数据库-SQL优化
sql优化常用面试题

sql优化常用面试题SQL优化是数据库开发和维护中非常重要的一项工作。
在面试过程中,面试官通常会提出一些与SQL优化相关的问题,以下是一些常见的SQL优化面试题:1. 如何进行SQL优化?SQL优化可以通过以下几个方面实现:1.1. 索引优化:合理创建索引并保证索引的使用;1.2. 查询优化:使用合适的查询语句、减少不必要的查询、优化查询条件和排序等;1.3. 数据库设计优化:合理设计数据库结构,避免冗余字段和表,减少数据的存储和检索;1.4. 优化表结构:适当分割数据表,避免表过大,减少数据操作的时间;1.5. SQL语句优化:合理编写SQL语句,避免使用子查询、JOIN 操作等可能导致性能下降的语句。
2. 什么是索引?为什么要使用索引?索引是一种数据结构,用于加快数据库的检索速度。
通过将特定列上的索引值与实际数据进行映射,可以快速定位到包含指定数据的记录,提高查询效率。
索引的使用可以带来以下优点:- 加快数据检索速度:通过索引,数据库可以直接访问到符合查询条件的数据,加快查询速度;- 提高查询性能:索引可以减少数据库的扫描操作,降低系统资源的占用;- 支持唯一性约束:通过创建唯一索引,可以确保数据表中某些列的唯一性;- 支持排序:通过创建排序索引,可以直接按照索引顺序返回数据。
3. 什么是SQL执行计划?SQL执行计划是数据库执行SQL语句时生成的一种执行计划,用于指导数据库如何执行SQL查询。
执行计划是由数据库的查询优化器生成的,它会根据表结构、索引情况等因素评估查询的成本,并生成一种最优的执行计划。
SQL执行计划包括了查询语句的扫描方式、连接类型、索引使用情况等信息,有助于分析查询的性能瓶颈以及优化性能。
4. 如何通过查看SQL执行计划来进行优化?通过查看SQL执行计划,可以获取查询语句的执行细节,从而进行性能优化。
4.1. 扫描方式优化:通过查看执行计划中的扫描方式,可以了解查询是如何扫描表的(全表扫描、索引扫描等),针对不同的扫描方式,可以针对性地进行优化,如创建合适的索引、优化查询条件等。
数据库优化工具推荐与使用技巧(系列三)

数据库优化是一个关乎效率和性能的重要问题。
随着数据量的不断增大,数据库系统的性能优化显得尤为重要。
为了提高数据库的性能和效率,我们可以使用一些数据库优化工具。
本文将介绍一些常用的数据库优化工具,并分享一些使用技巧。
一、数据库优化工具的推荐1. SQL优化器SQL优化器是数据库优化的重要工具之一。
它能够自动地对SQL语句进行分析和优化,提高查询语句的执行效率。
常见的SQL优化器有Oracle的SQL Optimizer、Microsoft SQL Server的Query Optimizer等。
使用SQL优化器,可以通过适当修改和调整SQL语句,提高数据库的查询性能。
2. 数据库监控工具数据库监控工具能够实时监测数据库的运行情况,包括查询速度、锁定情况、数据库连接数等。
通过监控数据库的运行情况,可以及时发现和解决性能瓶颈,提高数据库的响应速度。
常见的数据库监控工具有MySQL的Percona Monitoring and Management、Oracle的Oracle Enterprise Manager等。
3. 数据库索引优化工具数据库的索引对于查询性能的提升至关重要。
数据库索引优化工具可以帮助我们分析现有索引的使用情况,并提供优化建议。
通过调整索引的结构和使用方法,可以显著提高数据库的查询性能。
常见的数据库索引优化工具有MySQL的pt-duplicate-key-checker、PostgreSQL的pgBadger等。
4. 数据库调优工具数据库调优是指通过调整数据库的配置参数和优化SQL语句,提高数据库的性能和运行效率。
数据库调优工具可以自动地分析数据库的性能瓶颈,并给出相应的优化建议。
常见的数据库调优工具有MySQL 的pt-query-digest、Microsoft SQL Server的Database Engine Tuning Advisor等。
二、数据库优化工具的使用技巧1. 了解数据库的运行情况在使用数据库优化工具之前,首先要了解数据库的运行情况。
sql优化面试题

sql优化面试题答案一:在进行SQL性能优化的时候,我们需要关注以下几个方面:1. 数据库结构优化:a. 合理设计表结构,避免过多冗余字段和无效索引的存在。
b. 设计适当的主键和外键,以提升查询效率。
c. 使用合适的数据类型,减少存储空间和提高查询性能。
2. 索引优化:a. 合理创建索引,对于经常用于查询的字段和JOIN操作的关联字段,可以考虑创建索引。
b. 避免创建过多的索引,因为索引的更新和维护也会带来性能开销。
c. 定期对索引进行优化和重建,以提高查询性能。
3. SQL查询优化:a. 使用合适的查询语句,避免使用过于复杂的SQL语句。
b. 避免使用SELECT *,只选取需要的字段,减少数据传输。
c. 调整查询顺序,优化JOIN操作的顺序和条件。
d. 避免使用子查询,可以将子查询转换为JOIN操作或者临时表的方式实现。
e. 尽量减少数据库访问次数,使用批量操作替代逐条操作。
4. 数据库配置优化:a. 合理配置数据库连接池,避免过多的空闲连接和频繁的连接创建。
b. 调整数据库参数,如缓存大小、并发连接数等,以适应具体的应用场景。
5. SQL语句调优:a. 使用Explain分析SQL语句执行计划,根据执行计划来优化查询语句。
b. 使用合适的JOIN方式,避免全表扫描和笛卡尔积等低效操作。
c. 避免使用OR条件,可以使用IN或者UNION替代。
d. 使用LIMIT限制返回的行数,避免返回大量无用数据。
6. 数据库缓存优化:a. 合理利用数据库缓存,缓存经常使用的查询结果和数据。
b. 使用合适的缓存策略,如LRU(最近最少使用)等。
综上所述,SQL优化不是一蹴而就的任务,需要我们综合考虑数据库结构、索引、查询语句、数据库配置以及缓存等各个方面的优化策略。
只有全面考虑并有针对性地进行优化,才能提升数据库的性能和响应速度。
答案二:在面试中,SQL优化是一个常见的话题。
下面我将介绍一些SQL 优化的面试题及其解答:1. 什么是SQL优化,为什么需要进行SQL优化?SQL优化是通过调整和优化SQL语句的结构、索引和查询方式,以提升数据库的性能和响应速度。
如何进行SQL调优

如何进行SQL调优SQL调优是优化数据库性能的一个重要步骤。
通常情况下,优化SQL查询的效率会使整个系统的性能得到提升。
在这篇文章中,我们将探讨如何进行SQL调优。
一、分析SQL语句首先,我们需要分析SQL查询语句。
如果SQL查询不正确或不充分,则不可能实现有效的调优。
我们需要了解查询的目的、查询的表、所需的数据以及查询的条件等等。
在分析查询语句时,我们需要关注以下几个方面:1.查询完成的时间是否满足需求;2.过滤条件是否合适;3.表之间的关系是否正确;4.是否使用了合适的索引;5.查询中使用了哪些函数;6.是否将复杂的查询分解为简单的查询;7.是否存在重复数据;8.是否使用了动态语句。
二、优化数据表结构第二个优化策略是优化数据表结构。
优化数据表结构可以使查询更快并减少查询时间。
以下是一些优化数据表结构的建议:1.将表拆分为更小的表;2.对于大型的表,可以使查询更快,更好地维护和管理;3.添加数据到表中时,使用批量插入而不是单独插入;4.为表的主键添加索引;5.使用适当的数据类型;6.删除不必要的列;7.标准化表设计。
三、使用优化查询技术第三个优化策略是使用优化查询技术。
以下是一些优化查询技术的建议:1.使用预编译语句;2.使用存储过程;3.将大的表拆分为小表;4.优化查询过程中使用的函数;5.范围查询的优化技术;6.优化复杂查询;7.熟悉查询缓存的工作原理;8.使用正确的JOIN语句。
四、使用合适的索引使用合适的索引是第四个优化策略。
索引是用于查找表中数据的一种结构。
以下是一些使用索引的建议:1.只有在需要时才使用索引;2.使用准确性为索引提供数据;3.使用索引可以使查询更快,但也会增加插入和修改的时间;4.对于大型表,使用索引可以显著提高性能;5.使用覆盖索引;6.避免使用不规范的索引;7.使用联合索引;8.使用优化查询缓存。
五、优化数据库服务器优化数据库服务器是第五个优化策略。
以下是一些优化服务器的建议:1.选择正确的硬件;2.选择正确的操作系统;3.使用正确的配置参数;4.配置正确的缓存大小;5.使用内存表代替磁盘表;6.合理设置自动增量字段;7.优化写和读的优化区域;8.备份和压缩数据。
数据库性能调优与SQL调整方案

数据库性能调优与SQL调整方案在今天的信息时代中,数据库是许多企业关键的数据存储和处理工具。
为了确保数据库系统的高效运行和响应时间,数据库性能调优是至关重要的。
本文将介绍数据库性能调优的基本概念,并提供一些建议的SQL调整方案,帮助优化数据库系统的性能。
一、数据库性能调优的概念数据库性能调优是指对数据库系统的硬件、软件以及相关应用程序进行综合优化,以提高数据库系统的响应和处理能力,提升数据库系统的性能。
数据库性能调优的目标是通过优化数据库的结构、查询语句和系统参数等来提高数据库的效率,减少系统的资源消耗,提升用户的体验。
二、数据库性能调优的原则1.合理设计数据库结构:合理的数据库设计是数据库性能调优的基础。
需要关注表的大小、索引的使用、数据模型的规范化和冗余等,以确保数据库结构的高效性和易维护性。
2.优化SQL查询语句:提高SQL查询语句的效率可以极大地改善数据库系统的性能。
使用索引、避免全表扫描、避免使用复杂的子查询和联合查询,以及减少SQL查询语句的执行次数等,都是优化SQL查询语句的常用方法。
3.优化系统参数设置:根据数据库的性能需求,合理设置数据库系统的参数。
例如,调整内存分配、缓存设置、并发连接数、日志文件大小等,以提高数据库系统的性能和稳定性。
三、SQL调整方案1.使用合适的索引:索引在数据库查询中起着重要的作用,可以快速定位数据。
正确选择索引类型、建立合适的复合索引以及定期更新索引等,都是优化SQL查询的有效手段。
2.避免全表扫描:全表扫描是一种效率较低的数据检索方法,应尽量避免使用。
可以利用索引和适当的查询条件,增加筛选条件,提高查询效率。
3.尽量减少数据库访问次数:通过合并多个查询语句、使用批量操作等方式,减少数据库系统的访问次数,可以有效地提高数据库的处理能力和响应时间。
4.避免使用过多的函数:在查询语句中使用函数会增加数据库的负担和计算成本。
可以尝试将一些函数的计算操作移至应用程序层面进行处理,减轻数据库的负担。
SQL优化工具及使用技巧介绍

SQL优化工具及使用技巧介绍SQL(Structured Query Language)是一种用于管理和操作关系型数据库的编程语言。
它可以让我们通过向数据库服务器发送命令来实现数据的增删改查等操作。
然而,随着业务的发展和数据量的增长,SQL查询的性能可能会受到影响。
为了提高SQL查询的效率,出现了许多SQL优化工具。
本文将介绍一些常见的SQL优化工具及其使用技巧。
一、数据库性能优化工具1. Explain PlanExplain Plan是Oracle数据库提供的一种SQL优化工具,它可以帮助分析和优化SQL语句的执行计划。
通过使用Explain Plan命令,我们可以查看SQL查询的执行计划,了解SQL语句是如何被执行的,从而找到性能瓶颈并进行优化。
2. SQL Server ProfilerSQL Server Profiler是微软SQL Server数据库管理系统的一种性能监视工具。
它可以捕获和分析SQL Server数据库中的各种事件和耗时操作,如查询语句和存储过程的执行情况等。
通过使用SQL Server Profiler,我们可以找到数据库的性能瓶颈,并进行相应的优化。
3. MySQL Performance SchemaMySQL Performance Schema是MySQL数据库提供的一种性能监视工具。
它可以捕获和分析MySQL数据库中的各种事件和操作,如查询语句的执行情况、锁的状态等。
通过使用MySQL Performance Schema,我们可以深入了解数据库的性能问题,并对其进行优化。
二、SQL优化技巧1. 使用索引索引是提高SQL查询性能的重要手段之一。
在数据库中创建合适的索引可以加快查询操作的速度。
通常,我们可以根据查询条件中经常使用的字段来创建索引。
同时,还应注意索引的维护和更新,避免过多或过少的索引对性能产生负面影响。
2. 避免全表扫描全表扫描是指对整个表进行扫描,如果表中数据量较大,查询性能会受到较大影响。
复杂sql优化的方法及思路
复杂sql优化的方法及思路复杂SQL优化的方法及思路SQL是关系型数据库管理系统中最常用的语言,但是在处理复杂查询时,SQL语句往往会变得非常复杂和冗长,导致查询速度缓慢。
为了提高查询效率,我们需要进行SQL优化。
以下是一些复杂SQL优化的方法及思路。
1.索引优化索引是提高数据库查询效率的重要手段之一。
在设计表结构时,应该根据实际情况建立适当的索引。
在查询语句中使用索引可以大大减少数据扫描量,从而提高查询效率。
2.避免使用子查询子查询虽然方便了我们编写复杂的SQL语句,但是在执行过程中会增加额外的开销。
因此,在编写复杂SQL语句时应尽量避免使用子查询。
3.减少JOIN操作JOIN操作也是影响查询效率的一个重要因素。
在设计表结构时应尽量避免使用JOIN操作或者减少JOIN操作次数。
4.合理使用聚合函数聚合函数(如SUM、AVG等)可以对数据进行统计分析,在处理大量数据时非常有用。
但是,在使用聚合函数时要注意不要频繁调用,否则会降低查询效率。
5.使用EXPLAIN命令分析查询语句EXPLAIN命令可以分析查询语句的执行计划,从而找出影响查询效率的因素。
通过分析EXPLAIN结果,可以对SQL语句进行优化。
6.避免使用SELECT *SELECT *会查询所有列,包括不需要的列,增加了数据扫描量,降低了查询效率。
在编写SQL语句时应尽量避免使用SELECT *。
7.合理使用缓存缓存可以减少数据库访问次数,提高查询效率。
在设计系统架构时应考虑缓存的使用。
8.优化表结构表结构的设计也是影响SQL查询效率的一个重要因素。
在设计表结构时应尽量避免冗余数据和过多的列。
以上是一些复杂SQL优化的方法及思路。
通过合理运用这些方法和思路,可以大大提高SQL查询效率,为数据库管理系统提供更好的性能和稳定性。
sql优化的原则
sql优化的原则摘要:1.SQL 优化的概念2.SQL 优化的原则a.尽量减少SELECT 查询返回的数据量b.避免在WHERE 子句中使用函数c.使用INNER JOIN 代替子查询d.使用连接(JOIN)时注意顺序e.避免使用SELECT *f.使用LIKE 时避免使用通配符g.使用EXPLAIN 分析查询执行计划3.总结正文:SQL 优化是数据库管理员和开发人员的一项重要任务,目的是提高查询性能,减少查询时间。
本文将介绍SQL 优化的原则,帮助读者更好地理解和优化SQL 查询。
首先,我们需要了解SQL 优化的概念。
SQL 优化是指对SQL 查询进行调整,以提高查询性能和效率。
优化的目标是减少查询执行时间,提高数据库的响应速度。
接下来,我们来介绍SQL 优化的原则。
1.尽量减少SELECT 查询返回的数据量在编写SQL 查询时,应尽量只选择需要的字段,避免使用SELECT *。
这样可以减少数据传输量,提高查询速度。
2.避免在WHERE 子句中使用函数在WHERE 子句中使用函数会导致索引失效,从而降低查询性能。
如果必须使用函数,可以考虑将函数应用到常量上,而不是表列上。
3.使用INNER JOIN 代替子查询在可能的情况下,使用INNER JOIN 代替子查询可以提高查询性能。
子查询可能导致查询执行多次,而INNER JOIN 可以在一次查询中完成。
4.使用连接(JOIN)时注意顺序当使用连接(JOIN)时,应尽量让驱动表(记录数较少的表)放在左侧。
这样可以让数据库优化器更有效地过滤掉不需要的记录。
5.避免使用SELECT *只选择需要的字段,避免使用SELECT *。
这样可以减少数据传输量,提高查询速度。
6.使用LIKE 时避免使用通配符在编写LIKE 查询时,应避免使用通配符(如%)。
通配符会导致全表扫描,从而降低查询性能。
如果必须使用通配符,可以考虑使用前缀匹配,或者使用全文索引。
7.使用EXPLAIN 分析查询执行计划使用EXPLAIN 命令可以查看查询的执行计划,从而了解查询是如何执行的。
一条sql执行过长的时间,你如何优化,从哪些方面入手?
一条sql执行过长的时间,你如何优化,从哪些方面入手?当一条SQL查询执行时间过长时,优化可以从多个方面入手。
以下是一些可能的优化方向:1. 执行计划分析:使用数据库提供的工具分析查询执行计划。
在MySQL中,可以使用EXPLAIN关键字来查看查询的执行计划,了解数据库是如何执行查询的。
通过分析执行计划,可以找到潜在的性能问题,例如是否使用了索引、是否有全表扫描等。
2. 索引优化:确保查询中涉及的列上有适当的索引。
缺乏索引或者使用不当的索引可能导致查询性能下降。
可以考虑创建、调整或删除索引以优化查询性能。
注意,索引并不是越多越好,需要根据具体查询模式和数据分布来合理选择索引。
3. 适当使用缓存:利用数据库缓存,如MySQL的查询缓存或其他缓存机制,可以避免重复执行相同的查询。
但要注意,在某些情况下,查询缓存可能并不总是有益的,因此需要谨慎使用。
4. 分析慢查询日志:启用慢查询日志并分析其中记录的查询,找出执行时间较长的语句。
慢查询日志可以提供有关执行时间、索引使用等方面的信息,有助于定位潜在的性能问题。
5. 表结构优化:检查表的设计,确保表结构符合业务需求。
有时,调整表的结构,如拆分或合并表,可以改善查询性能。
6. 分批处理:如果查询涉及大量数据,考虑使用分页或分批处理的方式,以避免一次性处理大量数据导致的性能问题。
7. 数据库参数调整:调整数据库系统的参数,如连接池大小、内存配置等,以适应查询的需求。
不同的数据库系统有不同的配置参数,需要根据具体情况来调整。
8. 使用合适的数据类型:选择合适的数据类型可以减小存储空间、提高查询效率。
尽量避免在 WHERE 子句中对字段进行函数操作,因为这可能导致索引失效。
9. 数据库版本升级:考虑将数据库升级到最新版本,因为新版本通常包含了性能改进和优化。
在进行优化时,通常需要综合考虑以上多个方面,并根据具体的业务场景和数据特点来制定合适的优化策略。
同时,对于复杂的查询和大规模数据,可能需要结合数据库监控工具来实时监测系统性能。
大数据量数据库设计与优化方案(SQL优化)
⼤数据量数据库设计与优化⽅案(SQL优化)⼀、数据库结构的设计如果不能设计⼀个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,⽽且将会影响系统实际运⾏的性能。
所以,在⼀个系统开始实施之前,完备的数据库模型的设计是必须的。
在⼀个系统分析、设计阶段,因为数据量较⼩,负荷较低。
我们往往只注意到功能的实现,⽽很难注意到性能的薄弱之处,等到系统投⼊实际运⾏⼀段时间后,才发现系统的性能在降低,这时再来考虑提⾼系统性能则要花费更多的⼈⼒物⼒,⽽整个系统也不可避免的形成了⼀个打补丁⼯程。
所以在考虑整个系统的流程的时候,我们必须要考虑,在⾼并发⼤数据量的访问情况下,我们的系统会不会出现极端的情况。
(例:对外统计系统在7⽉16⽇出现的数据异常的情况,并发⼤数据量的的访问造成,数据库的响应时间不能跟上数据刷新的速度造成。
具体情况是:在⽇期临界时(00:00:00),判断数据库中是否有当前⽇期的记录,没有则插⼊⼀条当前⽇期的记录。
在低并发访问的情况下,不会发⽣问题,但是当⽇期临界时的访问量相当⼤的时候,在做这⼀判断的时候,会出现多次条件成⽴,则数据库⾥会被插⼊多条当前⽇期的记录,从⽽造成数据错误),数据库的模型确定下来之后,我们有必要做⼀个系统内数据流向图,分析可能出现的瓶颈。
为了保证数据库的⼀致性和完整性,在逻辑设计的时候往往会设计过多的表间关联,尽可能的降低数据的冗余。
(例:⽤户表的地区,我们可以把地区另外存放到⼀个地区表中)如果数据冗余低,数据的完整性容易得到保证,提⾼了数据吞吐速度,保证了数据的完整性,清楚地表达数据元素之间的关系。
⽽对于多表之间的关联查询(尤其是⼤数据表)时,其性能将会降低,同时也提⾼了客户端程序的编程难度,因此,物理设计需折衷考虑,根据业务规则,确定对关联表的数据量⼤⼩、数据项的访问频度,对此类数据表频繁的关联查询应适当提⾼数据冗余设计但增加了表间连接查询的操作,也使得程序的变得复杂,为了提⾼系统的响应时间,合理的数据冗余也是必要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
©2005 iSoftStone Technologies Ltd. All rights reserved.
谢谢!
iSoftStone Technologies Ltd.
2013-7-13
例:
--BAD select * from pros where id in ( select product_id from purchases_test ) --GOOD select o.* from pros o where exists ( select 1 from purchases_test i where i.product_id = o.id )
SQL优化
2. 使用表连接而不是多个查询 例: 现有products,product_type表。查询出商品为“苹果”的基本 信息及类型。
--BAD select name, product_type_id from products where name = '苹果‘ select name from product_type where id = 1
15
©2005 iSoftStone Technologies Ltd. All rights reserved.
SQL优化
9. 使用EXISTS而不是DISTINCT
distinct:禁止重复行的显示。 exists:检查是否存在。
例:
--BAD select distinct pr.id, from pros pr, purchases_test pu where pr.id = pu.product_id --GOOD select o.id, from pros o where exists( select 1 from purchases_test i where i.product_id = o.id )
SQL优化
聚集索引: 确定表中数据的物理顺序。
例: 汉语字典的正文本身就是一个聚集索引。 汉语字典的排序是从“a”到“z”。如果查询“安”,就会在 “a”部分里找,如果找不到就属于没有这个字。
9
©2005 iSoftStone Technologies Ltd. All rights reserved.
11
©2005 iSoftStone Technologies Ltd. All rights reserved.
SQL优化
一个表或视图中最多有250个非聚集排序或有249个非聚集排序一个 聚集排序。
12
©2005 iSoftStone Technologies Ltd. All rights reserved.
SQL优化
非聚集索引: 该索引中索引的逻辑顺序与磁盘上行的物理存储顺序不同。
例: 汉语字典。 当你遇到一个不认识的字的时候,就不能用聚集索引来查询,这 时候需要用到“偏旁部首”查到您要找的字,然后根据这个字后的 页码直接翻到某页来找到你要找的字。 这种目录纯粹是目录,正文纯粹是正文的排序方式称为“非聚集 索引”。
SQL优化
4. 使用CASE表达式而不是多个查询 例: 查询products表中的价格小于20、20到500之间、大于500的数量
。
--BAD select count(id) countNum from products where price < 20 --GOOD select count(id) countNum from products where price between 20 and 500 select count(id) countNum from products where price > 500
数据库
-cmquan
iSoftStone Technologies Ltd.
2013-7-13
SQL优化
1. 使用WHERE子句过滤行 2. 使用表连接而不是多个查询 3. 执行连接时使用完全限定的列引用 4. 使用CASE表达式而不是多个查询 5. 索引 6. 使用WHERE而不是HAVING 7. 使用UNION ALL而不是UNION 8. 使用EXISTS而不是IN 9. 使用EXISTS而不是DISTINCT
select count(case when price < 20 then 1 else null end) low, count(case when price between 20 and 500 then 1 else null end) med, count(case when price > 500 then 1 else null end) high from products
2
©2005 iSoftStone Technologies Ltd. All rights reserved.
SQL优化
1. 使用WHERE子句过滤行 使用where条件语句。
Where子句中应避免使用函数,否则会增加执行时间。
3
©2005 iSoftStone Technologies Ltd. All rights reserved.
SQL优化
执行一个查询通常比执行两个查询效率高。
查询中必须选择连接顺序,将数据量比较少的放在后边。 比如:要连接3个相关表table1,table2,table3。假设table1有1000 行,table2有100行,table3有10行。首先应将table2连接到table1上 ,接着是table2和table3。
SQL优化
6. 使用WHERE而不是HAVING
where:过滤行 having:过滤行组。(先分组后过滤)
例:查询商品类型为1和2的平均价格(products)。
--BAD select product_type_id, avg(price) price_avg from products group by product_type_id having product_type_id in (1, 2) --GOOD select product_type_id, avg(price) price_avg from products where product_type_id in (1, 2) group by product_type_id
7
©2005 iSoftStone Technologies Ltd. All rights reserved.
SQL优化
5. 索引(index) 理解为一种特殊的目录。
1、聚集索引 2、非聚集索引
8
©2005 iSoftStone Technologies Ltd. All rights reserved.
5
©2005 iSoftStone Technologies Ltd. All rights reserved.
SQL优化
3. 执行连接时使用完全限定的列引用 例:products,product_type。多表链接查询所有数据。
--BAD select , , description, price from products p, product_type pt where p.product_type_id = pt.id
SQL优化
聚集索引:
适用于聚集索引的情况包括: 1、含有大量非重复值的列。 2、使用BETWEEN,>,>=,<或<=返回一个范围值的列 3、被连续访问的列 4、返回大型结果集的查询 5、经常被使用连接或GROUP BY子句的查询访问的列
10
©2005 iSoftStone Technologies Ltd. All rights reserved.
--GOOD select , , p.description, p.price from products p, product_type pt where p.product_type_id = pt.id
6
©2005 iSoftStone Technologies Ltd. All rights reserved.
--GOOD select * from products union all 4
©2005 iSoftStone Technologies Ltd. All rights reserved.
SQL优化
8. 使用EXISTS而不是IN
in:检查一个值是否包含在列表中。 exists:检查是否存在。
13
©2005 iSoftStone Technologies Ltd. All rights reserved.
SQL优化
7. 使用UNION ALL而不是UNION
union all:获得2个查询检索到的所有行,包括重复行。 union:获得2个查询检索到的所有不重复行。
例:
--BAD select * from products union select * from pros
--GOOD select , p.product_type_id, from products p, product_type pt where p.product_type_id = pt.id and = '苹果'
4
©2005 iSoftStone Technologies Ltd. All rights reserved.