【分析】由角平分线的概念可得∠AOB=∠BOC,设∠AOB=∠BOC=2x,∠COD=5x,∠DOA=3x,然后根据∠COD+∠BOC+∠AOB+∠AOD=360°进行求解即可.17.【解析】【解答】解:∵,∴,∴,∴===-2,故答案为:-2.【分析】由f(3)=8可得27m+3n+3=8,据此可得27m+3n的值,f(-3)=-27m-3n+3=-(27m+3n)+3,然后将27m+3n的值代入计算即可.18.【解析】【解答】解:由题意可得:表示x与-3的距离和x与1的距离之和,表示y与-2的距离和y与3的距离之和,∴当-3≤x≤1时,有最小值,且为1-〔-3〕=4,当-2≤x≤3时,有最小值,且为3-〔-2〕=5,∵,∴=4,=5,∴x+y的最大值为:1+3=4,故答案为:4.【分析】由题意可得:|x+3|+|x-1|=4,|y+2|+|y-3|=5,据此不难求得x+y的最大值.三、解答题19.【解析】【分析】〔1〕根据有理数的乘方法那么、有理数的除法法那么以及绝对值的性质可得:原式=-1+2×3-9,据此计算即可;〔2〕原式可变形为:,据此计算即可.20.【解析】【分析】〔1〕根据去括号、移项、合并同类项的步骤求解即可;〔2〕根据去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.21.【解析】【分析】首先对待求式子去括号、然后合并同类项可得:a2-8ab,接下来将a、b的值代入计算即可.22.【解析】【解答】解:〔1〕根据盈利为正,亏损为负可得:11~12月平均每月的盈利额可记为-3.5万元;【分析】〔1〕正数与负数可以表示一对具有相反意义的量,假设规定盈利为正,那么亏损为负,据此解答;〔2〕计算出1~12月的总额,然后根据结果的正负判断即可;〔3〕首先分别求出下半年平均每月盈利以及上半年平均每月盈利,然后相减即可.23.【解析】【分析】〔1〕分别作出线段AB、AC就可得到B、C的位置;〔2〕由题意可得BC=m+n-(2m-n),然后去括号、合并同类项即可.24.【解析】【分析】〔1〕设第一次购进乙种商品x件,根据题意得:40×2x+60x=7000,求解即可;〔2〕分别求出甲商品、乙商品的利润,然后相加即可求出总利润;设第二次乙种商品是按原价打y折销售,根据题意得:(50-40)×100+(80×-60)×50×3=2000-400,求解即可.25.【解析】【分析】〔1〕当x=-3,y=2时,m=|-3|-2×2,计算即可;〔2〕由题意可得:当x=-4时,y=m,然后分①m<-4;②m≥-4,分别列出关于m的方程,求解即可. 26.【解析】【解答】解:〔1〕①∵OA,OB,OC为“共生三线〞,OC平分∠AOB,∴∠AOB=b°-a°=80°,∴m°= ∠AOB= ×80°=40°,故m=40;②如图,∵,,∴m=〔a+b〕÷2=95;③根据①②的经验可得:m= ;【分析】〔1〕①由题意可得∠AOB=80°,然后根据角平分线的概念就可求出m的值;②由题意可得m=(a+b)÷2,代入计算即可;③根据①②的结论解答即可;〔2〕由题意可得t秒后,a=12t,b=60+6t,m=60+8t,然后分①OB′为∠A′OC′的平分线;②OA′为∠B′OC′的平分线;③OC′为∠A′OB′的平分线,分别列出关于t的方程,求解即可.。
2019-2020学年度第一学期期末考试七年级数学试题参考答案

2019—2020学年度第一学期期末考试七年级数学试题参考答案说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数.一、选择题:每小题3分,满分30分题号 1 2 3 4 5 6 7 8 9 10答案 B D C B A B A C D C二、填空题:本题共5小题,每题3分,共15分11.1;12.36;13.-6;14.250;15.8m+12.三、解答题:本题共7小题,共55分.要写出必要的文字说明或演算步骤.16.(本小题6分)(每正确画出一个图形得2分,共6分)17.(本小题6分)解:(1)(1)A-2B=(3a2-5ab)-2(a2-2ab)1分=3a2-5ab-2a2+4ab 2分=a2-ab. 3分(2)∵|3a +1|+(2-3b )2=0,∴3a +1=0,2-3b =0,解得a =13-,b =23. 4分 ∴A -2B =a 2-ab . =2112333⎛⎫⎛⎫---⨯ ⎪ ⎪⎝⎭⎝⎭ 5分 =121993+=. 6分 18.(本小题7分)(1)画图:如图所示. 4分(每正确画出一条射线得2分)(2)解:由题意知:∠MOG =110°,∠MOA =40°, 5分∴∠AOG=∠MOG -∠MOA =110°-40°=70° 射线OG 表示的方向是北偏东70°. 7分19.(本小题8分)解:(1)设甲、乙两车合作还需要x 天运完垃圾,根据题意,得31151530x x ++= 2分解得:x =8 3分答:甲、乙两车合作还需要8天运完垃圾.4分 (2)设乙车每天租金为y 元,则甲车每天租金为(y +100)元,根据题意,得 (3+8)(y +100)+8y =3950 6分解得:y =150 7分150+100=250答:甲车每天租金为250元,乙车每天租金为150元. 8分20.(本小题8分)解:(1)∵OB 平分∠AOC ,∴∠BOC =21∠COA =21×30°=15°. 1分同理:∠DOC =21∠EOC =21×90°=45°. 2分∴∠BOD =∠BOC +∠DOC =15°+45°=60°. 3分(2)∵OB 平分∠AOC ,∴∠COA =2∠BOC =2α. 4分同理:∠EOC =2∠DOC =2β. 5分∴∠AOE =∠COA +∠EOC =2α+2β. 6分(3)∠AOE =2∠BOD . 8分21.(本小题9分)(1)答:第①步错误,原因是去括号时,2这项没有乘以3;2分第④步错误,原因是应该用8除以2,小马用2除以8了. 4分【原因只要叙述合理即可得分】(2)解:7531164y y ---=,去分母得:12-2(7-5y )=3(3y -1). 6分去括号得:12-14+10y =9y -3. 7分移项得:10y -9y =-3-12+14. 8分合并同类项,得:y =-1. 9分22.(本小题11分)解:(1)EF =2020-(-2020)=4040. 2分(2)①当点P 是线段AB 的中点时,则PA =PB .所以x -(-2)=3-x .解得:x =0.5. 4分②当点A 是线段PB 的中点时,则PA =AB .所以(-2)-x =3-(-2).解得:x =-7. 6分③当点B 是线段P A 的中点时,则PB =AB .所以x -3=3-(-2).解得:x =8. 8分(3)答:在点A 左侧存在一点Q ,使点Q 到点A ,B 的距离和为19. 9分解:设点Q 表示的数是y .因为QA +QB =19,所以(-2)-y +3-y =19. 10分解得:y=-9.所以点Q表示的数是-9.11分。
2019-2020学年江苏省南通市数学七年级(上)期末监测模拟试题

2019-2020学年江苏省南通市数学七年级(上)期末监测模拟试题一、选择题1.下列关于角的说法正确的个数是:( )①由两条射线组成的图形一定是角 ②角的边长,角越大 ③在角的一边的延长线取一点D ④角可以看作由一条射线绕着它的端点旋转而成的图形A .1B .2C .3D .42.将一长方形纸片,按右图的方式折叠,BC ,BD 为折痕,则∠CBD 的度数为( )A .60°B .75°C .90°D .95°3.如图,C ,D ,E 是线段AB 的四等分点,下列等式不正确的是( )A .AB =4AC B .CE =12AB C .AE =34ABD .AD =12CB 4.下列运用等式的性质,变形正确的是( )A.若x 2=6x ,则x =6B.若2x =2a ﹣b ,则x =a ﹣bC.若a =b ,则ac =bcD.若3x =2,则x=325.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b(n>6),则a-b 的值为( )A.6B.8C.9D.12 6.已知﹣25a 2m b 和7b3﹣n a 4是同类项,则m+n 的值是( ) A .2 B .3C .4D .6 7.2018年国庆假期里,民航提供的运力满足了旅客出行需求,中国民航共保障国内外航班近77800班,将77800用科学记数法表示应为( ).A.0.778×105B.7.78×105C.7.78×104D.77.8×1038.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是( ) A.32824x x =- B.+32824x x = C.2232626x x +-=+ D.2232626x x +-=- 9.下列说法:(1)若a a=﹣1,则a <0(2)若a ,b 互为相反数,则a n 与b n也互为相反数(3)a 2+3的值中最小的值为3(4)若x <0,y >0,则|xy ﹣y|=﹣(xy ﹣y )其中正确的个数有( )A.1个B.2个C.3个D.4个10.下列说法中正确的是( ) A .2x y 4不是整式 B .0是单项式 C .22πab -的系数是2-D .223xy -的次数是5 11.在—1,+7,0,0.01,237-, 80中,正数有( ) A.1个 B.2个 C.3个 D.4个12.计算:﹣9+6=( )A .﹣15B .15C .﹣3D .3二、填空题13.如图,直线AB 、CD 相交于点O ,∠COE 为直角,∠AOE=60°,则∠BOD=__________°.14.如图,长度为12cm 的选段AB 的中点为,M C 为线段MB 上一点,且:1:2MC MB =,则线段AC 的长度为___cm .15.在有理数范围内定义运算“△”,其规则为a △b =ab +1,则方程(3△4)△x =2的解是x =____.16.甲、乙两地相距600千米,快车的速度是60千米/小时,慢车的速度是40千米/小时,两车分别从甲、乙两地同时出发,相向而行,_____小时后两车相遇.17.写出﹣2m 3n 的一个同类项_______.18.已知单项式91m m +1n b +与-221m a -21n b -的积与536a b 是同类项,则n m =_______19.写出绝对值小于2.5的所有整数_____________.20.比较大小:23⎛⎫-+⎪⎝⎭___34--.(选用>、<、=号填写) 三、解答题21.某件商品的价格是按获利润25%计算出的,后因库存积压和急需加收资金,决定降价出售,如果每件商品仍能获得10%的利润,试问应按现售价的几折出售?(减价到原标价的百分之几就叫做几折,例如标价一元的商品售价七角五分,叫做“七五折”)22.某城市实施阶梯燃气费的收费方式,当用户使用的燃气量不超过60立方米时,按每立方米3元收费;如果超过60立方米,超过部分按每立方米3.5元收费,已知某单位6月份燃气费平均每立方米费用为3.125元,求该单位6月份燃气的使用量.23.理解计算:如图①,∠AOB=90°,∠AOC 为∠AOB 外的一个角,且∠AOC=30°,射线OM 平分∠BOC ,ON 平分∠AOC .求∠MON 的度数;拓展探究:如图②,∠AOB=α,∠AOC=β.(α,β为锐角),射线OM 平分∠BOC ,ON 平分∠AOC .求∠MON的度数;迁移应用:其实线段的计算与角的计算存在着紧密的联系,如图③线段AB=m,延长线段AB到C,使得BC=n,点M,N分别为AC,BC的中点,则MN的长为_____(直接写出结果).24.(Ⅰ)如图,平面上有四个点A,B,C,D.(1)根据下列语句画图:①画射线BA;②画直线AD,BC相交于点E;③延长线段DC,在线段DC的延长线上取一点F,使CF=BC;④连接EF.(2)图中以E为顶点的角中,小于平角的角共有个.(Ⅱ)已知:∠AOC=146°,OD为∠AOC的平分线,∠AOB=90°,部分图形如图所示.请补全图形,并求∠BOD的度数.25.已知8x2a y与-3x4y2+b是同类项,且A=a2+ab-2b2,B=3a2-ab-6b2,求2B-3(B-A)的值.26.阅读并计算填写以下等式(1)22-21=2;23-22=22;24-23=______;25-24=______;…………2n-2n-1=______.(2)请你根据以上规律计算22018-22017-22016-…-23-22+227.将下列各数填入适当的括号内:π,5,﹣3,34,89,19,﹣67,﹣3.14,﹣9,0,235负数集合:{ …}分数集合:{ …}非负有理数集合:{ …}非负数集合:{ …}.28.小明有5张写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是 ;(3)从中取出4张卡片,用学过的运算方法,使结果为24.写出运算式子: 【参考答案】一、选择题1.A2.C3.D4.C5.D6.C7.C8.A9.C10.B11.C12.C 二、填空题13.15014.15. SKIPIF 1 < 0 解析:11316.617.答案不唯一,如m3n 等.18.119. SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0解析:2-、1-、0、1、220.>.三、解答题21.应按现售价的八八折出售22.该单位6月份燃气的使用量是80m 3.23.理解计算:45MON ∠=︒;拓展探究:2MON α∠=;迁移应用:2m.24.(Ⅰ)(1)图形见解析(2)8(II )(1)17°(2)163°25.826.(1)23,24,2n ;(2)627.见解析.28.(1)15;(2)53 ;(3)方法不唯一。
南通市七年级上期末数学试卷

第 1 页 共 12 页2019-2020学年江苏省南通市七年级上期末数学试卷一、选择题[本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.﹣5的绝对值是( )A .5B .﹣5C .15D .±5解:﹣5的绝对值是:|﹣5|=5.故选:A .2.据报道,2019年建成的某新机场将满足年旅客吞吐量45 000 000人次的需求.将45 000000用科学记数法表示应为( )A .0.45×108B .45×106C .4.5×107D .4.5×106解;45 000 000=4.5×107,故选:C .3.二次三项式2x 2﹣3x ﹣1的二次项系数,一次项系数,常数项分别是( )A .2,﹣3,﹣1B .2,3,1C .2,3,﹣1D .2,﹣3,1解:二次三项式2x 2﹣3x ﹣1的二次项系数,一次项系数,常数项分别是2,﹣3,﹣1, 故选:A .4.下列各式进行的变形中,不正确的是( )A .若3a =2b ,则3a +2=2b +2B .若3a =2b ,则3a ﹣5=2b ﹣5C .若3a =2b ,则 9a =4bD .若3a =2b ,则a 2=b 3 解:∵3a =2b ,∴3a +2=2b +2,∴选项A 不符合题意;∵3a =2b ,∴3a ﹣5=2b ﹣5,∴选项B 不符合题意;∵3a =2b ,∴9a =6b ,∴选项C 符合题意;∵3a =2b ,。
七年级上册南通数学期末试卷(Word版 含解析)

七年级上册南通数学期末试卷(Word 版 含解析)一、选择题1.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣120202.2019年12月15日开始投入使用的盐城铁路综合客运枢纽,建筑总面积约为324 000平方米.数据324 000用科学记数法可表示为( ) A .324×103 B .32.4×104 C .3.24×105 D .0.324×106 3.在钟表上,下列时刻的时针和分针所成的角为90°的是( ) A .2点25分 B .3点30分 C .6点45分 D .9点4.把一个数a 增加2,然后再扩大2倍,其结果应是( )A .22a +⨯B .()22a +C .24a a ++D .()222a a +++5.下列说法错误的是( )A .同角的补角相等B .对顶角相等C .锐角的2倍是钝角D .过直线外一点有且只有一条直线与已知直线平行6.如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A 、B 、C 三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是( )A .20B .25C .30D .357.2019年是中华人民共和国成立70周年,10月1日上午在天安门举行了盛大的阅兵式和群众游行,约有115000名官兵和群众参与,是我们每个中国人的骄傲.将115000用科学计数法表示为( ) A .115×103B .11.5×104C .1.15×105D .0.115×1068.如图所示的正方体的展开图是( )A.B.C.D.9.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β一定相等的图形个数共有()A.1个B.2个C.3个D.4个10.对于代数式3m+的值,下列说法正确的是()A.比3大B.比3小C.比m大D.比m小11.下列叙述中正确的是()A.相等的两个角是对顶角B.若∠1+∠2+∠3 =180º,则∠1,∠2,∠3互为补角C.和等于90 º的两个角互为余角D.一个角的补角一定大于这个角12.下列平面图形不能够围成正方体的是()A.B.C.D.13.如图,用一副特制的三角板可以画出一些特殊角.在下列选项中,不能画出的角度是()A.81B.63C.54D.5514.在解方程123123x x-+-=时,去分母正确的是( )A.3(x-1)-2(2x+3)=6 B.3(x-1)-2(2x+3)=1 C.2(x-1)-3(2x+3)=6 D.3(x-1)-2(2x+3)=3 15.对于下列说法,正确的是( )A .过一点有且只有一条直线与已知直线平行B .不相交的两条直线叫做平行线C .相等的角是对顶角D .将一根木条固定在墙上,只需打两个钉子就可以了,这种做法的依据是两点确定一条直线二、填空题16.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____.17.下图是计算机某计算程序,若开始输入2x =-,则最后输出的结果是____________.18.已知x =1是方程ax -5=3a +3的解,则a =_________. 19.已知a +2b =3,则7+6b +3a =________.20.正方体切去一块,可得到如图几何体,这个几何体有______条棱.21.若规定这样一种运算法则a ※b=a 2+2ab ,例如3※(-2) = 32+ 2× 3×(-2) =-3 ,则 (-2) ※3 的值为_______________. 22.若2x =-是关于x 的方程23a x+=的解,则a 的值为_______. 23.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是-16、9,现以点C 为折点,将数轴向右对折,若点A 对应的点A ’落在点B 的右边,并且A ’B =3,则C 点表示的数是_______.24.如图示,一副三角尺有公共顶点O ,若3AOC BOD ∠=∠,则BOD ∠=_________度.25.若单项式42m a b 与22n ab -是同类项,则m n -=_______.三、解答题26.计算(1)2212 6.533-+--;(2)4210.5132(3)⎡⎤---÷⨯--⎣⎦.27.如图,已知在三角形ABC 中,BD AC ⊥于点D ,点E 是BC 上一点,EF AC ⊥于点F ,点M ,G 在AB 上,且AMD AGF ∠∠=,当1∠,2∠满足怎样的数量关系时,//DM BC ?并说明理由.28.如图,直线AB,CD 相交于点O,OE 平分∠AOD,OF ⊥OC . (1)图中∠AOF 的余角是_____________ (把符合条件的角都填上); (2)如果∠1=28° ,求∠2和∠3的度数.29.如图,已知点A ,B ,C ,直线l 及上一点M ,请你按着下列要求画出图形.(1)画射线BM ;(2)画线段BC 、AM ,且相交于点D ; (3)画出点A 到直线l 的垂线段AE ;(4)请在直线l 上确定一点O ,使点O 到点A 和点B 的距离之和()OA OB +最小. 30.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元,求每件服装的标价是多少元? 31.计算(1)48(2)(4)-+÷-⨯-(2)21513146326⎛⎫⎛⎫--+++- ⎪ ⎪⎝⎭⎝⎭32.如图,点O 在直线AB 上,OC 、OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =150°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .(请用含α的代数式表示)33.已知:关于x 的方程(3)2m m x x -+=的解与方程372(1)y y +=--的解相等,求m 的值.四、压轴题34.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A 、B 两点间的距离为20个单位. 35.综合与实践 问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.图1 图2 图3 (1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程) ②若AB a ,AC b =,则MN =___________;(直接写出结果) (2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON . ③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果) (3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)36.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .(1)求点C 表示的数;(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的长.(3)在(2)的条件下,当x 为何值时,2AP CM PC -=?37.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少; (2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示); (4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.38.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.①求t的值;②此时OQ是否平分∠AOC?请说明理由;(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).39.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.40.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?41.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.42.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
江苏省南通市2019届数学七上期末考试试题

江苏省南通市2019届数学七上期末考试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图,两轮船同时从O点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A,B点,则此时两轮船行进路线的夹角∠AOB的度数是()A.165°B.155°C.115°D.105°2.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是( )A.125°B.135°C.145°D.155°3.下列换算中,错误的是()A. B.C. D. 4.在有理数范围内定义运算“*”,其规则为a*b=﹣23a b,则方程(2*3)(4*x)=49的解为()A.﹣3B.﹣55C.﹣56D.555.一艘轮船航行在A、B两地之间,已知该船在静水中每小时航行12千米,轮船顺水航行需用6小时,逆水航行需用10小时,则水流速度和A、B两地间的距离分别为()A.2千米/小时,50千米B.3千米/小时,30千米C.3千米/小时,90千米D.5千米/小时,100千米6.化简:a ﹣(a ﹣3b )=_____. 7.已知622x y 和312m nx y -是同类项,那么2m+n 的值( ) A.3 B.4 C.5D.68.下列运算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 5C .(-a 2)3=a 6D .-2a 3b÷ab=-2a 2b9.有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了,则这次生意的盈亏情况为 A .赚6元 B .不亏不赚 C .亏4元 D .亏24元10.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有( )个. A .2 B .3 C .4 D .511.若|a|=3,|b|=2,且a +b >0,那么a-b 的值是( ) A .5或1 B .1或-1 C .5或-5 D .-5或-112.在23-、 2.5-- 、1(2)2--、2(3)-- 、3(3)- 中,负数的个数是( )A.1B.2C.3D.4二、填空题13.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=________ °. 14.如图,将一副直角三角板叠放在一起,使其直角顶点重合于点O ,若∠DOC=26°,则∠AOB=______°.15.甲、乙两人在400 m 环形跑道上练习跑步,甲的速度是5m/s ,乙的速度是7m/s .两人站在同一起点,同时同向出发,那么当乙第一次恰好追上甲时,甲跑了________m . 16.若2162m xy +-与311043m n x y -+是同类项,则m n +=___________.17.单项式﹣2x 2y 的系数是_____,次数是_____.18.对于有理数a ,()b a b ≠,我们规定:2*5a b a ab =--,下列结论中:()()3*22--=-①;**a a b b =②;**a b b a =③;()()**.a b a b -=-④正确的结论有______.(把所有正确答案的序号都填在横线上)19.绝对值不大于4.5的整数有________.20.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 三、解答题21.如果两个角的差的绝对值等于90,就称这两个角互为反余角,其中一个角叫做另一个角的反余角,例如,1120∠=,230∠=,1290∠∠-=,则1∠和2∠互为反余角,其中1∠是2∠的反余角,2∠也是1∠的反余角.()1如图1.O 为直线AB 上一点,OC AB ⊥于点O ,OE OD ⊥于点O ,则AOE ∠的反余角是______,BOE ∠的反余角是______;()2若一个角的反余角等于它的补角的23,求这个角. ()3如图2,O 为直线AB 上一点,AOC 30∠=,将BOC ∠绕着点O 以每秒1角的速度逆时针旋转得DOE ∠,同时射线OP 从射线OA 的位置出发绕点O 以每秒4角的速度逆时针旋转,当射线OP 与射线OB 重合时旋转同时停止,若设旋转时间为t 秒,求当t 为何值时,POD ∠与POE ∠互为反余角(图中所指的角均为小于平角的角).22.某件商品的价格是按获利润25%计算出的,后因库存积压和急需加收资金,决定降价出售,如果每件商品仍能获得10%的利润,试问应按现售价的几折出售?(减价到原标价的百分之几就叫做几折,例如标价一元的商品售价七角五分,叫做“七五折”)23.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨? 24.观察下表我们把表格中字母的和所得的多项式称为“特征多项式”,例如:第1格的“特征多项式”为4x+y ;第2格的“特征多项式”为8x+4y ,回答下列问题:(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n 格的“特征多项式”为 ;(2)若第m 格的“特征多项式”与多项式﹣24x+2y ﹣5的和不含有x 项,求此“特征多项式”. 25.直线上有A ,B ,C 三点,点M 是线段AB 的中点,点N 是线段BC 的一个三等分点,如果AB=6,BC=12,求线段MN 的长度.26.化简并求值:2(a 2b-ab )-4(a 2b-12ba ),其中a=-12,b=2.27.(1)计算:16÷(﹣2)3﹣(﹣12)3×(﹣4)+2.5;(2)计算:(﹣1)2017+|﹣22+4|﹣(12﹣14+18)×(﹣24)28.观察下列等式:112⨯=1-12,123⨯=12-13,134⨯=13-14.可得:112⨯+123⨯+134⨯=1-12+12-13+13-14=1 1-4=3 4(1)猜想并写出:199100⨯=()-().(2)利用上述猜想计算:112⨯+123⨯+134⨯+……+199100⨯.(3)探究并计算:124⨯+146⨯+168⨯+……+120162018⨯.【参考答案】***一、选择题1.B2.B3.B4.D5.C6.3b7.D8.B9.C10.B11.A12.D二、填空题13.4014.15415.100016.117.﹣2 318. SKIPIF 1 < 0 解析:①②④19.±4,±3,±2,±1,0.20. SKIPIF 1 < 0 或 SKIPIF 1 < 0解析:12或13三、解答题21.(1)AOE ∠的反余角是AOD ∠,BOE ∠的反余角是BOD ∠(2)18或者126(3)当t 为40或者10时,POD ∠与POE ∠互为反余角 22.应按现售价的八八折出售 23.1024.(1)12x+9y ,16x+16y ,4nx+n 2y ;(2)24x+36y . 25.1或5或7或11. 26.-2a 2b ;-1.27.(1)0; (2)8. 28.(1)199-1100;(2)99100;(3)2521009.。
南通市2019-2020学年数学七上期末试卷

注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图,两块直角三角板的直顶角O重合在一起,若∠BOC=15∠AOD,则∠BOC的度数为()A.30° B. 45° C.54° D.60°2.下列说法正确的是()①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的封面是长方形. A.①②B.①③C.②③D.①②③3.如图,直线AB、CD相交于点O,OE⊥CD,∠AOE=52°,则∠BOD等于()A.38°B.42°C.48°D.52°4.方程2y﹣12=12y﹣中被阴影盖住的是一个常数,此方程的解是y=﹣53.这个常数应是( )A.1B.2C.3D.45.有一玻璃密封器皿如图①,测得其底面直径为20厘米,高20厘米,先内装蓝色溶液若干。
若如图②放置时,测得液面高10厘米;若如图③放置室,测得液面高16厘米;则该玻璃密封器皿总容量为()立方厘米。
(结果保留π)图①图②图③A.1250πB.1300πC.1350πD.1400π6.下列说法正确的是( )A.1x是单项式 B.πr 2的系数是1 C.5a 2b+ab ﹣a 是三次三项式 D.12xy 2的次数是2 7.如图是用长度相等的火柴棒按一定规律构成的图形,依次规律第10个图形中火柴棒的根数是( )A .45B .55C .66D .788.下列各式运用等式的性质变形,错误的是( )A .若a b -=-,则a b =B .若a b c c =,则a b =C .若ac bc =,则a b =D .若22(1)(1)m a m b +=+,则a b = 9.下列说法正确的是( ) A.25xy -的系数是2- B.3ab 的次数是3次C.221x x +-的常数项为1D.2x y +是多项式 10.在数轴上表示有理数a ,b ,c 的点如图所示.若ac<0,b+a<0,则一定成立的是A.|a|>|b|B.|b|<|c|C.b+c<0D.abc<011.下列运算正确的是( ).A .-(-3)2=-9B .-|-3|=3C .(-2)3=-6D .(-2)3=812.下列说法中,正确的是( )A.()23-是负数B.若x 5=,则x 5=或x 5=-C.最小的有理数是零D.任何有理数的绝对值都大于零二、填空题13.如图,一艘货轮位于O 地,发现灯塔A 在它的正北方向上,这艘货轮沿正东方向航行,到达B 地,此时发现灯塔A 在它的北偏西60°的方向上.(1) 在图中用直尺、量角器画出B 地的位置;(2) 连接AB ,若货轮位于O 地时,货轮与灯塔A 相距1.5千米,通过测量图中AB 的长度,计算出货轮到达B 地时与灯塔A 的实际距离约为_______千米(精确到0.1千米).14.如图,点C 是线段AB 上一点,AC <CB ,M 、N 分别是AB 和CB 的中点,AC=8,NB=5,则线段MN=______.15.若a 、b 互为相反数,c 、d 互为倒数,p 的绝对值等于2,则关于x 的方程(a+b)x 2+3cd•x-p 2=0的解为________.16.阅读下面计算+++…+的过程,然后填空.解:∵=(-),=(-),…,=(-), ∴+++…+=(-)+(-)+(-)+…+(-)=(-+-+-+…+-) =(-) =.以上方法为裂项求和法,请参考以上做法完成:(1)+=______; (2)当+++…+x=时,最后一项x=______.17.将图1中的正方形剪开得到图2,图2中共有4个正方形,将图2中一个正方形剪开得到图3,图3中共有7个正方形,将图3中一个正方形剪开得到图4,图4中共有10个正方形⋯⋯如此下去,则图2019中共有正方形的个数为______.18.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①和图②,已知大长方形的长为a ,两个大长方形未被覆盖部分,分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是______.(用含a 的代数式表示)19.若m、n满足()2320m n -+-=,则()2007m n -的值等于_________.20.比-4大而比3小的所有整数的和是________三、解答题 21.如图,在△ABC 中,∠C=90°,外角∠EAB ,∠ABF 的平分线AD 、BD 相交于点D ,求∠D 的度数.22.已知a =﹣(﹣2)2×3,b =|﹣9|+7,c =111553⎛⎫-⨯ ⎪⎝⎭. (1)求3[a ﹣(b+c )]﹣2[b ﹣(a ﹣2c )]的值.(2)若A =2212119272⎛⎫⎛⎫⎛⎫-÷-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭×(1﹣3)2,B =|a|﹣b+c ,试比较A 和B 的大小. (3)如图,已知点D 是线段AC 的中点,点B 是线段DC 上的一点,且CB :BD =2:3,若AB =ab 12ccm ,求BC 的长.23.如图,数轴上A ,B 两点对应的有理数分别为x A =﹣5和x B =6,动点P 从点A 出发,以每秒1个单位的速度沿数轴在A ,B 之间往返运动,同时动点Q 从点B 出发,以每秒2个单位的速度沿数轴在B ,A 之间往返运动.设运动时间为t 秒.(1)当t =2时,点P 对应的有理数x P =______,PQ =______;(2)当0<t≤11时,若原点O 恰好是线段PQ 的中点,求t 的值;(3)我们把数轴上的整数对应的点称为“整点”,当P ,Q 两点第一次在整点处重合时,直接写出此整点对应的数.24.解方程:(1)10x ﹣12=5x+15;(2)1121[(1)]()3232x x x --=- 25.化简或解方程:(1)化简:3a 2-[5a-(2a-3)+4a 2](2)解方程:2x 13-+1=2x 16+ 26.计算: (1)(4311[13)3⎤-÷⨯---⎦ (2)()21213112()12344⎛⎫-++⨯--- ⎪⎝⎭ ()3化简求值:()()()2222x xy y 2xy 3x 32y xy -+---+-,其中x 1=-,y 2=-.27.计算:(1)3×(﹣4)+18÷(﹣6);(2)(﹣2)2×5+(﹣2)3÷4. 28.(1)计算1114125522-+---(); (2)计算()()32112321133⎛⎫-+⨯-⨯-÷-⎪⎝⎭.【参考答案】***一、选择题1.A2.C3.A4.C5.D6.C7.C8.C9.D10.A11.A12.B二、填空题13.(1)答案见解析;(2)3.0千米.14.15.x= SKIPIF 1 < 0解析:x=4 316.(1);(2). 17.605518. SKIPIF 1 < 0解析:1 a 219.120.-3三、解答题21.∠D=45°.22.(1)﹣126;(2)A>B,理由见解析;(3)BC=2cm 23.(1)﹣3,5;(2)t=1或7;(3)6.24.(1)x=5.4;(2)x=1.25.(1)-a2-3a-3(2)x=-1.526.(1)-78;(2)36116-;(3)22545x xy y-+;17.27.(1)-15; (2) 18.28.(1)-2;(2)-14.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省南通田家炳中学 2019—2020 学年度第一学期期末考
试初一数学试卷
(满分:150 分 考试时间:120 分钟)
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答.题.卡.相.应.位.置.
上) 1.两千多年前,中国人就开始使用负数,如果收入 100 元记作+100,那么支出 60 元应记( ) A .-60
B .-40
C .40
D .60
2.2019 年是中华人民共和国成立 70 周年,10 月 1 日上午在天安门举行了盛大的阅兵式和群众游行,约有 115000 名官兵和群众参与,是我们每个中国人的骄傲,将 115000 用科学记数法表示为( ) A.
5⨯103
B .11.5⨯10
4
C.1.15
⨯105
D . 0.115⨯10
6
3.有理数a ,b 在数轴上对应的位置如图所示,则( ) A. a + b < 0
B. a + b > 0
C. a - b = 0
D. a - b > 0
4.如果∠α = 46︒,那么∠α 的余角的度数为( ) A . 56︒
B . 54︒
C . 46︒
D . 44︒
5.下列运算结果正确的是(
)
A . 5x 4
- 3x 3
= 2x
C . - a 2
b + b 2
a = 0
B. 3mn + 4 = 7mn
D . 2a 5 + 7a 5 = 9a 5
6.如图,可以判定 A B // CD 的条件是( )
A . ∠1 = ∠2 C . ∠D = ∠5
B . ∠3 = ∠4
D . ∠BAD + ∠B = 180︒
7.一商家进行促销活动,某商品的优惠措施是“第二件商品半价”.现购买 2 件该商品,相当于这 2 件商品共打了( )
A .5 折
B .5.5 折
C .7 折
D .7.5 折
8.如图,一根长为 10;厘米的木棒,棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有(
)
A .3 个
B .4 个
C .5 个
D .6 个
9.按下面的程序计算,若开始输入的值 x 为正整数,最后输出的结果为 283,则满足条件的
x 不同值最多有( )
A .6 个
B .5 个
C .4 个
D .3 个
10.如图,用三个同(1)图的长方形和两个同(2)图的长方形用两种方式去覆盖一个大的长方形 ABCD ,两种方式为覆盖的部分(阴影部分)的周长一样,那么(1)图中长方形的面积
S 1 与(2)图长方形的面积S 2 的比是( )
A .2:3
B .1:2
C .3:4
D .1:1
二、填空题(本大题共 8 小题,每小题 3 分,共 24 分.不需写出解答过程,请把答案直接填写在答.题.卡.相.应.的.位.置.上)
12.单项式- 5x 4 y 2
的系数是
.
13.已知 x = 1 是一元一次方程2x - a = 3 的解,则a 的值是
.
14.某同学在做计算 A + B 时,误将“ A + B ”看成了“ A - B ”,求得的结果是9x 2
- 2x + 7 ,
已知 B = x 2
+ 3x + 2 ,则 A + B 的正确答案为
.
15.已知∠A 与∠B 互补,且∠A 等于3∠B - 20︒ ,则∠A =
.
16.某学校实行小班化教学,若每间教室安排 20 名学生,则缺少 3 间教室;若每间教室安排
24 名学生,则空出一间教室,那么这所学校共有 间教室.
17.已知点 C 在直线 A B 上且 B C = 2 A B ,取 A C 的中点 D ,已知线段 B D 的长为 6,则线段 A B 的长为
.
三、解答题(本大题共 9 小题,共 96 分.请在答题开指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.计算题:(本题共 2 小题,每小题 4 分,共 8 分)
20:解方程:(本题共 4 小题,每小题 4 分,共 16 分) 4
1
(1) 4x + 3 = 2x + 5 (2) 3 x + 2 = x
3 (3) 5x - 3 = 2(x -12) 21.(本题满分 8 分)
先化简,再求值: 2a - 3b + [4a - (3a - b )],其中a 、b 满足 a +1 + 3(b + 2)2
= 0 .
22.(本题满分 8 分)
如图,点C ,E 是线段 AB 上两点,点 D 为线段 AB 的中点, AB = 6 , CD = 1. (1)求 BC 的长;
(2)若 AE : EC = 1: 3 ,求 EC 的长.
23.(本题满分 8 分)
如图,AB 和 C D 相交于点O ,∠A = ∠D ,OE // AC ,且 OE 平分∠BOC ,求证: AC // BD .
24.(本题满分 10 分)
A 、
B 、
C 、
D 四个车站的位置如图所示,A 、B 两站之间的距离 AB = a - b ,B 、
C
两站之间的距离BC = 2a -b ,B、D 两站之间的距离BD = 求:(1)A、C 两站之间的距离A C(用a、b 表示);7
a - 2
b -1. 2
(2)若A、C 两站之间的距离AC = 90km ,求C、D 两站之间的距离CD.
25.(本题满分12 分)
如图,已知AB // CD ,直线分别交AB、CD 于点E,F,
∠EFB =∠B ,F H ⊥FB .
(1)已知∠B = 20︒,求∠DFH ;
(2)求证:FH 平分∠GFD ;
( 3 )若
为.
∠CFE : ∠B = 4 :1 ,则∠GFH 的度数
26.(本题满分12 分)
滴滴公布了新的滴滴快车计价规则,车费由“总里程费+总时长费”两部分构成,不同
时段收费标准不同,具体收费标准如下表,如果车费不足起步价,则按起步价收费.
(1)小明早上7:10 乘坐滴滴快车上学,行车里程6 千米,行车时间10 分钟,则应付车
费多少元?
(2)小云17:10 放学回家,行车里程 2 千米,行车时间12 分钟,则应付车费多少元?
(3)下晚自习后小明乘坐滴滴快车回家,20:45 在学校上车,由于堵车,平均速度是a 千
米/小时,15 分钟后走另外一条路回家,平均速度是b 千米/小时,10 分钟后到家,则他应付车
费多少元?
27.(本题满分14 分)
定义:关于x 的两个一次二项式,其中任意一个式子的一次项系数都是另一个式子的常数项,则称这两个式子互为“田家炳式”.例如,式子3x + 4 与
4x + 3 互为“田家炳式”.
(1)判断式子- 5x + 2 与- 2x + 5 (填“是”或“不是”)互为“田
家炳式”
;
(2)已知式子ax +b 的“田家炳式”是3x - 4 且数a、b 在数轴上所对应的
点为A、B .
①化简x +a +x +b 的值为7,则x的取值范围是;
②数轴上有一点P 到A、B 两点的距离的和PA +PB = 11,求点P 在
数轴上所对应的
数.
(3)在(2)的条件下,
①若A 点,B点同时沿数轴向正方向运动,A 点的速度是B 点速度的2 倍,
且3 秒后,
2OA =OB ,求点A 的速度.
②数轴上存在唯一的点M,使得点M 到A、B两点的距离的差M A-MB=m,求m的取值范围.(直接写出结果)。