拱式桥桥构造与设计
梁式桥、拱式桥、悬索桥与斜拉桥的对比分析总结

分别从结构构造、力学特性、适用范围、结构内力计算方法以及主要施工工艺五个方面对梁式桥、拱式桥、悬索桥与斜拉桥进行对比分析总结。
一、梁桥以受弯为主的主梁作为主要承重构件的桥梁。
主梁可以是实腹梁或者是桁架梁(空腹梁)。
实腹梁外形简单,制作、安装、维修都较方便,因此广泛用于中、小跨径桥梁。
但实腹梁在材料利用上不够经济。
桁架梁中组成桁架的各杆件基本只承受轴向力,可以较好地利用杆件材料强度,但桁架梁的构造复杂、制造费工,多用于较大跨径桥梁。
桁架梁一般用钢材制作,也可用预应力混凝土或钢筋混凝土制作,但用的较少。
过去也曾用木材制作桁架梁,因耐久性差,现很少使用。
实腹梁主要用钢筋混凝土、预应力混凝土制作,也可以用钢材做成钢钣梁或钢箱梁。
实腹梁桥的最早形式是用原木做成的木梁桥和用石材做成的石板桥。
二、拱桥是以承受轴向压力为主的拱(称为主拱圈)作为主要承重构件的桥梁。
1.按照主拱圈的静力图式,拱轿可分为三铰拱、两铰拱和无铰拱(图3 拱桥形式示意图)。
(1).三铰拱是静定结构,其整体刚度较低,尤其是挠曲线在拱顶铰处产生折角,致使活载对桥梁的冲击增强,对行车不利。
拱顶铰的构造和维护也较复杂。
因此,三铰拱除有时用于拱上建筑的腹拱圈外,一般不用作主拱圈。
(2).两铰拱取消了拱顶铰,构造较三铰拱简单,结构整体刚度较三铰拱为好,维护也较三铰拱容易,而支座沉降等产生的附加内力较无铰拱为小,因此在地基条件较差和不宜修建无铰拱的地方,可采用两铰拱桥。
(3).无铰拱属三次超静定结构,虽然支座沉降等引起的附加内力较大,但在荷载作用下拱的内力分布比较均匀,且结构的刚度大,构造简单,施工方便,因此无铰拱是拱桥中,尤其是圬工拱桥和钢筋混凝土拱桥中普遍采用的形式。
2.按照主拱圈的构成形式,拱又可分为板拱、肋拱、双曲拱、箱形拱、桁架拱等(图4主拱圈的构成形式示意图)。
①板拱:拱圈横截面呈矩形实体截面,它横向整体性较好、拱圈截面高度小、构造简单,但抵抗弯矩能力较差,一般用于圬工拱桥。
拱式组合体系桥主要类型及设计特点

横梁
桥面板
拱系杆组合结构
图 简支拱式组合桥的主要构造(典型系杆拱)
立柱 a)
纵梁
拱肋
吊杆
拱肋
系
杆
盖梁
b)
立柱 纵梁
横梁 桥面板
横梁
拱梁组合结构 拱系杆组合结构
吊杆 拱肋
c) 纵梁
图 连续拱式组合桥 (无推力)
第四章、拱式组合体系桥
第一节 主要类型及设计特点(知识点25)
拱式组合体系为在拱式桥跨结构中,将梁和拱两种基
本结构组合起来,共同承受荷载,充分发挥梁受弯,拱受 压的特点,拱式组合体系有多种类型。桁架拱桥拱式组合来自系桥钢筋混凝土整体式拱桥
(有推力拱)
刚架拱桥
拱式组合桥
有推力拱 无推力拱(系杆拱)
一、钢筋混凝土整体式拱桥
空腹段
实腹段
空腹段
空腹段
实腹段
空腹段
图 1 钢筋混凝土整体式拱桥
是一种主拱与拱上结构整体构造的上承式钢筋 混凝土组合式拱桥
图2 桁架拱
空腹段
纵梁
I
斜撑 横系梁
I 拱腿
现浇桥面混凝土
微弯板
实腹肋或纵梁肋
横系梁 II
图3 刚架拱
实腹段 横系梁
二、拱式组合桥
拱肋
吊杆
系杆
纵梁 拱梁组合结构
4-2-70
拱形桥搭建实验报告

一、实验目的1. 了解拱形桥的结构特点及其受力原理。
2. 通过实践操作,掌握拱形桥的搭建方法。
3. 培养动手能力和创新思维。
二、实验器材1. 冰棒棍:21根2. 玻璃杯:1个3. 清水:1份4. 尺子:1把5. 剪子:1把三、实验原理拱形桥是一种传统的桥梁结构,其特点是采用半圆形的拱结构,通过拱肋的承压作用,将来自桥面和车辆的压力传递到桥墩,从而实现桥梁的稳定和承重。
拱形桥的主要受力构件为拱肋,其受力特点为拱肋承压、支承处有水平推力。
拱形桥的搭建原理主要基于拱形结构的力学特性,即拱形可以有效地将压力转化为外推力,从而增强桥梁的承载能力。
四、实验步骤1. 基础组成单元搭建:- 将21根冰棒棍按照一定的间隔摆放在桌面上。
- 用尺子测量并调整冰棒棍的长度,确保每根冰棒棍的长度一致。
2. 插入冰棒棍:- 在基础组成单元两侧,分别插入冰棒棍,使其与基础单元形成稳定的结构。
- 注意插入的冰棒棍要与基础单元垂直,以确保结构的稳定性。
3. 重复搭建:- 重复步骤2,将剩余的冰棒棍组建在一起,形成拱形结构。
- 搭建过程中,注意保持冰棒棍的垂直和水平,以确保拱形的准确。
4. 拱桥搭建完成:- 当所有冰棒棍都插入并形成拱形结构后,拱桥搭建完成。
5. 承重测试:- 将玻璃杯放在拱桥上,然后慢慢倒水,观察拱桥的承重能力。
- 记录倒水过程中拱桥的变化情况,如变形、坍塌等。
五、实验结果与分析1. 拱桥承重能力:- 通过实验,我们发现搭建的拱桥能够承受一定的重量,且在倒水过程中,拱桥基本保持稳定,没有出现明显的变形或坍塌。
2. 受力分析:- 拱桥在承重过程中,主要依靠拱肋的承压作用来传递压力。
- 当拱桥受到压力时,拱肋会产生水平推力,将压力传递到桥墩,从而保证桥梁的稳定性。
3. 结构优化:- 通过本次实验,我们了解到拱形桥的结构特点和受力原理。
- 在实际应用中,可以通过优化拱肋的形状和尺寸,提高拱桥的承重能力和稳定性。
六、实验结论本次实验成功地搭建了一座拱形桥,并通过实验验证了拱形桥的承重能力和受力原理。
拱式桥桥的构造与设计

公元 595-605年的赵州桥(如图1所示,跨径L=37m)
图1 赵州桥
当代拱桥:结构型式与施工方法的丰富多彩如,97年 建成的重 庆万县长江大桥(图2所示,L=420m), 广州丫髻 沙特大桥(图3,L=360m), 1932建成的澳大利亚 悉尼钢拱桥(图4,L= 503m )及正在建设的鲁浦大 桥(L=550m)。
L0 - 净跨径 L -计算跨径 f0 - 净矢高 f -计算矢高 f/L - 矢跨比
拱式桥
7.1.4、拱桥的主要类型及其特点
建桥材料
圬工拱桥,钢筋混凝土拱桥,钢拱桥
结构体系分
简单体系拱桥:三铰拱,两铰拱,无铰拱 组合体系拱桥:无推力拱桥,有推力拱桥
拱
主拱圈截面形式形式 板拱桥,肋拱桥,双曲拱桥,箱形拱桥
7.2.2、总体布置
总
确定桥梁长度及分孔
桥面标高,拱顶底面标高,起拱 线标高,基础底面标高
体
布
确定桥梁的设计标高和矢跨比 混凝土拱桥矢跨比1/4~1/8
置
箱型拱桥矢跨比1/6~1/10
正确处理不等分孔问题
采用不同的矢跨比 采用不同的拱脚标高 调整拱上建筑的重力 采用不同的拱跨结构
7.3 主拱圈的构造与尺寸拟定
根据主拱圈截面形式可分为:板拱,肋拱,双曲拱,箱形拱等。
7.3.1、板拱
板拱是指主拱(圈)采用 整体实心矩形截面的拱。 按照主拱所采用的材料, 可分为石板拱、混凝土板 拱和钢筋混凝土板拱等。 这部分主要介绍钢筋混凝 土板拱
•板拱的宽度
•拱圈的厚度 对钢筋混凝土拱
•拱圈截面的变化规律 截面变化规律
•主要缺点: 1)是有推力的结构,而且自重较大,因而水平推力也较大, 增加了下部结构的工程量,对地基 要求也高; 3)由于水平推力较大,在连续多孔的大、中桥中,为防止 一孔破坏而影响全桥的安全,需要采取较复杂的措施,或 设置单向推力墩,增加了造价; 4)上承式拱桥的建筑高度较高。 •拱桥的缺点正在逐步得到改善和克服:200~600m 范围内,拱桥仍然是悬索桥和斜拉桥的竞争对手
钢管混凝土拱桥设计规范

------------------------------------------------------5
不断更新设计理念,提高设计可靠性
桥梁设计本身就是一项创造性的工作。 桥梁设计是否满足要求的判别标准中,满足规范规定仅是最低 要求,更高的要求应是桥梁结构体系、构造设计的合理性以及 桥梁长期使用安全、耐久性。设计中,需要重新认识桥梁“最 不利”状态,计入一切可能出现的不利因素,提高设计的可靠 性。例如,对于通航河流上的桥梁,通常仅强调通航孔桥墩桥
墩防撞设计,但事实上,非通航孔并不就等于船只一定不会前
往(广东九江桥事故就是一例),且仅靠管理是难以避免的, 设计时必须留有足够余地,以便应对难以预料的风险。
------------------------------------------------------6
精细化设计,提高桥梁设计质量
桥梁设计是一项十分细致的技术工作。
杭州钱江四桥(2004年, 190m×2+85m×9)
------------------------------------------------------安徽太平湖大桥(2007年,352m)
世界上已建的10座最大跨径拱桥
序号 1 2 3 桥名 中国重庆朝天门大桥 中国上海卢浦大桥 中国合江长江一桥 美国新河谷(New River 4 Gorge)桥 美国纽约贝永(Bayonne) 5 桥 澳大利亚悉尼港(Sydney 6 Harbor)桥 7 中国重庆巫山长江大桥 8 中国肇庆西江铁路大桥 9 中国宁波明州大桥 10 湖北支井河特大桥 ------------------------------------------------------主跨 /m 552 550 530 518 510 503 460 450 450 430 结构形式 中承式钢桁拱 中承式箱拱 中承式钢管混凝土拱 上承式钢桁拱 中承式钢桁拱 中承式钢桁拱 中承式钢管混凝土拱 钢箱拱 中承式钢箱拱 上承式钢管混凝土拱 建成 年份 2009 2003 2012 1977 1931 1932 2005 2014 2011 2009
各种桥梁构造图解

各种桥梁构造图解各种桥梁构造图解箱型梁桥:(xiang xing liang qiao) box-girder bridge 箱梁结构的基本概念在于全部上部结构变为整体的空心梁,而当主要荷载通过桥上的任何位置时,空心梁的所有各部分(梁肋,顶板和底板)作为整体同时参加受力。
其结果可节省材料,成为薄壁结构,提高了抗扭强度。
箱梁桥可分为单室,双室,多室几种。
组合梁桥:(zhu he liang qiao) composite beam bridge指以梁式桥跨作为基本结构的组合结构桥,既两种以上体系重叠后,整体结构的反力性质仍与以受弯作用负载的梁的特点相同。
这类桥的特点主要表现在设计计算工作繁重,构造细节及内力复杂。
空腹拱桥:(kong fu gong qiao) open spandrel arch bridge 在拱桥拱圈上设置小拱,横墙或支柱来支撑桥面系,从而减轻桥梁恒载并增大桥梁泻水面积者称为空腹拱桥。
实腹拱桥:(shi fu gong qiao) filled spandrel arch bridge在拱桥拱圈上腹部两侧填实土壤或粒料后铺装路面,这种拱桥称为实腹拱桥。
小跨径的砖,石,混凝土拱常采用这种构造形式。
无铰拱桥:(wu jiao gong qiao) hingless arch bridge如图,在整个拱上不设铰,属外部三次超静定结构。
由于无铰,结构整体钢度大,构造简单,施工方便,维护费用少,因此在实际中使用最广泛。
但由于超静定次数高,温度变化,材料收缩,结构变形,特别是墩台位移会产生较大附加应力。
混凝土空腹无铰拱桥三铰拱桥:(san jiao gong qiao) three-hinged arch bridge 如图,在拱桥的两个拱脚和拱的中间各设一铰称为三铰拱。
属外部静定结构构。
因而温度变化,支座沉陷等不会在拱内产生附加应力,故当地质条件不良,可以采用三铰拱,但铰的存在使其构造复杂,施工困难,维护费用高,而且减小了整体刚度降低了抗震能力,因此一般较少使用。
第篇拱桥的构造

精品文档
• 内于弧形铰的构造较复杂,铰面的加 工既费工又难以保证质量,因此,对于 空腔式拱上建筑的腹拱圈,由于跨径较 小,可以采用(cǎiyòng)构造简单的平 铰。平铰是平面相接,直接抵承。平铰 的接缝间可用低标号的砂浆砌,也可垫 付油毛毡或直接于砌接头。
精品文档
• 对于跨径不大(如腹拱圈(ɡǒnɡ quān)) 或在轻型的结构物中(如人行桥),可以 采用不完全铰。由于拱的截面急剧地减 窄,保证了支承截面处的转动而起到铰 的作用。在减窄的截面内,由于受压不 均勾,因此将发生很大的应力。颈缩部 分可能开裂,有时须配以斜钢筋,斜钢 筋应根据总的纵向力及剪力来计算。
• 对于片·石拱,其拱石的厚度不小于150mm,将尖 锐突出部分敲击即可。各类拱石,石料层面应与拱 轴线垂直。
精品文档
第二章 拱桥(gǒngqiáo)的构造及设计
2.1 主拱圈(ɡǒnɡ quān) 2.1.1 板拱的—构—造石拱桥构造
拱石编号
等截面圆弧拱的拱石编号
五角石
变截面拱圈的拱石编号
精品文档
截面抗弯、抗扭刚度大,拱圈整体性好;
单条箱肋稳定性好,能单箱肋成拱, 便于无支架施工; 箱形截面能适应主拱圈各截面抵抗正负弯矩的需要; 自重相对较轻;
制作要求较高,吊装设备较多, 主要适用于大跨径拱桥。
精品文档
第二章 拱桥(gǒngqiáo)的构造及设计
2.1 主拱圈(ɡǒnɡ quān)的构造
2.1.3 箱形拱 箱形拱的组成方式: 由多条U形肋组成多室箱形截面;
各种桥梁构造图解

各种桥梁构造图解箱型梁桥:(xiang xing liang qiao) box-girder bridge 箱梁结构的基本概念在于全部上部结构变为整体的空心梁,而当主要荷载通过桥上的任何位置时,空心梁的所有各部分(梁肋,顶板和底板)作为整体同时参加受力。
其结果可节省材料,成为薄壁结构,提高了抗扭强度。
箱梁桥可分为单室,双室,多室几种。
组合梁桥:(zhu he liang qiao) composite beam bridge指以梁式桥跨作为基本结构的组合结构桥,既两种以上体系重叠后,整体结构的反力性质仍与以受弯作用负载的梁的特点相同。
这类桥的特点主要表现在设计计算工作繁重,构造细节及内力复杂。
空腹拱桥:(kong fu gong qiao) open spandrel arch bridge 在拱桥拱圈上设置小拱,横墙或支柱来支撑桥面系,从而减轻桥梁恒载并增大桥梁泻水面积者称为空腹拱桥。
实腹拱桥:(shi fu gong qiao) filled spandrel arch bridge在拱桥拱圈上腹部两侧填实土壤或粒料后铺装路面,这种拱桥称为实腹拱桥。
小跨径的砖,石,混凝土拱常采用这种构造形式。
无铰拱桥:(wu jiao gong qiao) hingless arch bridge如图,在整个拱上不设铰,属外部三次超静定结构。
由于无铰,结构整体钢度大,构造简单,施工方便,维护费用少,因此在实际中使用最广泛。
但由于超静定次数高,温度变化,材料收缩,结构变形,特别是墩台位移会产生较大附加应力。
混凝土空腹无铰拱桥三铰拱桥:(san jiao gong qiao) three-hinged arch bridge 如图,在拱桥的两个拱脚和拱的中间各设一铰称为三铰拱。
属外部静定结构构。
因而温度变化,支座沉陷等不会在拱内产生附加应力,故当地质条件不良,可以采用三铰拱,但铰的存在使其构造复杂,施工困难,维护费用高,而且减小了整体刚度降低了抗震能力,因此一般较少使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公元 595-605年的赵州桥(如图1所示,跨径L=37m)
图1 赵州桥
第1页/共38页
当代拱桥:结构型式与施工方法的丰富多彩如,97年 建成的重 庆万县长江大桥(图2所示,L=420m), 广州丫髻 沙特大桥(图3,L=360m), 1932建成的澳大利亚 悉尼钢拱桥(图4,L= 503m )及正在建设的鲁浦大 桥(L=550m)。
AI
其中 N自拱顶向拱脚逐渐增大,但M变化复杂与结构体系和截 面惯性矩I有关,下图为结构体系和截面惯性矩对弯矩的影响。
第16页/共38页
无铰拱通常可用惯性矩从拱顶向拱脚逐渐增大的变化(见下 图),计算公式可采用Ritter公式:
I
1ቤተ መጻሕፍቲ ባይዱ
(1
Id
n)
cos
上式中:I为任意截面的惯性矩;
Id为拱顶截面的惯性矩;
推力任由墩台承受。
第10页/共38页
7.2.2、总体布置
总
确定桥梁长度及分孔
桥面标高,拱顶底面标高,起拱 线标高,基础底面标高
体
布
确定桥梁的设计标高和矢跨比 混凝土拱桥矢跨比1/4~1/8
置
箱型拱桥矢跨比1/6~1/10
正确处理不等分孔问题
采用不同的矢跨比 采用不同的拱脚标高 调整拱上建筑的重力 采用不同的拱跨结构
拱式桥
上承式拱桥的基本组成
桥第梁6与页/道共3路8页结构
L0 - 净跨径 L -计算跨径 f0 - 净矢高 f -计算矢高 f/L - 矢跨比
拱式桥
7.1.4、拱桥的主要类型及其特点
建桥材料
圬工拱桥,钢筋混凝土拱桥,钢拱桥
结构体系分
简单体系拱桥:三铰拱,两铰拱,无铰拱 组合体系拱桥:无推力拱桥,有推力拱桥
第11页/共38页
第12页/共38页
7.3 主拱圈的构造与尺寸拟定
根据主拱圈截面形式可分为:板拱,肋拱,双曲拱,箱形拱等。
7.3.1、板拱
板拱是指主拱(圈)采用 整体实心矩形截面的拱。 按照主拱所采用的材料, 可分为石板拱、混凝土板 拱和钢筋混凝土板拱等。 这部分主要介绍钢筋混凝 土板拱
•板拱的宽度
第13页/共38页
第14页/共38页
•拱圈的厚度 对钢筋混凝土拱
•拱圈截面的变化规律 截面变化规律
拱顶厚度 hd (1/ 60 ~ 1/ 70)L
拱脚厚度 hj hd / cos j
其中 j 2tg1(2 f / L)
等截面(常用) 变截面(构造复杂)
第15页/共38页
拱截面正应力 N My
桥第梁4与页/道共3路8页结构
7.1.3、拱桥的组成 根据行车道的位置,拱桥可以分成:上承式、下承
式和中承式三种类型如下图所示:
拱桥的基本图示
一般上承式拱桥,桥跨结构是由主拱圈、拱上建筑 等组成。
第5页/共38页
1-主拱圈 2-拱顶 3-拱脚
4-拱轴线 5-拱腹 6-拱背
7-起拱线 11-拱上建筑
为任意截面的拱轴线倾角;
n拱厚变化系数,可用拱脚处的边界条件=1求得:
第17页/共38页
n Id
I j cos j
Ij和j分别为拱脚截面的惯性矩和倾角
• 钢筋混凝土板拱的构造
配筋
纵向受力钢筋:最小配筋率0.2%~0.4% 箍筋,应将上下缘主筋连系起来 分布钢筋:应设在主筋内侧
第18页/共38页
2、板肋拱
桥第梁8与页/道共3路8页结构
2、组合体系拱桥 组合体系拱桥:在拱式桥跨中,行车系与拱组合,共同受力。
同样,组合拱可以做成上承式、中承式和下承式。常用的有以下 几种形式: 无推力拱(使用较广泛):拱的推力由系杆承受,墩台不受水平推力
第9页/共38页
有推力拱:此种组合体系拱没有系杆,有单独的梁和拱共同受力,拱的水平
承式,下承式,均为有推力拱。 三铰拱:静定结构,在地基差的地区可 采用。但构造复杂,施工困难,整体刚 度小,主拱圈一般不采用。 无铰拱:三次超静定结构。拱的内力分布 较均匀,材料用量较三铰拱省;构造简单, 施工方便,整体刚度大,实际中使用广泛。 但超静定次数高,会产生附加内力,一般 拱桥按受力图式的分类 希望修建在地基良好处。跨径增大,附加 力影响变小,故钢筋混凝土无铰拱仍是大 跨径桥梁的主要型式之一。 两铰拱:一次超静定结构,介于三铰拱和无铰拱之间。
肋拱:拱圈截面由板和肋组成的拱桥。
第19页/共38页
7.3.2、肋拱
肋拱:用两条或多条分离的平行窄拱圈即拱肋作为主拱圈的拱具有自 重轻,恒载内力小,可以充分发挥钢筋混凝土等材料的性能,在 大中型拱桥中得到广泛应用
肋拱截面形式
矩形,肋高h=(1/40~1/60)L,宽b=(0.5~2.0)h
工字形截面肋高h=(1/25~1/35)L,宽b=(0.4~0.5)h 管形肋拱 箱形肋拱(后面介绍)
•主要缺点: 1)是有推力的结构,而且自重较大,因而水平推力也较大, 增加了下部结构的工程量,对地基 要求也高; 3)由于水平推力较大,在连续多孔的大、中桥中,为防止 一孔破坏而影响全桥的安全,需要采取较复杂的措施,或 设置单向推力墩,增加了造价; 4)上承式拱桥的建筑高度较高。 •拱桥的缺点正在逐步得到改善和克服:200~600m 范围内,拱桥仍然是悬索桥和斜拉桥的竞争对手
图2 1997建成的四川万县长江大桥
(L=420m)
。
第2页/共38页
图3 360m 广州丫髻沙特大桥
图 4 1932澳大利亚503m悉尼钢拱桥
7.1.1 拱桥的受力特点
•承重结构:主拱
•支承处不仅产生竖 向反力,还产生水 平推力,从而使拱 主要受压
拱桥的基本图示
第3页/共38页
拱式桥
7.1.2、拱桥的基本特点: •主要优点 跨越能力大;能充分做到就地取材;耐久性好,养护、维修 费用小;外形美观;构造较简单,有利于广泛采用。
拱
主拱圈截面形式形式 板拱桥,肋拱桥,双曲拱桥,箱形拱桥
桥
拱轴线型式
圆弧拱桥,抛物线拱桥,悬链线桥
桥面位置
上承式拱桥,中承式拱桥,下承式拱桥
拱上建筑形式
实腹式拱桥,空腹式拱桥
桥第梁7与页/道共3路8页结构
拱式桥
7.2 拱桥的结构体系与总体布置
7.2.1、拱式桥梁的结构体系 简单体系拱桥:可以做成上承式,中
第20页/共38页
第21页/共38页
7.3.3、箱形拱
箱形板拱:主拱圈由多室箱构成的拱,箱形拱通常采用预制拼装
施工。
主要特点 截面组成方式
截面挖空率大 中性轴居中 抗弯和抗扭刚度大,整体性好