反函数基础练习含答案

合集下载

大一反函数的经典例题(范文5篇)

大一反函数的经典例题(范文5篇)

大一反函数的经典例题(范文5篇)以下是网友分享的关于大一反函数的经典例题的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。

大一反函数的经典例题(1)[例1]若函数f (x ) 与g (x)的图象关于直线y =x 对称,且f (x )=(x -1) (x ≤1) ,求g (x ). 选题意图:本题考查互为反函数的函数的图象间的对称关系.解:f (x ) 与g (x ) 在定义域内互为反函数,f (x )=(x -1) 2(x ≤1) 的反函数是2y =1-x (x ≥0) ,∴g (x )=1-x (x ≥0).说明:互为反函数的图象关于y =x 对称,反之亦然,也是判断两个函数互为反函数的方法之一,本是f (x ) 与g (x )互为反函数,要求g (x ), 只须求f (x ) 在限定区间上的反函数即可.[例2]若点P (1,2) 在函数y=ax +b 的图象上,又在它的反函数的图象上,求a , b 的值.选题意图:本题考查反函数的概念,反函数的图象与原函数图象的对称关系的应用.解:由题意知P (1,2) 在其反函数的图象上,根据互为反函数的函数图象关于y =x 对称的性质,P′(2,1) 也在函数y =+b 的图象上,⎧⎪2=a +b 因此:⎨解得:a =-3,b =7. ⎪⎩1=2a +b说明:引导学生树立创造性思考问题的方式、方法,利用互为反函数的图象的对称关系. (1,2)在反函数图象上,则(2,1) 也在原函数图象上是解决该问题的关键所在,即f (2)=1,这是得到a , b 的另一个关系式的条件,这样两个条件两个未知数,就可解出a , b 的值.[例3]已知函数f (x )=(1+x 2-1) -2(x ≥-2) ,求方程f (x )=f (x ) 的2解集.选题意图:本题考查互为反函数的函数的图象关于y =x 对称的关系,灵活运用这一关系解决问题的能力.分析:若先求出f (x )=2x +2-2(x ≥-2), 再解方程(1+-1-1图2—8 x 2) -2=2x +2-2,整理得四2次方程,求解有困难,但我们可以利用y =f (x ) 与y =f (x ) 的图象的关系求解. 先画出y =f (x )=(1+x 2-1) -2的图象,如图,因为y =f (x ) 的图象和y =f (x ) 的图象关于直线y =x 对称,2-1可立即画出y =f (x ) 的图象,由图象可见两图象恰有两个交点,且交点在y =x 上,因此,由x 2⎧⎪y =(1+) -2方程组⎨联立即可解得. 2⎪⎩y =x解:由函数f (x )=(1+x 2) -2(x ≥-2) 画出图象,如图,由于函数f (x ) 的反函数的图象与2函数f (x ) 的图象关于y =x 对称,故可以画出其反函数图象(如图),由图可知两图象恰有两x 2⎧y =(1+) -2⎪-1个交点且交点都在y =x 上. 因此,方程组⎨的解即为f (x )=f (x ) 的解,于是2⎪⎩y =x解方程组得x =-2或x =2,从而方程f (x )=f (x ) 的解集为{-2,2}.说明:解决本题的关键是,根据互为反函数的图象关于y =x 对称,若两个函数有交点,则交点必在直线y =x 上,由此,将要解的两个较复杂的方程组转化为直线y =x 与其中-1y =(1+x 2) -2一个方程组的解的问题. 2大一反函数的经典例题(2)[例1]下列各组函数中,不互为反函数的是( ) ......1(x -3) 21B. f (x )=2x +3,g (y )= (y -3)2A. f (x )=2x +3,g (x )=C. f (x )=x , g (x )=x2D. f (x )=x (x <0) , g (x )=-x (x >0)2选题意图:本题主要考查函数的反函数的有关概念,判断互为反函数的两个函数必须满足的条件:即函数解析式之间的关系是互相能确定x 、y ,定义域与值域之间的关系,是否是一个函数的定义域和值域分别是另一个函数的值域和定义域.解析:由f (x )=x 的定义域为x ∈R ,而值域为y ≥0; g (x )= x 的定义域为x ≥0,而值域为y ≥0. 由反函数的概念知反函数的定义域和值域正是原函数的值域和定义域推得它们不能互为反函数.说明:注意例1是判断不互为反函数的命题,否定互为反函数的三条件之一即不是反函数.[例2]判断函数y =x -x 有无反函数? 如果有,求出其反函数.选题意图:加深函数有无反函数判断的理解以及熟悉求反函数的方法与步骤.解:判断函数y =f (x ) 有无反函数,根据反函数的概念,应该判断:对每个确定的y 的(可能取到) 值,是否有惟一确定的x 值与之相对应. 由y =x -x112-12-1,得∴(x ) -y ⋅x -1=0112212①.11y ±y 2+4y -y +4x =, , x 0, ∴x =舍去,22y +y 2+4y 2+y y 2+4∴x =, ∴x =+1∴每一个确定的y 值,对应着(即只能221求出) 一个x , ∴x是y 的函数,即y =x -x1-1有反函数,,由上面过程,易见反函数为x 2+x x 2+4x 2+x x 2+4,值域为(0,y =+1, 且f (x ) =y =+1的定义域是(x ∈R)22+∞).说明:上述过程包含着:对于任意实数y 的取值方程①必有根,因此x 2-x11-12可以取到任意实数即函数y =x -x 的值域为(-∞,+∞),所以反函数的定义域为(-∞,x 2+x x 2+4+∞),恰是函数y =+1的定义域,在这种情况下,可以不注明函数的定义2域,当然原函数y =x -x 的值域也可以用以下方法解:当x =1时,y =0,当0<x<1时,0<x <1,x112-12-1>1, 则y <0,且当x →0时,x →0, x121-1→+∞, 这时y 可以取任12何负数. 当x >1时,x >1,0<x12-12<1, 则y >0,且当x →+∞时,x →+∞, x-12-12→0.这时y 可以取任何正数,∴y =x -x 的值域为R ,即(-∞,+∞).[例3]已知一次函数y =f (x ) 的反函数仍是它自己,求f(x ). 选题意图:本题考查反函数的概念,利用反函数与原函数的关系分析问题解决问题的能力.解:设y =f (x )=ax +b (a ≠0) ,则f1bx -, a a 1bax +b =x -对于一切x 都成立,a a-1(x ) =1⎧a =⎪⎧a =1⎧a =-1⎪a ∴⎨∴⎨或⎨⎪-b =b , ⎩b =0. ⎩b ∈R, ⎪⎩a∴f (x )=x 或f (x )=-x +b (b ∈R).说明:利用互为反函数的条件判断或证明某个或某两个函数是互为反函数的基本方法,此题是一个特殊函数的反函数的证明,希望读者掌握这种证明方法和思路.大一反函数的经典例题(3)函数的性质、反函数函数的单调性例题例1-5-1 下列函数中,属于增函数的是[ ]解 D例1-5-2 若一次函数y=kx+b(k≠0) 在(-∞,+∞) 上是单调递减函数,则点(k,b) 在直角坐标平面的[ ]A .上半平面B.下半平面C .左半平面D.右半平面解 C 因为k <0,b ∈R .例1-5-3 函数f(x)=x2+2(a-1)x+2在区间(-∞,4) 上是减函数,则实数a 的取值范围是[ ]A .a ≥3 B.a ≤-3C .a ≤5 D.a=-3解 B 因抛物线开口向上,对称轴方程为x=1-a,所以1-a ≥4,即a ≤-3.例1-5-4 已知f(x)=8+2x-x2,如果g(x)=f(2-x2) ,那么g(x) [ ]A .在区间(-1,0) 内是减函数B .在区间(0,1) 内是减函数C .在区间(-2,0) 内是增函数D .在区间(0,2) 内是增函数解 A g(x)=-(x2-1) 2+9.画出草图可知g(x)在(-1,0) 上是减函数.+bx在(0,+∞) 上是______函数(选填“增”或“减”) .解[-2,1]大一反函数的经典例题(4)反函数例题讲解例1.下列函数中,没有反函数的是(A) y = x 2-1(x 1)2( )(B) y = x 3+1(x ∈R )(D) y =⎨⎧2x -2(x ≥2) ,-4x (x x(x ∈R ,x ≠1)x -1分析:一个函数是否具有反函数,完全由这个函数的性质决定.判断一个函数有没有反函数的依据是反函数的概念.从代数角度入手,可试解以y 表示x 的式子;从几何角度入手,可画出原函数图像,再作观察、分析.作为选择题还可用特例指出不存在反函数.本题应选(D ).因为若y = 4,则由⎨⎧2x -2=4,得x = 3.x ≥2⎩由⎨⎧-4x =4,得x = -1.x ∴(D )中函数没有反函数.如果作出y =⎨⎧2x -2(x ≥2) ,的图像(如图),依图-4x (x 更易判断它没有反函数.例2.求函数y =1--x 2(-1≤x ≤0)的反函数.解:由y =1--x 2,得:-x 2=1-y .∴1-x 2 = (1-y ) 2,x 2 = 1-(1-y ) 2 = 2y -y 2 .∵-1≤x ≤0,故x =-2y -y 2.又当-1≤x ≤0 时,0≤1-x 2≤1,∴0≤-x 2≤1,0≤1--x 2≤1,即0≤y ≤1 .∴所求的反函数为y =-2x -x 2(0≤x ≤1).由此可见,对于用解析式表示的函数,求其反函数的主要步骤是:①把给出解析式中的自变量x 当作未知数,因变量y 当作系数,求出x = φ ( y ).②求给出函数的值域,并作为所得函数的定义域;③依习惯,把自变量以x 表示,因变量为y 表示,改换x = φ ( y ) 为y = φ ( x ).例3.已知函数 f ( x ) = x 2 + 2x + 2(x 分析:依据f -1 (2 )这一符号的意义,本题可由f ( x )先求得f -1 ( x ),再求f -1 (2 )的值(略).依据函数与反函数的联系,设f -1 (2 ) = m ,则有f ( m ) = 2.据此求f -1(2 )的值会简捷些.令x 2 + 2x + 2 = 2,则得:x 2 + 2x = 0 .∴x = 0 或x =-2 .又x 的图像是(( )(B((分析:作为选择题,当然不必由f ( x )求出f -1 ( x ),再作出f -1 ( x )图像,予以比较、判断.由f (x ) =+4x 2(x ≤0)易得函数f ( x )的定义域为(-∞, 0],值域为[1, +∞).于是有函数f-1( x )的定义域为[1, +∞),值域为(-∞, 0].依此对给出图像作检验,显然只有(D )是正确的.因此本题应选(D ).例5.给定实数a ,a ≠0,a ≠1,设函数y =x -11(x ∈R ,x ≠).a ax -1求证:这个函数的图像关于直线y = x 成轴对称图形.分析:本题可用证明此函数与其反函数是同一个函数的思路.证明:先求给出函数的反函数:由y =∴x -11(x ∈R ,x ≠),得y ( ax -1) = x -1 .a ax -1(ay -1) x = y -1 .①若ay -1 = 0,则ay = 1 .又a ≠0,故y =11.此时由①可有y = 1.于是=1,即a = 1, a a这与已知a ≠1是矛盾的,故ay -1 ≠ 0 .则由①得x =∴函数y =≠).由于函数f ( x )与f -1 ( x )的图像关于直线y = x 对称,故函数y =(x ∈R 且x ≠1)的图像关于直线y = x 成轴对称图形. a1ay -11(y ∈R ,y ≠).ay -1ax -11x -1(x ∈R ,x ≠)的反函数还是y =(x ∈R ,xa ax -1ax -1x -1ax -1本题证明还可依轴对称的概念进行,即证明:若点P (x ,y )是函数f ( x ) 图像上任一点,则点P 关于直线的对称点Q (y ,x )也在函数f ( x )的图像上(过程略).例题讲解(反函数)例1.求下列函数的反函数:(1) y =3x -1 (x ∈R ) ;(2) y =x 3+1 (x ∈R ) ;(3)y =x +1 (x ≥0) ;(4)y =2x +3(x ∈R ,且x ≠1) .x -1通过本例,使学生掌握求反函数的方法.求反函数时,要强调分三个步骤进行.第一步将y = f (x ) 看成方程,解出x = f -1 (y ) ,第二步将x ,y 互换,得到y = f -1 (x ) ,第三步求出原函数的值域,作为反函数的定义域.其中第三步容易被忽略,造成错误.如第(3)小题,由y =x +1解得x = (y -1) 2,再将x ,y 互换,得y = (x -1) 2.到此以为反函数即y = (x -1) 2,这就错了.必须根据原函数的定义域x ≥0,求得值域y ≥1,得到反函数的定义域,于是所求反函数为y = (x -1) 2 (x ≥1) .例2.求下列函数的反函数:(1) y = x 2-2x -3 (x ≤0) ;⎧x -1(x ≤0) ,⎪(2) y =⎨1-1(x >0) .⎪⎩x通过本例,使学生进一步掌握求反函数的方法,明确求解中三个步骤缺一不可.解:(1) 由y = x 2-2x -3,得y = (x -1) 2-4,即(x -1) 2 = y +4,因为x ≤0,所以x -1=-y +4,所以原函数的反函数是y =1-x +4 ( x≥-3) .(2) 当x ≤0时,得x = y+1且y ≤-1;当x >0时,得x =1且y >-1,y +1所以,原函数的反函数是:x ≤-1,x >-1.⎧x +1⎪y =⎨1⎪⎩x +1例题讲解(反函数)[例1]若函数f (x ) 与g (x)的图象关于直线y =x 对称,且f (x )=(x -1) 2(x ≤1) ,求g (x ).选题意图:本题考查互为反函数的函数的图象间的对称关系. 解:f (x ) 与g (x ) 在定义域内互为反函数,f (x )=(x -1) 2(x ≤1) 的反函数是y =1-x (x ≥0) ,∴g (x )=1-x (x ≥0).说明:互为反函数的图象关于y =x 对称,反之亦然,也是判断两个函数互为反函数的方法之一,本是f (x ) 与g (x ) 互为反函数,要求g (x ), 只须求f (x ) 在限定区间上的反函数即可.[例2]若点P (1,2) 在函数y=ax +b 的图象上,又在它的反函数的图象上,求a , b 的值. 选题意图:本题考查反函数的概念,反函数的图象与原函数图象的对称关系的应用. 解:由题意知P (1,2) 在其反函数的图象上,根据互为反函数的函数图象关于y =x 对称的性质,P′(2,1) 也在函数y =ax +b 的图象上,⎧⎪2=a +b因此:⎨解得:a =-3,b =7.⎪⎩1=2a +b说明:引导学生树立创造性思考问题的方式、方法,利用互为反函数的图象的对称关系. (1,2)在反函数图象上,则(2,1) 也在原函数图象上是解决该问题的关键所在,即f (2)=1,这是得到a , b 的另一个关系式的条件,这样两个条件两个未知数,就可解出a , b 的值.x[例3]已知函数f (x )=(1+) 2-2(x ≥-2) ,求方程2-1f (x )=f (x ) 的解集.选题意图:本题考查互为反函数的函数的图象关于y =x 对称的关系,灵活运图2—8 用这一关系解决问题的能力.x分析:若先求出 f -1(x )=2x +2-2(x ≥-2), 再解方程(1+) 2-2=2x +2-2,2整理得四次方程,求解有困难,但我们可以利用y =f (x ) 与y =f -1(x ) 的图象的关系x求解. 先画出y =f (x )=(1+) 2-2的图象,如图,因为y =f (x ) 的图象和y =f -1(x ) 的2图象关于直线y =x 对称,可立即画出y =f -1(x ) 的图象,由图象可见两图象恰有两x 2⎧y =(1+) -2⎪个交点,且交点在y =x 上,因此,由方程组⎨联立即可解得. 2⎪⎩y =xx 2) -2(x ≥-2) 画出图象,如图,由于函数f (x ) 的反函2数的图象与函数f (x ) 的图象关于y =x 对称,故可以画出其反函数图象(如图) ,解:由函数f (x )=(1+x 2⎧⎪y =(1+) -2由图可知两图象恰有两个交点且交点都在y =x 上. 因此,方程组⎨2⎪⎩y =x 的解即为f (x )=f -1(x ) 的解,于是解方程组得x =-2或x =2,从而方程f (x )=f -1(x )的解集为{-2,2}.说明:解决本题的关键是,根据互为反函数的图象关于y =x 对称,若两个函数有交点,则交点必在直线y =x 上,由此,将要解的两个较复杂的方程组转化为x 2直线y =x 与其中y =(1+) -2一个方程组的解的问题.2例题讲解(练习)例1.函数f (x )=x -x 是否存在反函数?说明理由点评:不存在,∵ f (0)=f (-1)=f (1)=0.例2.求下列函数的反函数.(1) f (x )=36x +5x -1(2) y =-x -1(3) f (x )=x -2x +3,x ∈(1,+∞) (4)f (x )=1--x 2(-1≤x ≤0)点评:(1) f-12(x )=2x +5(x ∈R 且x ≠6) x -6(2) f (x )=x +1 (x ≤0) (3) f (4) f-1-1(x )=(x )=-x -2+1 (x >2)-x -1 (0≤x ≤1)2-1⎧⎪x -1(x ≥1)例3.求函数y =⎨的反函数.⎪⎩--x (x 2 ⎧⎪x +1点评:反函数为y =⎨2⎪⎩1-x(x ≥0).(x 例4.已知f (x )=3x +2-1,求f [f (x )]的值.x +1⎡点评:f ⎢f⎢⎣-1⎛2⎫⎤2⎪⎥=,注意f (x ) 的定义域为{x |x ∈R 且x ≠-1},值域为{y |y 2⎪2⎝⎭⎥⎦∈R 且y ≠-3}.例5.已知一次函数y =f (x ) 反函数仍是它自己,试求f (x ) 的表达式.分析:设y =f (x )=ax +b (a ≠0) ,则f (x )=-11(x -b ) .a⎧1=a ⎪⎧a =-1⎧a =11⎪a由(x -b )=ax +b 得⎨或⎨⇒⎨a b b ∈R b =0⎩⎩⎪-=b ⎪⎩a∴ f (x )=x 或f (x )=-x+b (b ∈R )例6.若函数y =ax +1在其定义域内存在反函数.4x +3(1) 求a 的取值范围;(2) 求此函数的值域.解:(1)方法一:原式可化为4xy +3y =ax +1,(4y -a ) x =1-3y ,a ax +1a≠时,,即44x +344解得a ≠时原函数有反函数.3ax +1方法二:要使y =在其定义域内存在反函数,则需此函数为非常数函数,4x +3a 14ax +1即≠,所以a ≠时函数y =在其定义域内存在反函数.3434x +3当y ≠(2) 由y =ax +1-3y +1解得x =.4x +34y -aax +1-3x +1的反函数为y =.4x +34x -a -3x +1a ∵y =的定义域是{x |x ∈R 且x =}44x -aax +1a 故y =的值域是{y |y ∈R 且y ≠}.44x +3∴y =例7.设函数y =f (x ) 满足f (x -1)=x -2x +3(x ≤0) ,求f (x +1).解:∵x ≤0,则x -1≤-1.∵ f (x -1)=(x -1) +2 (x ≤0) ∴ f (x )=x +2 (x ≤-1) .由y =x +2 (x ≤1) 解得x =-y -2(y ≥3)2222-1∴ f 故f-1(x )=-x -2 (x ≥3) .x -1 (x ≥2) .-1-1-1(x +1)=--1点评:f (x +1)表示以x +1代替反函数f (x ) 中的x ,所以要先求f (x ) ,再以x +1代x ,不能把f (x +1)理解成求f (x +1)的反函数.习题1.已知函数 f (x )=x -1 (x ≤-2) ,那么 f (4)=______________.2.函数y =-x +x -1 (x ≤22-1-11) 的反函数是_________________.22⎧1]⎪x -1,x ∈(0,3.函数y =⎨2的反函数为__________________.⎪⎩x ,x ∈[-1,0)4.函数y =5.已知y =x 2-2x +3 (x ≤1) 的反函数的定义域是_____________.11x +m 与y =nx -是互为反函数,则m =______和n =________.23答案1.-2.y =1--4x -3⎛⎝x ≤-3⎫24⎪⎭3.y =⎧⎪⎨x +1,x ∈(-1,0],⎪⎩-x ,x ∈(0,1]4.2,+∞)5.16,2大一反函数的经典例题(5)反函数求值例1、设互为反函数,求有反函数的值.,且函数与分析:本题对概念要求较强,而且函数不具体,无法通过算出反函数求解,所以不妨试试“赋值法”,即给变量一些适当的值看看能得到什么后果.解:设在函数这样即有,则点的图象上,即,从而在函数的图象上,从而点.由反函数定义有.,小结:利用反函数的概念,在不同式子间建立联系,此题考查对反函数概念的理解,符号间关系的理解.两函数互为反函数, 确定两函数的解析式例2 若函数的值.与函数互为反函数,求分析:常规思路是根据已知条件布列关于布列?如果注意到g(x)的定义域、值域已知,又义域与值域互换,有如下解法:的三元方程组,关键是如何与g(x)互为反函数,其定解:∵g(x)的定义域为.且,的值域为又∵g(x) 的定义域就是∵g(x) 的值域为的值域, ∴,.由条件可知∴.的定义域是, ,∴.令, 则即点(3,1) 在的图象上.又∵与g(x) 互为反函数,的对称点(1,3) 必在g(x)的图象上.∴(3,1) 关于∴3=1+ , .故 .判断是否存在反函数例3、给出下列函数:(1) ;(2) ;(3) ;(4) ;(5) .其中不存在反函数的是__________________.分析:判断一个函数是否有反函数, 从概念上讲即看对函数值域内任意一个,依照这函数的对应法则, 自变量总有唯一确定的值与之对应, 由于这种判断难度较大, 故通常对给出的函数的图象进行观察, 断定是否具有反函数.解: (1) ,(2)都没有问题, 对于(3)当.对于(4)时,和时, 和,且.对于(5)当时, 和 .故(3),(4),(5)均不存在反函数.小结:从图象上观察, 只要看在相应的区间内是否单调即可.求复合函数的反函数例4、已知函数分析: 由于已知是找到解:令,由得. 于是有,再由,则,所求是求出, ,求的反函数.的反函数,因此应首先由的表达式, 再求反函数., ,.,由于,又,的反函数是. 的值域是, .小结:此题涉及对抽象函数符号的认识与理解, 特别是在换元过程中, 相应变量的取值范围也要随之发生改变, 这一点是学生经常忽略的问题.原来的函数与反函数解析式相同求系数例5、已知函数试指出与其反函数是同一个一次函数,的所有取值可能.的反函数的解析式,与分析:此题可以有两种求解思路:一是求解比较, 让对应系数相等, 列出关于的方程, 二是利用两个函数图象的对称性, 找对称点, 利用点的坐标满足解析式来列方程. 解:由上, 于是又于是知点在图象上, 则点定在的图象(1) 过点(2),则点也在的图象上,由(1)得当或,当.时, 代入(2),此时(2)恒成立即;代入(2)解得综上, 的所有取值可能有或 .小结:此题是反函数概念与方程思想的综合. 在这个题目中特殊点的选取一般是考虑计算简单方便, 而且这种取特殊点列方程的方法在其他地方也有应用, 故对此种方法要引起重视. 另外此题在最后作答时, 要求写出的所有取值可能即要把的取值与的取值搭配在一起, 所以解方程组时要特别小心这一点. 选题角度:反函数图象关系、将反函数问题转化为原函数、利用性质求解析式、两函数互为反函数,确定两函数的解析式判断是否存在反函数、求出反函数解析式解关于反函数的不等式、求复合函数的反函数、由原来函数运算关系证明反函数运算。

反函数练习附答案

反函数练习附答案
解析:∵ ,∴ 不是常函数,且存在反函数.在f(x)的图象上取一点(0, ),它关于y=x的对称点( ,0)也在函数f(x)的图象上,可解得a=-5.
13.已知函数f(x)的定义域为[-1,1],值域为[-3,3],其反函数为1(x),则1(32)的定义域为,值域为.
解析:由于函数f(x)的定义域为[-1,1],值域为[-3,3],所以其反函数1(x)的定义域为[-3,3],值域为[-1,1].所以由-3≤32≤3,解得 ≤x≤ .
3.若函数y=f(1)的图象与函数 的图象关于直线y=x对称,则f(x)等于()
212x2122
解析:由函数y=f(1)的图象与函数 的图象关于直线y=x对称,可知y=f(1)与 互为反函数,有 x=e22,所以y=e22 y=f(1)=e22.故f(x)=e2x.答案
4.已知函数f(x)=231(x)是f(x)的反函数,若=16(∈),则1(m)1(n)的值为( )
又y=f(x)与y=1(x)关于y=x对称=x沿向量(-1,2)平移得到y=3,
∴y=f(1)+2与y=1(1)+2关于y=3对称.答案=3
三、解答题
15.已知函数 (x)=1(),求g(x).
解:由 ,得=1,∴ ,即 ,∴g(x)=1()= .
16.已知函数f(x)=2( )(a>0且a≠1).
8.设0<a<1,函数 ,则函数1(x)<1的x的取值范围是( )
A.(0,2) B.(2∞) C.(0∞) D.((2)∞)
解析(x)在(0,2)上是减函数,所以x>f(1)=0.故选C.
9.设函数为y=f(x)的反函数为y=1(x),将y=f(23)的图象向左平移2个单位,再作关于x轴的对称图形所对应的函数的反函数是( )

反函数例题及解析

反函数例题及解析

反函数例题及解析反函数可是数学里很有趣的一部分呢!那咱就直接开始看例题吧。

就说这个简单的函数y = 2x + 1,我们想求它的反函数。

第一步呀,我们要把x用y来表示。

从y = 2x + 1开始,我们可以通过移项来求解x,那就是y - 1 = 2x,然后x就等于(y - 1)/2。

这就是它的反函数啦,写成y=(x - 1)/2。

你看,是不是也没有那么难呀?再来看一个稍微复杂一点的函数,y = 3x²(x≥0)。

这个求反函数的时候要小心哦。

首先我们把x解出来,x²=y/3,因为x≥0嘛,所以x等于根号下(y/3)。

那这个函数的反函数就是y = 根号下(x/3)啦。

那为啥要学反函数呢?这就好比你在一个迷宫里走,函数是从入口走到出口的路线,反函数呢,就是从出口倒着走回入口的路线。

很神奇吧!还有这个函数y = 1/(x - 1)(x≠1)。

我们先让y = 1/(x - 1),然后通过交叉相乘得到y(x - 1)=1,展开就是xy - y = 1,移项得到xy = 1 + y,再把x解出来,x=(1 + y)/y。

所以这个函数的反函数就是y=(1 + x)/x(x≠0)。

在求反函数的时候,一定要注意原函数的定义域和值域哦。

比如说有的函数在整个实数域上不是单调的,那我们可能要划分区间来求反函数呢。

就像y = x²,如果不规定x的范围,它的反函数就不是唯一的。

只有规定了x≥0或者x≤0的时候,才能准确地求出反函数。

再给个例子,y = sinx(-π/2≤x≤π/2)。

这个函数在这个区间上是单调递增的,所以可以求反函数。

我们知道sinx=y,那x = arcsiny。

这里的arcsin就是反正弦函数啦。

这就告诉我们呀,函数的单调性对求反函数可重要了。

你要是觉得反函数有点难,别担心。

多做几个例题就好啦。

就像学骑自行车,刚开始可能会摔倒,但是骑得多了就很熟练啦。

反函数也是这样,看的例题多了,自己做的时候就得心应手了。

16.函数与反函数【学生版】(正式版)(含答案)

16.函数与反函数【学生版】(正式版)(含答案)

函数与反函数【课前预习】一、知识梳理 1.反函数的概念一般地, 对于函数()y f x =, 设它的定义域为D, 值域为A. 如果对于 ,在 与之对应, 使()y f x =, 这样得到的x 关于y 的函数叫做()y f x =的反函数, 记作 . 习惯上, 自变量常用x 表示, 而函数用y 表示, 所以把它改写为 . 2.求反函数的步骤(1) ; (2) ; (3) . 3.函数与反函数的关系.设函数()y f x =的定义域为D, 值域为A, 其反函数为1()y f x -=, (1)1()y f x -=的定义域是 , 值域是 ; (2)函数()y f x =与1()y f x -=的图像关于 对称;(3)对于任意 , 都有1[()]f f x -= ;对于任意 , 都有1[()]f f x -= . (4)特别地, 若()y f x =是D 上的单调函数, 则1()y f x -=也是A 上的单调函数, 且其单调性与()y f x =的单调性相同.二、基础练习1.函数()1lg(2)(2)f x x x =++>-的反函数是___________________________.2.函数1a y x =+(a 为非零实常数)的反函数的图像经过点1(,1)2, 则a =_______. 3.函数223y x ax =--在区间[1,2]上存在反函数的充要条件是____________________. 4.已知函数12y x m =+与13y nx =-互为反函数, 则m =______, n =_______. 5.函数5()2x f x x m-=+的图像关于直线y x =对称, 则m =________.6.已知函数设()f x =213(,)434x x R x x +∈≠-+,则1(2)f -= . 7.若函数()y f x =存在反函数, 则方程()f x c =(c 为实常数)的实数解的情况是………………...( ) A. 有且仅有一解B. 至少有一解C. 至多有一解D. 无解.8.设()110)f x x =-≤≤, 则其反函数1()y f x -=的图像是………………………………( )ABCD【例题解析】例1.求下列函数的反函数. (1)35x y =+;(2)222(0)y x x x =-+≤;(3)22 1 01 10x x y x x ⎧-≤≤⎪=⎨-≤<⎪⎩.例2.已知函数1()(0,1)x f x a b b b -=+>≠的图像经过点(1,3),函数1()(0)f x a a -+>的图像经过点4,2(),试求函数1()f x -的表达式.例3.设函数12()1xf x x-=+, 函数()y g x =的图像与1(1)y f x -=+的图像关于y x =对称, 求(2)g 的值.例4.设()f x=,(1)求1()f x -的解析式;(2)用单调性的定义证明1()f x -在定义域内是增函数;(3)解不等式1()4f x -≤.函数与反函数姓名 班级【巩固练习】1.已知函数()x f x a k =+的图像过点(1,7), 又函数1(4)y f x -=+的图像过(0,0), 则函数()f x 的解析式为_____________________.2.若函数)y x m ≥与其反函数的图像有公共点, 则实数m 的取值范围是______________.3.函数31()31x x f x -=+, 则11()2f -=__________.4.函数2 1 1() 1 1x x f x x x ⎧+≤-=⎨-+>-⎩的反函数是_______________________.5.已知(1)1xf x x +=+, 则1(1)f x -+的解析式为________________________. 6.函数2log (1)1xy x x =>-的反函数是_______________________. 7.函数()y f x =的图像过点(2,3), 其反函数为1()y f x -=, 则1(2)y f x -=-的图像必过点_________. 8.已知函数()ax b f x x c +=+(a , b , c 是实常数)的反函数是125()3x f x x -+=-, 则(,,)a b c = . 9.求下列函数的反函数.(1)223(2)y x x x =-+≥; (2)23231()4y x x x =-+≤;(3)1(1)1xy x x -=≠-+; (4)e e e e x x xxy ---=+.10.已知函数()12x f x -=-, (1)求()y f x =的反函数1()y f x -=;(2)求不等式122log (1)()0x f x -++≥的解集.【提高练习】11.设函数()y f x =存在反函数1()y f x -=,且函数()y x f x =-的图象过点(1,2),则函数1()y f x x -=-的图象一定过点 .12.已知函数12()1xf x x-=+, 函数()y g x =与函数1(1)y f x -=-的图像关于直线y x =对称, 求()g x 的解析式.函数与反函数课前预习答案【课前预习】一、知识梳理 1.反函数的概念一般地, 对于函数()y f x =, 设它的定义域为D, 值域为A. 如果对于A 中任意一个值y , 在D 内总有唯一确定的x 值与之对应, 使()y f x =, 这样得到的x 关于y 的函数叫做()y f x =的反函数, 记作1()x f y -=. 习惯上, 自变量常用x 表示, 而函数用y 表示, 所以把它改写为1(), A y f x x -=∈.2.求反函数的步骤(1)求出原函数的值域, 即反函数的定义域; (2)将()y f x =看作关于x 的方程, 解出1()x f y -=; (3)x , y 互换得1()y f x -=, 并写出它的定义域.3.函数与反函数的关系.设函数()y f x =的定义域为D, 值域为A, 其反函数为1()y f x -=, (1)1()y f x -=的定义域是A, 值域是D;(2)函数()y f x =与1()y f x -=的图像关于直线y x =对称;(3)对于任意D x ∈, 都有1[()]f f x -=x ;对于任意A x ∈, 都有1[()]f f x -=x .(4)特别地, 若()y f x =是D 上的单调函数, 则1()y f x -=也是A 上的单调函数, 且其单调性与()y f x =的单调性相同.二、基础练习1.函数()1lg(2)(2)f x x x =++>-的反函数是___________________________.2.函数1a y x =+(a 为非零实常数)的反函数的图像经过点1(,1)2, 则a =_______.3.函数223y x ax =--在区间[1,2]上存在反函数的充要条件是____________________.4.已知函数12y x m =+与13y nx =-互为反函数, 则m =______, n =_______. 5.函数5()2x f x x m-=+的图像关于直线y x =对称, 则m =________. 6.已知函数设()f x =213(,)434x x R x x +∈≠-+,则1(2)f -= .56-7.若函数()y f x =存在反函数, 则方程()f x c =(c 为实常数)的实数解的情况是………………...( C ) A. 有且仅有一解B. 至少有一解C. 至多有一解D. 无解.11 or 2a a ≤≥1-16211()102,x f x x --=-∈R8.设()110)f x x =-≤≤, 则其反函数1()y f x -=的图像是………………………………( B )解: 2211(1)1y y x y =-=+-=, 则其图像是圆的一部分, 满足10,1x y -≤≤≤, 作图如右图,将所得图像关于直线对称, ()110)f x x =-≤≤的图像如图所示. 【评注】本题除了上述解法, 还可以通过代入特殊点的坐标来判断.AB CD函数与反函数例题解析答案【例题解析】例1.求下列函数的反函数. (1)35x y =+;解: 函数的定义域为(5,)+∞, 由53x y -=,两边取对数得3log (5)x y =-, 所求反函数为3log (5)(5)y x x =->. (2)222(0)y x x x =-+≤;解: 对称轴为1x =, 函数在(,0]-∞上单调递减,因此其值域[2,)+∞,22(1)1(1)1y x x y =-+⇒-=-,由010x x ≤⇒-<,因此11x x -==所求反函数为12)y x =≥.(3)22 1 01 10x x y x x ⎧-≤≤⎪=⎨-≤<⎪⎩.解: 当01x ≤≤时, 函数值的取值范围是[1,0]-,2211y x x y =-⇒=+,由0110)x x y ≤≤⇒-≤≤;当10x -≤<时, 函数值的取值范围是(0,1],2y x =,由101)x x y -≤<⇒=<≤;综上所述,所求的反函数为110x y x ⎧<≤⎪=-≤≤.例2.已知函数1()(0,1)x f x a b b b -=+>≠的图像经过点(1,3),函数1()(0)f x a a -+>的图像经过点4,2(),试求函数1()f x -的表达式.解 (1)32f a =⇒=. 12(4)(2)464f a f a b -=+⇔=+=⇒=. 于是114()24,()log (2)1(2)x f x f x x x --=+=-+>.例3.设函数12()1xf x x-=+, 函数()y g x =的图像与1(1)y f x -=+的图像关于y x =对称, 求(2)g 的值. 解法一: ()f x 的值域为(,2)(2,)-∞-⋃-+∞,112112(2)1()(2)12x xy y yx x y x y f x x x x ---=⇒+=-⇒+=-⇒=≠-++, 1(1)3xf x x --∴+=+, 其值域为(,1)(1,)-∞-⋃-+∞,33(1)3()(1)31x xy xy y x y x y g x x x x --=⇒+=-⇒+=-⇒=≠-++, 因此可知(2)2g =-. 解法二: ()g x 与1(1)y f x -=+的图像关于y x =对称, 则它们互为反函数, 考虑求1(1)y f x -=+的反函数,两端同时作用f , 得1()[(1)]1()1f y f f x x x f y -=+=+⇒=-, x , y 互换得()()1g x f x =-, 所以(2)(2)12g f =-=-.例4.设()f x=,(1)求1()f x -的解析式;(2)用单调性的定义证明1()f x -在定义域内是增函数; (3)解不等式1()4f x -≤.(1)解: 函数的定义域为(0,)+∞, 令0)t t >,则1(0)y t t t =->, 其值域为(,)-∞+∞,22110ty t t ty =-⇔--=, 解方程得: t =||y y ≥, 0y ,考虑到0t >, 所以t =故反函数为121()((R)4f x x x -=∈;(2)证明: 任取12,R x x ∈, 12x x <, 记111()y f x -=, 122()y f x -=, 则11()x f y =, 22()x f y =,由y =12y x -=-均为(0,)+∞上的增函数, 故()f x 也是(0,)+∞上的增函数, 故由12x x <可知12y y <, 也即1()f x -在R 上是增函数.(3)解: 考虑方程12()4(16f x x -=⇔=,20x x ++>, 4x ∴=,223441682x x x x x -⇒+=-+⇒=, 即13()42f -=, 由1()f x -的单调性, 1()4f x -≤的解为32x ≤.函数与反函数巩固和提高练习答案【巩固练习】1.已知函数()x f x a k =+的图像过点(1,7), 又函数1(4)y f x -=+的图像过(0,0), 则函数()f x 的解析式为_____________________.2.若函数)y x m ≥与其反函数的图像有公共点, 则实数m 的取值范围是______________.3.函数31()31x x f x -=+, 则11()2f -=__________. 4.函数2 1 1() 1 1x x f x x x ⎧+≤-=⎨-+>-⎩的反函数是5.已知(1)1xf x x +=+, 则1(1)f x -+的解析式为________________________.6.函数2log (1)1x y x x =>-的反函数是_______________________.7.函数()y f x =的图像过点(2,3), 其反函数为1()y f x -=, 则1(2)y f x -=-的图像必过点_________.8.已知函数()ax b f x x c +=+(a , b , c 是实常数)的反函数是125()3x f x x -+=-, 则(,,)a b c = . 解: ()f x 的值域是(,)(,)a a -∞⋃+∞, 1()f x -的定义域是(,3)(3,)3a -∞⋃+∞⇒=;1()f x -的值域是(,2)(2,)-∞⋃+∞, ()f x 的定义域是(,)(,)2c c c -∞-⋃-+∞⇒=-;3223(3)223x b y by xy y x b y x y b x x y ++=⇒-=+⇒-=+⇒=--, 因此12()3x bf x x -+=-, 由此可知5b =; 综上所述, 3, 5, 2a b c ===-.9.求下列函数的反函数. (1)223(2)y x x x =-+≥;解: 对称轴为1x =,函数在[2,)+∞上单调递增, 值域为[3,)+∞;22223(1)2(1)2y x x x x y =-+=-+⇔-=-,由2x ≥, 11x x -=, 所以反函数为1(3)y x ≥.(2)23231()4y x x x =-+≤;解: 函数的值域为1[,)8-+∞,23132()484y x x =--⇒=,所以反函数为31)48y x =≥-. (3)1(1)1xy x x-=≠-+; 解: 函数的值域为(,1)(1,)-∞-⋃-+∞,11(1)111x yy x y y x x y--=⇒+=-⇒=++, ()43x f x =+112()1 2x f x x x -⎧≥⎪=⎨-<⎪⎩11(1)(0)f x x x -+=-≠2, 021x x y x =>-(5,2)14m ≤所以反函数为1(1)1xy x x-=≠-+.(4)e e e e x xx xy ---=+.解: 令2e x t =, 则0t >,12111t y t t --==+++, 在(0,)+∞上单调递增, 其值域为(1,1)-, 11(1)1ln 11y yy t y t y y--+-=--⇒==--,所以反函数为11ln (11)21xy x x+=-<<-.10.已知函数()12x f x -=-, (1)求()y f x =的反函数1()y f x -=; (2)求不等式122log (1)()0x f x -++≥的解集. (1)解: 函数的值域为(,1)-∞,设()12x y f x -==-, 则221log (1)x y x y -=-⇒=--, 所以反函数为12()log (1), 1f x x x -=--<.(2)解: 即222(1)12log (1)log (1)10[0,1)10x x x x x x x ⎧+≥-⎪+>-⇒+>⇒∈⎨⎪->⎩.【提高练习】11.设函数()y f x =存在反函数1()y f x -=,且函数()y x f x =-的图象过点(1,2),则函数1()y f x x -=-的图象一定过点 .【(1,2)-】12.已知函数12()1xf x x-=+, 函数()y g x =与函数1(1)y f x -=-的图像关于直线y x =对称, 求()g x 的解析式.解: 在1(1)y f x -=-两端都作用f , 得1()[(1)]f y f f x -=-, 上式1()1()()1x f y x f y x f y ⇔-=⇔-=⇔=+, 所以2()()1()(1)1xg x f x g x x x -=+⇒=≠-+.。

反函数(练习+详细答案)

反函数(练习+详细答案)

提能拔高限时训练7 反函数一、选择题1.若y =f(x)有反函数,则方程f(x)=a(a 为常数)的实根的个数为( )A.无实数根B.只有一个实数根C.至多有一个实数根D.至少有一个实数根解析:y =f(x)存在反函数,则x 与y 是“一对一”的.但a 可能不在值域内,因此至多有一个实根. 答案:C2.设函数y =f(x)的反函数y =f -1(x),若f(x)=2x ,则f -1(21)的值为( ) A.2 B.1 C.21 D.-1 解析:令f(x)=2x =21,则x =-1,故f -1(21)=-1,故选D. 答案:D3.若函数y =f(x-1)的图象与函数1ln +=x y 的图象关于直线y =x 对称,则f(x)等于…( )A.e 2x-1B.e 2xC.e 2x+1D.e 2x+2 解析:由函数y =f(x-1)的图象与函数1ln+=x y 的图象关于直线y =x 对称,可知y =f(x-1)与1ln +=x y 互为反函数,有1ln +=x y ⇒1ln -=y x ⇒1-=y e x ⇒x =e 2y-2,所以y =e 2x-2⇒y =f(x-1)=e 2x-2.故f(x)=e 2x .答案:B4.已知函数f(x)=2x+3,f -1(x)是f(x)的反函数,若mn =16(m,n ∈R +),则f -1(m)+f -1(n)的值为( )A.-2B.1C.4D.10 解析:设y =2x+3,则有x+3=log 2y,可得f -1(x)=log 2x-3.于是f -1(m)+f -1(n)=log 2m+log 2n-6=log 2mn-6=-2.答案:A5.设函数x x f -=11)((0≤x <1)的反函数为f -1(x),则( )A.f -1(x)在其定义域上是增函数且最大值为1B.f -1(x)在其定义域上是减函数且最小值为0C.f -1(x)在其定义域上是减函数且最大值为1D.f -1(x)在其定义域上是增函数且最小值为0解析:由x x f -=11)((0≤x <1),得该函数是增函数,且值域是[1,+∞),因此其反函数f -1(x)在其定义域上是增函数,且最小值是0.答案:D6.函数⎩⎨⎧<-≥=0,,0,22x x x x y 的反函数是( )A.⎪⎩⎪⎨⎧<-≥=0,0,2x x x x y B.⎩⎨⎧<-≥=0,0,2x x x x y C.⎪⎩⎪⎨⎧<--≥=0,0,2x x x x y D.⎩⎨⎧<--≥=0,0,2x x x x y解析:当x ≥0时,y =2x,且y ≥0, ∴2)(1x x f =-(x ≥0). 当x <0时,y =-x 2且y <0, ∴x x f --=-)(1(x <0).∴函数⎩⎨⎧<-≥=0,,0,22x x x x y 的反函数是⎪⎩⎪⎨⎧<--≥=.0,,0,2x x x x y 答案:C7.(2009北京东城期末检测,7)已知函数24)(x x f --=在区间M 上的反函数是其本身,则M 可以是( )A.[-2,-1]B.[-2,0]C.[0,2]D.[-1,0] 解析:画出函数24)(x x f --=; 由24x y --=得y 2=4-x 2且y ≤0,即x 2+y 2=4,y ≤0,所以图象是以(0,0)为圆心,以2为半径的圆在x 轴下方的部分(包括点(±2,0));又y =f(x)在区间M 上反函数是其本身,故y =f(x)图象自身关于y =x 对称,故区间M 可以是[-2,0].答案:B8.设0<a <1,函数)2(log log )(1x x x f aa -+=,则函数f -1(x)<1的x 的取值范围是( )A.(0,2)B.(2,+∞)C.(0,+∞)D.(log a (2-a),+∞) 解析:f(x)在(0,2)上是减函数,所以x >f(1)=0.故选C.答案:C9.设函数为y =f(x)的反函数为y =f -1(x),将y =f(2x-3)的图象向左平移2个单位,再作关于x 轴的对称图形所对应的函数的反函数是( ) A.21)(1--=-x f y B.2)(11x f y --=- C.2)(1x f y -= D.21)(-=x f y解析:由题意知,最后得到的图形对应的函数可以表示为y =-f [2(x+2)-3]=-f(2x+1),即-y =f(2x+1),2x+1=f -1(-y),21)(1--=-y f x ,故所求函数的反函数是21)(1--=-x f y . 答案:A 10.已知函数⎪⎩⎪⎨⎧>-+≤-=,1,13,1,12)(x x x x x x f 若函数y =g(x)的图象与函数y =f -1(x-1)的图象关于直线y =x 对称,则g(11)的值是( ) A.512 B.913 C.513 D.1115 解析:∵函数y =g(x)的图象与函数y =f -1(x-1)的图象关于直线y =x 对称,∴函数y =g(x)与函数y =f -1(x-1)互为反函数.由g(11)得f -1(x-1)=11,∴x-1=f(11),即x =f(11)+1.∵57)11(=f ,∴512)11(=g . 答案:A二、填空题11.设f(x)=x 5-5x 4+10x 3-10x 2+5x+1,则f(x)的反函数为f -1(x)=_____________.解析:∵f(x)=(x-1)5+2, ∴12)(51+-=-x x f .答案:125+-x12.若函数)54(541≠++=a x ax y 的图象关于直线y =x 对称,则a =_________. 解析:∵54≠a , ∴541++=x ax y 不是常函数,且存在反函数. 在f(x)的图象上取一点(0,51),它关于y =x 的对称点(51,0)也在函数f(x)的图象上,可解得a =-5.答案:-513.已知函数f(x)的定义域为[-1,1],值域为[-3,3],其反函数为f -1(x),则f -1(3x-2)的定义域为___________,值域为____________.解析:由于函数f(x)的定义域为[-1,1],值域为[-3,3],所以其反函数f -1(x)的定义域为[-3,3],值域为[-1,1].所以由-3≤3x-2≤3,解得31-≤x ≤35.故函数f -1(3x-2)的定义域为[31-,35],值域为[-1,1].答案:[31-,35] [-1,1] 14.(2009河南南阳期末质检,14)定义在R 上的函数y =f(x)有反函数,则函数y =f(x+1)+2与y =f -1(x+1)+2的图象关于直线__________对称.解析:函数y =f(x)沿向量(-1,2)平移得到函数y =f(x+1)+2,函数y =f -1(x)沿向量(-1,2)平移得到函数y =f -1(x+1)+2,又y =f(x)与y =f -1(x)关于y =x 对称,y =x 沿向量(-1,2)平移得到y =x+3,∴y =f(x+1)+2与y =f -1(x+1)+2关于y =x+3对称.答案:y =x+3三、解答题15.已知函数11)(-+=x x x f ,g(x)=f -1(-x),求g(x). 解: 由11-+=x x y ,得xy-y =x+1, ∴11-+=y y x ,即11)(1-+=-x x x f . ∴g(x)=f -1(-x)=11+-x x . 16.已知函数f(x)=2(1121+-x a )(a >0且a≠1). (1)求函数y =f(x)的反函数y =f -1(x);(2)判定f -1(x)的奇偶性;(3)解不等式f -1(x)>1.解:(1)化简,得11)(+-=x x a a x f . 设11+-=x x a a y ,则y y a x -+=11. ∴yy x a -+=11log . ∴所求反函数为xx x f y a-+==-11log )(1(-1<x <1). (2)∵)(11log )11(log 11log )(111x f x x x x x x x f a a a ----=-+-=-+=+-=-, ∴f -1(x)是奇函数. (3)111log >-+xx a . 当a >1时, 原不等式⇒a x x >-+11⇒011)1(<--++x a x a . ∴11+-a a <x <1.当0<a <1时,原不等式⇒⎪⎪⎩⎪⎪⎨⎧>-+<-+,011,11xx a x x 解得⎪⎩⎪⎨⎧<<->+-<.11,111x x a a x 或 ∴-1<x <aa +-11. 综上,当a >1时,所求不等式的解集为(11+-a a ,1); 当0<a <1时,所求不等式的解集为(-1,11+-a a ). 教学参考例题 志鸿优化系列丛书【例1】 设函数⎪⎩⎪⎨⎧<-=>=,0,1,0,0,0,1)(x x x x f 若g(x)=(x-1)2f(x-1),y =g(x)的反函数为y =g -1(x),则g(-1)·g -1(-4)=___________.解析:由题意得⎪⎩⎪⎨⎧<-=>=-.1,1,1,0,1,1)1(x x x x f∴g(x)=(x-1)2f(x-1)=⎪⎩⎪⎨⎧<--=>-.1,)1(,1,0,1,)1(22x x x x x设g(x)=-4,可得-(x-1)2=-4且x <1,解得x =-1.∴g(-1)=-4.∴g -1(-4)=-1.∴g(-1)·g -1(-4)=-4×(-1)=4.答案:4【例2】 已知f(x)是定义在R 上的函数,它的反函数为f -1(x).若f -1(x+a)与f(x+a)互为反函数且f(a)=a(a 为非零常数),则f(2a)=____________.解析:设y =f -1(x+a),则x =f(y)-a,即y =f -1(x+a)的反函数为y =f(x)-a,∴f(x+a)=f(x)-a. 令x =a,得f(2a)=f(a)-a =a-a =0.答案:0。

反函数题型及解析

反函数题型及解析

反函数题型及解析1.求下列函数的反函数,找出它们的定义域和值域(1)y=2+lg(x+1);(2)y=3+;(3)y=.2.求函数的反函数(1)y=(2)y=(3)y=lnx+1 (4)y=3x+23.求下列函数的反函数的定义域(1)y=(2)(3)4.求下列函数的反函数,并指出该函数和它的反函数的定义域(1)y=;(2)y=;(3)y=e x﹣15.求下列函数的反函数(1)y=;(2)y=(e x﹣e﹣x);(3)y=1+ln(x﹣1)6.求下列函数的反函数.(1)y=log(1﹣x)+2(x<0);(2)y=2﹣(﹣2≤x≤0);(3)y=(﹣1≤x≤0);(4)y=x|x|+2x.反函数题型解析1.分析:(1)由对数式的真数大于0求出原函数的定义域,进一步求出原函数的值域,把原函数变形,化对数式为指数式,再把x,y互换求出原函数的反函数,得到反函数的定义域和值域;(2)由根式内部的代数式大于等于0求出原函数的定义域,进一步求出原函数的值域,把原函数变形,求出x,再把x,y互换求出原函数的反函数,得到反函数的定义域和值域;(3)由分式的分母不为0求出原函数的定义域,进一步求出原函数的值域,把原函数变形,求出x,再把x,y 互换求出原函数的反函数,得到反函数的定义域和值域.解:(1)y=2+lg(x+1),由x+1>0,可得x>﹣1,∴原函数的定义域为(﹣1,+∞),值域为R.由y=2+lg(x+1),得lg(x+1)=y﹣2,化为指数式得,x+1=10y﹣2,x,y互换得:y=10x﹣2﹣1,此反函数的定义域为R,值域为(﹣1,+∞);(2)y=3+,由x≥0,可得原函数的定义域为[0,+∞),值域为[3,+∞).由y=3+,得,x=(y ﹣3)2,x,y互换得:y=(x﹣3)2,此反函数的定义域为[3,+∞),再由为[0,+∞);(3)y=,由x+1≠0,得x≠﹣1,∴原函数的定义域为{x|x≠﹣1},由y==,∴原函数的值域为{y|y≠1}.由y=,得yx+y=x﹣1,即(1﹣y)x=1+y,∴x=,x与y互换得:,此反函数的定义域为{x|x≠1},值域为{y|y≠﹣1}.2. 分析:由已知的解析式求出x的表达式,再把x换成y、y换成x,并注明反函数的定义域.解:由y=的得,xy+4y=x﹣4,解得(y≠1),所以(x≠1),则函数y=的反函数是(x≠1).(2)函数y=可得:2x=2x y+y.可得2x(1﹣y)=y,2x=,可得x=,函数y=的反函数为y=.(3)由y=lnx+1解得x=e y﹣1,即:y=e x﹣1,∵x>0,∴y∈R所以函数f(x)=lnx+1(x>0)反函数为y=e x﹣1(x∈R);(4)∵y=3x+2,∴3x=y﹣2,又3x>0,故y>2,∴x=log3(y﹣2)(y>2),∴函数y=3x+2的反函数是y=log3(x﹣2)(x>2)3.分析:欲求反函数的定义域,可以通过求原函数的值域获得,所以只要求出函数的值域即可,反函数的定义域即为原函数的值域求解即可解:(1)∵y=,∴ye x+y=e x,∴(y﹣1)e x=﹣y,∴,∴x=ln,x,y互换,得函数y=的反函数为:,,解得反函数的定义域为:{x|0<x<1}(2)反函数的定义域即为原函数的值域,由,x>0,所以,所以,则y<0,反函数的定义域为(﹣∞,0)(3)由得,e x=.∵e x>0,∴>0,∴﹣1<y<1,∴反函数的定义域是(﹣1,1)4.解:(1)由y=,即2xy﹣y=x,x(2y﹣1)=y,解得x=,x,y互换得y=,其定义域为{x|x ≠}(2)由(2)y=可得y2=2x﹣3,即x=(y2+3),x,y互换得y=(x2+3),因为原函数的值域为[0,+∞),则反函数的定义域为[0,+∞)(3)由y=e x﹣1则x﹣1=lny,即x=1+lny,x,y互换得y=1+lnx,则其定义域为(0,+∞)5.分析:由已知解析式,用y表示出x,然后把x与y互换,即得反函数,应注意定义域与值域的互换.解:(1)由y=得到x=,把x与y互换可得:y=,(x∈R);(2)由y=(e x﹣e﹣x)得到:e x=y±,∵e x>0,∴e x=y+,由此得:x=ln(y+)∴函数y=(e x﹣e﹣x)的反函数是y=ln(x+)(x∈R);(3)∵y=1+ln(x﹣1)∴x=e y﹣1+1(y∈R),∴函数y=1+ln(x﹣1)的反函数为y=e x﹣1+1(x∈R);6.分析:首先确定函数的值域,即反函数的定义域,然后看作方程解出x,从而将x与y互换即可.解:(1)∵y=log(1﹣x)+2(x<0);∴y<2,∴y=﹣log2(1﹣x)+2,∴x=1﹣22﹣y,即y=1﹣22﹣x,(x<2);(2)∵y=2﹣(﹣2≤x≤0)的值域为[0,2],∴x=﹣,即y=﹣,(x∈[0,2]);(3)∵y=(﹣1≤x≤0)的值域为[,1],∴x2=1+log3y,∴x=﹣,故y=﹣,(≤x≤1);(4)y=x|x|+2x的值域为R,当x≥0时,y=x2+2x,故x=,当x<0时,y=﹣x2+2x,x=1﹣;故y=.。

反函数练习(含详细解析)

反函数练习(含详细解析)

反函数练习(含详细解析)反函数练习一.填空题1.若f(x)=(x﹣1)2(x≤1),则其反函数f﹣1(x)=.2.定义在R上的函数f(x)=2x﹣1的反函数为y=f﹣1(x),则f﹣1(3)=3.若函数f(x)=x a的反函数的图象经过点(,),则a=.4.已知函数f(x)=2x﹣1的反函数是f﹣1(x),则f﹣1(5)=.5.函数y=x2+2(﹣1≤x≤0)的反函数是f﹣1(x)=.6.已知函数f(x)=2x+m,其反函数y=f﹣1(x)图象经过点(3,1),则实数m 的值为.7.设f﹣1(x)为的反函数,则f﹣1(1)=.8.函数f(x)=x2,(x<﹣2)的反函数是.9.函数的反函数是.10.函数y=x2+3(x≤0)的反函数是.11.设函数f(x)=3x,若g(x)为函数f(x)的反函数,则g (1)=.12.设函数y=f(x)存在反函数y=f﹣1(x),且函数y=x ﹣f(x)的图象经过点(2,5),则函数y=f﹣1(x)+3的图象一定过点.13.函数(x≤0)的反函数是.14.已知函数,则=.15.函数的反函数为f﹣1(x)=.16.函数的反函数的值域是.17.函数f(x)=x2﹣2(x<0)的反函数f﹣1(x)=.18.设f(x)=4x﹣2x+1(x≥0),则f﹣1(0)=.19.若函数y=ax+8与y=﹣x+b的图象关于直线y=x对称,则a+b=.20.已知函数f(x)=log2(x2+1)(x≤0),则f﹣1(2)=.参考答案一.填空题(共20小题)1.1﹣(x≥0);2.2;3.;4.3;5.,x∈[2,3];6.1;7.1;8.;9.f﹣1(x)=(x﹣1)2(x≥1);10.y=﹣(x ≥3);11.0;12.(﹣3,5);13.(x≥﹣1);14.﹣2;15.,(x∈(0,1));16.;17.(x>﹣2);18.1;19.2;20.﹣;。

反函数基础练习含标准答案doc

反函数基础练习含标准答案doc

反函数基础练习含标准答案.doc反函数基础练习含标准答案一、选择题1.设函数f(x) = 2x + 3,那么它的反函数是: A. f(x) = 2x + 3 B. f(x)= (x - 3) / 2 C. f(x) = (x + 3) / 2 D. f(x) = (x - 3) / 2 + 3答案:C2.设函数f(x) = x^2,那么它的反函数是: A. f(x) = x^2 B. f(x) = √xC. f(x) = x^(1/2)D. f(x) = x^2 - 1答案:B3.设函数f(x) = e^x,其中e为自然对数的底数,那么它的反函数是: A.f(x) = e^x B. f(x) = ln(x) C. f(x) = e^(1/x) D. f(x) = ln(e^x)答案:B4.设函数f(x) = |x|,那么它的反函数是: A. f(x) = |x| B. f(x) = x C.f(x) = -x D. f(x) = x^2答案:B5.设函数f(x) = x^3,那么它的反函数是: A. f(x) = x^3 B. f(x) = ∛x C.f(x) = x^(1/3) D. f(x) = x^2 - 1答案:C二、填空题1.设函数f(x) = 2x + 1,那么它的反函数是________。

答案:f(x) = (x -1) / 22.设函数f(x) = x^2,那么它的反函数是________。

答案:f(x) = √x3.设函数f(x) = e^x,其中e为自然对数的底数,那么它的反函数是________。

答案:f(x) = ln(x)4.设函数f(x) = |x|,那么它的反函数是________。

答案:f(x) = x5.设函数f(x) = x^3,那么它的反函数是________。

答案:f(x) = ∛x三、计算题1.设函数f(x) = 2x + 1,求它的反函数f^(-1)(x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反函数基础练习
(一)选择题
1.函数y =-x 2(x ≤0)的反函数是
[ ]
A y (x 0)
B y (x 0)
C y (x 0)
D y |x|
.=-≥.=≤.=-≤.=-x x x --
2.函数y =-x(2+x)(x ≥0)的反函数的定义域是
[ ]
A .[0,+∞)
B .[-∞,
1]
C .(0,1]
D .(-∞,0]
3y 1(x 2).函数=+≥的反函数是x -2
[ ]
A .y =2-(x -1)2(x ≥2)
B .y =2+(x -1)2(x ≥2)
C .y =2-(x -1)2(x ≥1)
D .y =2+(x -1)2(x ≥1)
4.下列各组函数中互为反函数的是
[ ]
A y y x
B y y 2.=和=.=和=
x x x
11
C y y (x 1)
D y x (x 1)y (x 0)
2.=
和=≠.=≥和=≥313131
1x x x x x +-+-
5.如果y =f(x)的反函数是y =f -1(x),则下列命题中一定正确的是
[ ]
A .若y =f(x)在[1,2]上是增函数,则y =f -1(x)在[1,2]上也是增函数
B .若y =f(x)是奇函数,则y =f -1(x)也是奇函数
C .若y =f(x)是偶函数,则y =f -1(x)也是偶函数
D .若f(x)的图像与y 轴有交点,则f -1(x)的图像与y 轴也有交点 6.如果两个函数的图像关于直线y =x 对称,而其中一个函数是
y =-,那么另一个函数是x -1
[ ]
A .y =x 2+1(x ≤0)
B .y =x 2+1(x ≥1)
C .y =x 2-1(x ≤0)
D .y =x 2-1(x ≥1)
7.设点(a ,b)在函数y =f(x)的图像上,那么y =f -1(x)的图像上一定有点
[ ]
A .(a ,f -1(a))
B .(f -1(b),b)
C .(f -1(a),a)
D .(b ,
f -1(b))
8.设函数y =f(x)的反函数是y =g(x),则函数y =f(-x)的反函数是
[ ]
A .y =g(-x)
B .y =
-g(x)
C .y =-g(-x)
D .y =-g -1(x)
9.若f(x -1)=x 2-2x +3(x ≤1),则函数f -1(x)的草图是
[ ]
10y g(x).函数=的反函数是,则1
3
x
[ ]
A .g(2)>g(-1)>g(-3)
B .g(2)>g(-3)>g(-1)
C .g(-1)>g(-3)>g(2)
D .g(-3)>g(-1)>g(2) (二)填空题
1y 32y (x 0)y f(x)y x .函数=+的反函数是.
.函数=>与函数=的图像关于直线=对称,
x x ++21
21 解f(x)=________.
3.如果一次函数y =ax +3与y =4x -b 的图像关于直线y =x 对称,那a =________,b =________.
4y (1x 0).函数=-<<的反函数是
,反函数的定92-x
义域是________.
5.已知函数y =f(x)存在反函数,a 是它的定义域内的任意一个值,则f -1(f(a))=________.
6y 7y (x 1)
(x 1)
8f(x)(x 1)f ()1
.函数=
的反函数的值域是

.函数=≥-<的反函数是:
..函数=<-,则-=

1
2
1121232
x x x x ---⎧⎨⎪⎩⎪-- (三)解答题
1y 12f(x).求函数=+的反函数,并作出反函数的图像.
.已知函数=.
x ax x +++25
2
(1)求函数y =f(x)的反函数y =f -1(x)的值域;(2)若点P(1,2)是y =f -1(x)的图像上一点,求函数y =f(x)的值域.
3.已知函数y =f(x)在其定义域内是增函数,且存在反函数,求证y =f(x)的反函数y =f -1(x)在它的定义域内也是增函数.
4f(x)y g(x)y f (x 1).设函数=
,函数=的图像是=+的图像23
1
1x x +-- 关于y =x 对称,求g(2)的值.
参考答案
(一)选择题
1.(C).解:函数y=-x 2(x ≤0)的值域是y ≤0,由y=-x 2得x=
--,∴反函数--≤.y x f (x)=(x 0)1-
2.(D).解:∵y=-x 2-2x=-(x +1)2,x ≥0,∴函数值域y ≤0,即其反函数的定义域为x ≤0.
3(D)y =x 21x 2y 1y =x 2..解:∵-+,≥,∴函数值域≥,由-
+1,得反函数f -1(x)=(x -1)2+1,(x ≥1).
4.(B).解:(A)错.∵y=x 2没有反函数.(B)中如两个函数互为反
函数.中函数+-≠的反函数是+-≠而不是+-.中函数≥的值域为≥.应是其反函数的定义域≥.但中的定义域≥,故中两函数不是互为反函数.
(C)y =
3x 1x (x 1)y =x 1
x 3
(x 3)y =3x 1
3x 1
(D)y =x (x 1)y 1x 1y =x x 0(D)21 5.(B).解:(A)中.∵y=f(x)在[1,2]上是增函数.∴其反函数y=f -1(x)在[f(1),f(2)]上是增函数,∴(A)错.(B)对.(C)中如y=f(x)=x 2是偶函数但没有反函数.∴(C)错.(D)中如函数f(x)=x 2+1(x ≥0)的图像与y 轴有
交点,但其反函数-≥的图像与轴没有交点.∴错.f -(x)=x 1(x 1)y (D)1 6(A)y =y 0f (x)=x 12..解:∵函数--的值域≤;其反函数+x 1-
+1(x ≤0).选(A).
7.(D).解:∵点(a ,b)在函数y=f(x)的图像上,∴点(b ,a)必在其反函数y=f -1(x)的图像上,而a=f -1(b),故点(b ,f -1(b))在y=f -1(x)的图像上.选(D).
8.(B).解:∵y=f(x)的反函数是y=f -1(x)即g(x)=f -1(x),而y=f(-x)的反函数是y=-f -1(x)=-g(x),∴选(B).
9.(C).解:令t=x -1.∵x ≤1,∴t ≤0,f(t)=t 2+2(t ≤0),即f(x)=x 2+2(x ≤0),值域为f(x)≥2,∴反函数f -1(x)的定义域是x ≥2,值域y ≤0,故选(C).
10(B)g(x)=
1
x (0)33
..解:∵在-∞,上是减函数,又-<-<1 00g(3)g(1)g(2)=
1
20g(2)g(3)g(1)3
,∴>->-而>,∴>->-.故选 (B). (二)填空题
1y =3y 3y =x 6x 2.解:∵函数++的值域≥,其反函数-+x 27(
x ≥3)
2y =
12x 1(x 0)y 1f(x)=1x
2x
(x 1).解:+>的值域<,其反函数-<. 3y =4x b y =
14x x =ax .解:函数-的反函数是+,则++,b b
4144
3 比较两边对应项系数得,.a =
1
4
b =12 4y =9x (1x 0)y (223)2.解:函数--<<的值域∈,,反函数f 1 (x)=(223)--.反函数的定义为,.92x
5.a
6.[0,2)∪(2,+∞)
7f (x)=x 1
(x 1)1x
(x 0)
1
22
.+≥-<-⎧⎨⎪⎩⎪
8.-2 (三)解答题
1x 2y 1y =
x 21=.解:∵≥-,得值域为≥.由++得反函数f x -1()
(x -1)2-2,(x ≥1),其图像如右图.
2.解(1):∵y=f(x)的定义域是{x|x ≠1,x ∈R ,∴y=f -1(x)的值域是{y|y ≠1,y ∈R}.
解(2):∵点P(1,2)在,y=f -1(x)的图像上,点P(1,2)关于直线y=x
的对称点为′,一定在的图像上,即由++得-,
∴-+,其反函数-+.∵的定义域为≠-,∈,∴的值域为≠-,∈.P (21)y =f(x)=1a =f(x)=
10x 2x 4f -(x)=104x
2x 1
f -(x){x|x x R}y =f(x){y|y y R}1125221
2121
2
a
3.证明略.
4f(x)=
2x 3x 1f -(x)=x 3
f (x 1)=11.略解;+-的反函数是+-,∴+x 2
- x 4x 1x 4
x 1
=2x =6g(2)=6+-,由+-得即.。

相关文档
最新文档