人教版 七年级数学整式的加减单元检测试题 12(湖北黄冈名校 优质试卷)
人教版 七年级数学整式的加减单元检测试题 1(湖北黄冈名校 优质试卷)

整式的加减单元试题一、填空题(每题3分,共30分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。
3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。
5、计算:=-+-7533x x , )9()35(b a b a -+-= 。
6、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。
7、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。
8、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。
9、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。
10、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。
二、选择题(每题3分,共30分)11、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x12、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍13、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 14、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --15、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x16、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、617、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式18、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 19、下列说法正确的是( ) A 、0不是单项式 B 、x 没有系数 C 、37x x +是多项式 D 、5xy -是单项式 20、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、解答题。
新人教版七年级上学期《第2章整式的加减》同步单元检测试题附答案

人教版七年级数学 第2章 整式的加减 同步检测试题(全卷总分100分) 姓名 得分一、选择题(每小题3分,共30分) 1.下列式子符合书写要求的是( )A .-xy 22 B .a -1÷bC .413xy D .ab×3 2.在下列表述中,不能表示“4a”意义的是( ) A .4的a 倍 B .a 的4倍C .4个a 相加D .4个a 相乘3.多项式-x 2-12x -1的各项分别是( )A .-x 2,12x ,1B .-x 2,-12x ,-1C .x 2,12x ,1D .x 2,-12x ,-1 4.若-3x m y 2与2x 3y 2是同类项,则m 等于( ) A .1 B .2 C .3 D .4 5.计算3a 2-a 2的结果是( ) A .4a 2 B .3a 2 C .2a 2 D .3 6.-[a -(b -c)]去括号正确的是( ) A .-a -b +c B .-a +b -c C .-a -b -c D .-a +b +c7.数x 、y 在数轴上对应点的位置如图所示,则化简|x +y|-|y -x|的结果是( )A .0B .2xC .2yD .2x -2y8.若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 为( ) A .x 2-5y 2+1 B .x 2-3y 2+1 C .5x 2-3y 2-1 D .5x 2-3y 2+19.已知整式6x -1的值是2,y 2的值是4,则(5x 2y +5xy -7x)-(4x 2y +5xy -7x)=( )A .-12 B.12C.12或-12 D .2或-1210.下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是( )A .22B .24C .26D .28 二、填空题(每小题3分,共18分)11.单项式7πa 3b 2的系数是 ,次数是 . 12.计算:3a 2-a 2= .13.一家体育器材商店将某种品牌的篮球按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出.已知每个篮球的成本价为a 元,则该商店卖出一个篮球可获利润 元.14.-54a 2b -43ab +1是三次三项式,其中常数项是1,最高次项是 ,二次项系数是 .15.若3a m +2b 4与-a 5b n -1的和仍是一个单项式,则m +n = . 16.观察下列各式的计算过程: 5×5=0×1×100+25, 15×15=1×2×100+25, 25×25=2×3×100+25, 35×35=3×4×100+25, …请猜测,第n 个算式(n 为正整数)应表示为 . 三、解答题(共52分) 17.(16分)化简:(1)(x 2-7x)-(3x 2-5-7x);(2)(4ab-b2)-2(a2+2ab-b2);(3)x-[y-2x-(x-y)];(4)3(x-y)-2(x+y)-5(x-y)+4(x+y)+3(x-y).18.(10分)化简求值:(1)(4a2-2a-6)-2(2a2-2a-5),其中a=-1;(2)-12a-2(a-12b2)-(32a-13b2),其中a=-2,b=32.19.(7分)已知A=3x2+3y2-5xy,B=4x2-3y2+2xy,当x=-1,y=1时,计算2A -3B的值.20207分)观察下面的点阵图形和与之相对应的等式,探究其中的规律: (1)请你在④和⑤后面的横线上分别写出相对应的等式:①4×0+1=4×1-3;②4×1+1=4×2-3;③4×2+1=4×3-3;④;⑤;(2)通过猜想,写出与第n个图形相对应的等式.21.(12分)某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法少于2020 不予优惠低于500元但不低于2020 九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)王老师一次性购物600元,他实际付款元;(2)若顾客在该超市一次性购物x元,当x小于500但不小于2020,他实际付款0.9x元,当x大于或等于500时,他实际付款元(用含x的式子表示);(3)如果王老师两次购物货款合计82020第一次购物的货款为a元(2020a<300),用含a 的式子表示:两次购物王老师实际付款多少元?人教版七年级数学 第2章 整式的加减 同步检测试题参考答案一、选择题(每小题3分,共30分) 1.下列式子符合书写要求的是( A )A .-xy 22 B .a -1÷bC .413xy D .ab×3 2.在下列表述中,不能表示“4a”意义的是( D ) A .4的a 倍 B .a 的4倍C .4个a 相加D .4个a 相乘3.多项式-x 2-12x -1的各项分别是( B )A .-x 2,12x ,1B .-x 2,-12x ,-1C .x 2,12x ,1D .x 2,-12x ,-1 4.若-3x m y 2与2x 3y 2是同类项,则m 等于( C ) A .1 B .2 C .3 D .4 5.计算3a 2-a 2的结果是( C ) A .4a 2 B .3a 2 C .2a 2 D .3 6.-[a -(b -c)]去括号正确的是( B ) A .-a -b +c B .-a +b -c C .-a -b -c D .-a +b +c7.数x 、y 在数轴上对应点的位置如图所示,则化简|x +y|-|y -x|的结果是( C )A .0B .2xC .2yD .2x -2y8.若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 为( C ) A .x 2-5y 2+1 B .x 2-3y 2+1 C .5x 2-3y 2-1 D .5x 2-3y 2+19.已知整式6x -1的值是2,y 2的值是4,则(5x 2y +5xy -7x)-(4x 2y +5xy -7x)=( C )A .-12 B.12 C.12或-12 D .2或-1210.下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是( C )A .22B .24C .26D .28 二、填空题(每小题3分,共18分)11.单项式7πa 3b 2的系数是 7π ,次数是 5 . 12.计算:3a 2-a 2= 2a 2 .13.一家体育器材商店将某种品牌的篮球按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出.已知每个篮球的成本价为a 元,则该商店卖出一个篮球可获利润 0.12a 元.14.-54a 2b -43ab +1是三次三项式,其中常数项是1,最高次项是 -54a 2b ,二次项系数是 -43 .15.若3a m +2b 4与-a 5b n -1的和仍是一个单项式,则m +n = 8 . 16.观察下列各式的计算过程: 5×5=0×1×100+25, 15×15=1×2×100+25, 25×25=2×3×100+25, 35×35=3×4×100+25, …请猜测,第n 个算式(n 为正整数)应表示为 [10(n -1)+5]×[10(n -1)+5]=100n(n -1)+25 . 三、解答题(共52分)17.(16分)化简:(1)(x2-7x)-(3x2-5-7x);解:原式=x2-7x-3x2+5+7x=-2x2+5.(2)(4ab-b2)-2(a2+2ab-b2);解:原式=4ab-b2-2a2-4ab+2b2=b2-2a2.(3)x-[y-2x-(x-y)];解:原式=x-y+2x+x-y=4x-2y.(4)3(x-y)-2(x+y)-5(x-y)+4(x+y)+3(x-y).解:原式=(x-y)+2(x+y)=x-y+2x+2y=3x+y.18.(10分)化简求值:(1)(4a2-2a-6)-2(2a2-2a-5),其中a=-1;解:原式=4a2-2a-6-4a2+4a+10=2a+4.当a=-1时,原式=2.(2)-12a-2(a-12b2)-(32a-13b2),其中a=-2,b=32.解:原式=-12a-2a+b2-32a+13b2=-4a+43b 2.当a=-2,b=32时,原式=11.19.(7分)已知A=3x2+3y2-5xy,B=4x2-3y2+2xy,当x=-1,y=1时,计算2A -3B的值.解:因为A=3x2+3y2-5xy,B=4x2-3y2+2xy,所以2A-3B=6x2+6y2-10xy-12x2+9y2-6xy=-6x2+15y2-16xy,当x=-1,y=1时,原式=-6+15+16=25.20207分)观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应的等式:①4×0+1=4×1-3;②4×1+1=4×2-3;③4×2+1=4×3-3;④4×3+1=4×4-3;⑤4×4+1=4×5-3;(2)通过猜想,写出与第n个图形相对应的等式.解:4(n-1)+1=4n-3.21.(12分)某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法少于2020 不予优惠低于500元但不低于2020 九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)王老师一次性购物600元,他实际付款530元;(2)若顾客在该超市一次性购物x元,当x小于500但不小于2020,他实际付款0.9x元,当x大于或等于500时,他实际付款(0.8x+50)元(用含x的式子表示);(3)如果王老师两次购物货款合计82020第一次购物的货款为a元(2020a<300),用含a 的式子表示:两次购物王老师实际付款多少元?解:0.9a+0.8(8202000-a)+450=0.9a+656-400-0.8a+450=0.1a+706(元).。
人教版七年级上册整式的加减单元测试卷12

人教版七年级上册整式的加减单元测试卷12一、选择题(共10小题;共50分)1. 下列运算结果正确的是A. B. C. D.2. 一个多项式与的和是,则这个多项式为A. B. C. D.3. 观察下列图形:它们是按照一定规律排列的,依照此规律,第个图形共有个.A. B. C. D.4. 如图,由相同的圆组成的一组图中,第个图由个圆组成,第个图由个圆组成,第个图由个圆组成,按照这样的规律排列下去,则第个图形由个圆组成.A. B. C. D.5. 下列各组是同类项的是A. 与B. 与C. 与D. 与6. 下面式子中符合代数式书写要求的是A. B. C. D. 克7. 把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为,宽为)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是A. B. C. D.8. 为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品价格,某种常用药品降价后的价格为元,则降价前此药品的价格为A. 元B. 元C. 元D. 元9. 将去括号,应该等于A. B. C. D.10. 若,则的值为C.二、填空题(共6小题;共30分)11. 计算:.12. 在式子,,,,中,整式有个.13. 如图所示的图案是我国古代窗格的一部分,其中“”代表窗纸上所贴的剪纸,则第⑤个图案中所贴剪纸“”的个数为,第个图案中所贴剪纸“”的个数为.14. 填空:.15. 单项式的系数是.16. 任意写一个与是同类项的单项式:.三、解答题(共8小题;共104分)17. 如图,在长为米,宽为米的长方形地面上修两条同样宽的道路,余下的部分作为绿化地,路宽为米.(1)用代数式表示绿化地的面积;(2)若,,,绿化地每平方米造价元,道路每平方米造价元,计算该工程需花费多少元?18. 有一窗户的装饰物由两个四分之一圆组成(半径相同),如图所示.用关于,的代数式表示窗户中能射进阳光部分的面积.19. 请回答下列问题:(1)某服装店举办促销活动,促销的方法是将原价元的衣服以七折出售,再让利元,用字母表示服装店衣服的现价;(2)某服装店举办促销活动,打八折后的售价是元,试用表示原价.20. 若与是同类项,求,的值.21. 数学课上,老师设计了一个数学游戏:若两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”.甲、乙、丙、丁四名同学各有一张多项式卡片,下面是甲、乙、丙、丁四名同学的对话:请根据对话解答下列问题:(1)判断甲、乙、丙三名同学的多项式是否为“友好多项式”,并说明理由;(2)丁的多项式是什么?(请直接写出所有答案)22. 已知多项式是六次四项式,单项式的次数与此多项式的次数相同,求的值.23. 有些数在我们日常生活中代表一定的含义,如:,,,等.若在前后各添上一个数字,组成一个新的五位数,则称这个五位数为“恋语数”;如在前添上一个数字,在后添上一个数字,组成一个新的五位数,则称这个五位数为“恋语数”若这个“恋语数”能被整除,则称这个数为“幸福之家数”.(1)请你直接写出到之间所有的“幸福之家数”;(2)请你求出能被能被整除的所有“幸福之家数”的最大值与最小值之差.24. 回答下列问题:(1)若,求代数式的值.(2)多项式能被整除,求常数的值.答案第一部分1. D 【解析】A.与不是同类项,不能合并,故选项不符合题意;B.与不是同类项,不能合并,故选项不符合题意;C.与不是同类项,不能合并,故选项不符合题意;D.正确,故选项符合题意.2. C3. C 【解析】观察发现,第个图形的个数是;第个图形的个数是;第个图形的个数是;第个图形的个数是;依此类推,第个图形的个数是.故当时,.故选:C.4. C 【解析】第个图个圆,第二个图个圆,;第个图个圆,,,第个图,个圆,故第个图有个圆.5. D6. C 【解析】A、应该写成,故本选项错误;B、应写成,故本选项错误;C、可以,故本选项正确;D、应该写成克,故本选项错误.7. B 【解析】设小长方形的长为,宽为,则,则上面的阴影(长方形)的周长为:,下面的阴影(长方形)的周长为:.所以总周长为:.所以.8. C9. D 【解析】【分析】根据去括号规则:括号前是“”号,去括号时连同它前面的“”号一起去掉,括号内各项不变号;括号前是“”号,去括号时连同它前面的“”号一起去掉,括号内各项都要变号.【解析】解:,故选:.【点评】此题主要考查了去括号,关键是注意符号的变化.10. B【解析】,,.第二部分11.【解析】.12.13. ,14.15.【解析】单项式的系数是.16. (答案不唯一)第三部分17. (1)绿化地的面积是.(2),,,绿化地每平方米造价为元,道路每平方米造价元,该工程需花费的钱数为:18. .19. (1).(2).20. ,所以,,21. (1)是.理由:甲、乙、丙三名同学的多项式是“友好多项式”.(2)丁的多项式是或或.【解析】甲、乙、丁三名同学的多项式是“友好多项式”,丁的多项式可能是,另外还有两种情况:①②;故丁的多项式是或或.23. (1),,,,,,.(2)设这个“幸福之家数”.,为整数,可取或或,当时,,,,当时,,,,当时,,,,这个“幸福之家数”为,,,,,,,,,所有幸福数的最大值与最小值之差为.24. (1),,又(2)能被整除,当,即时,是方程的解,将代入,得,常数的值是.。
(人教版)武汉市七年级数学上册第二单元《整式的加减》检测题(答案解析)

一、选择题1.如图33⨯网格中,每一横行、每一竖列以及两条斜对角线上的三个数的和都相等,则b a -的值是( )A .3-B .2-C .2D .32.下列方程中,解为x=-2的方程是( ) A .2x+5=1-xB .3-2(x -1)=7-xC .x -5=5-xD .1-14x=34x 3.如图所示,两人沿着边长为90 m 的正方形,按A →B →C →D →A …的方向行走,甲从A 点以65 m/min 的速度、乙从B 点以75 m/min 的速度行走,当乙第一次追上甲时,将在正方形的( )边上.A .BCB .DC C .ADD .AB 4.方程2424x x -=-+的解是 ( ) A .x =2B .x =−2C .x =1D .x =05.如图,方格中的格子被填上了数,每一行、每一列以及两条对角线中所填的数字之和均相等,则的值为( )A .B .C .D .6.下列各题正确的是( ) A .由743x x =-移项得743x x -= B .由213132x x --=+去分母得()()221133x x -=+-C .由()()221331x x ---=去括号得42391x x ---=D .由()217x x +=+去括号、移项、合并同类项得5x = 7.解方程-3x=2时,应在方程两边( ) A .同乘以-3 B .同除以-3C .同乘以3D .同除以38.解方程32282323x x x----=的步骤如下,错误的是( ) ①2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x ); ②6x ﹣4﹣3x ﹣6=16﹣4x ; ③3x +4x =16+10;④x =267.A .①B .②C .③D .④9.已知方程(1)30m m x -+=是关于x 的一元一次方程,则m 的值是( ) A .±1B .1C .-1D .0或110.下列说法正确的是( ) A .若a c =bc,则a=b B .若-12x=4y ,则x=-2y C .若ax=bx ,则a=bD .若a 2=b 2,则a=b11.整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( ) x-2 -1 0 1 2 mx n + -12-8-44A .1x =-B .0x =C .1x =D .2x =12.甲、乙、丙三辆卡车所运货物的质量之比为,已知甲车比乙车少运货物吨,则三辆卡车共运货物( ) A .吨B .吨C .吨D .吨二、填空题13.为了创建宜居城市,某单位积极响应植树活动,由一人植树要80小时完成.现由一部分人植树5小时,由于单位有紧急事情,再增加2人,4小时后完成植树任务.若这些人的工作效率相同,则先植树的有________人. 14.如果34x x =-+,那么3x +________4=.15.某区民用电的计费方式为:白天时段的单价为m 元/度,晚间时段的单价为n 元/度.某户8月份白天时段用电量比晚间时段多50%,9月份白天时段用电量比8月份白天时段用电量少60%,结果9月份的总用电量虽比8月份的总用电量多20%,但9月份的总电费却比8月份的总电费少10%,则mn=______. 16.一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为_____.17.已知222a b ck b c a c a b===+++,则k =______. 18.若关于x 的方程23360m x m --+=是一元一次方程,则这个方程的解是__________.19.有一旅客携带了30公斤行李从重庆江北国际机场乘飞机去武汉,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格是______.20.用5个同样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是_______,宽是________.三、解答题21.大明共有4800元,他将一部分钱按活期存了一年,剩下的钱买了企业债券,一年后共获利24.8元,知活期储蓄的年利率是0.35%,企业债券的年利率是0.6%,则大明存活期和买债券各用了多少元?22.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是购买10本以上,每本按标价的8折卖. (1)小明要买20本练习本,到哪个商店较省钱?(2)小明要买10本以上练习本,买多少本时到两个商店付的钱一样多? (3)小明现有32元钱,最多可买多少本练习本?23.某市水果批发欲将A 市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其它主要参考数据如下: 运输工具 途中平均速度(千米/时) 运费(元/千米) 装卸费用(元) 火车 100 15 2000 汽车8020900(1) 如果汽车的总支出费用比火车费用多1100元,你知道本市与A 市之间的路程是多少千米吗?请你列方程解答.(总支出包含损耗、运费和装卸费用)(2) 如果A 市与B 市之间的距离为S 千米,你若是A 市水果批发部门的经理,要想将这种水果运往B 市销售,试分析以上两种运输工具中选择哪种运输方式比较合算呢?24.一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,,则两队合作,几个月可以完工? 25.一种商品每件成本a 元,按成本增加22%标价. (1)每件标价多少元?(2)由于库存积压,实际按标价的九折出售,每件是盈利还是亏损?盈利或亏损多少元?26.某同学在解方程21233x x a-+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x =1.求a 的值,并正确地解方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意,可以找到很多数量关系,那么选取合适的关系列出等式是关键,仔细观察网格图,可以发现第一纵行与第二橫行互相交叉,有相同的空格,同时包含了参数a 与b ,根据该等量关系可以列出等式解答. 【详解】解:设第二橫行第一个空格为字母c ,如下图,据题意得, 85a c c b ++=++, 移项可得, 3b a -=. 故选:D. 【点睛】本题以幻方形式考查等式与方程的应用,理解题意,观察图形,找到合适的等量关系列出等式是解答关键.2.B解析:B 【分析】将x=-2代入方程,使方程两边相等即是该方程的解. 【详解】将x=-2代入,A.左边≠右边,故不是该方程的解;B.左边=右边,故是该方程的解;C. .左边≠右边,故不是该方程的解;D. .左边≠右边,故不是该方程的解;故选:B.【点睛】此题考查一元一次方程的解使方程左右两边相等的未知数的值即是方程的解,熟记定义即可解答.3.C解析:C【分析】设乙x分钟后追上甲,根据乙追上甲时,比甲多走了270米,可得出方程,求出时间后,计算乙所走的路程,继而可判断在哪一条边上相遇.【详解】设乙x分钟后追上甲,由题意得,75x−65x=270,解得:x=27,而75×27=5×360+212×90,即乙第一次追上甲是在AD边上.故选C.【点睛】本题考查了一元一次方程的应用,完成本题要注意通过所行路程及正方形的周长正确判断追上时在正方形的那条边上.4.A解析:A【分析】利用等式的性质解方程即可解答.【详解】解:移项得:2+2x4+4x=合并同类项得:48x=系数化为1得:2x=故选:A【点睛】本题考查解一元一次方程,难度较低,熟练掌握利用等式的性质解一元一次方程是解题关键.5.D解析:D【解析】 【分析】根据每一行、每一列以及两条对角线中所填的数字之和均相等,可求出方格中间、右下以及右上的数,再由每一行、每一列所填的数字之和相等,即可得出关于x 的一元一次方程,解之即可得出结论. 【详解】16+11+12−11−15=13, 16+11+12−16−13=10, 16+11+12−10−15=14.根据题意得:16+11+12=16+x+14, 解得:x=9. 故选:D. 【点睛】此题考查一元一次方程的应用,解题关键在于根据题意找出等量关系.6.D解析:D 【分析】根据解一元一次方程的步骤计算,并判断. 【详解】A 、由743x x =-移项得743x x -=-,故错误;B 、由213132x x --=+去分母得()()221633x x -=+-,故错误; C 、由()()221331x x ---=去括号得42391x x --+=,故错误; D 、由()217x x +=+去括号得:227x x +=+, 移项、合并同类项得5x =,故正确. 故选:D . 【点睛】本题主要考查了一元一次方程的解法,注意移项要变号,但没移的不变;去分母时,常数项也要乘以分母的最小公倍数;去括号时,括号前是“-”号的,括号里各项都要变号.7.B解析:B 【分析】利用等式的性质判断即可. 【详解】解:利用等式的性质解方程-3x=2时,应在方程的两边同除以-3, 故选:B . 【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.解析:B 【分析】根据解一元一次方程的基本步骤依次计算可得. 【详解】①去分母,得:2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x ); ②6x ﹣4﹣3x+6=16﹣4x , ③6x ﹣3x+4x =16+4﹣6, ④x =2,错误的步骤是第②步, 故选:B . 【点睛】本题主要考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.9.C解析:C 【分析】直接利用一元一次方程的定义进而分析得出答案. 【详解】∵方程(1)30m m x -+=是关于x 的一元一次方程, ∴1m =,10m -≠, 解得:1m =-. 故选:C . 【点睛】本题主要考查了一元一次方程的定义,正确把握一元一次方程的定义是解题关键.10.A解析:A 【分析】按照分式和整式的性质解答即可. 【详解】解:A .因为C 做分母,不能为0,所以a=b ; B .若-x=4y ,则x=-8y ;C .当x=0的时候,不论a ,b 为何数,00a b ⨯=⨯,但是a 不一定等于b ;D .a 和b 可以互为相反数. 故选 :A 【点睛】本题考查了整式和分式的性质,掌握整式和分式的性质是解答本题的关键.解析:A 【分析】根据题意得出方程组,求出m 、n 的值,再代入求出x 即可. 【详解】根据表格可知0x =时,4mx n +=-, 所以4n =-.2x =时,4mx n +=, 所以244m -=, 移项得244m =+, 合并同类项,得28m = 系数化为1,得4m =. 所以原方程为448x -+=,移项,得484x -=-.合并同类项,得44x -= 系数化为1,得1x =-. 故选A . 【点睛】本题考查了解一元一次方程和二元一次方程的解,能求出m 、n 的值是解此题的关键.12.C解析:C 【解析】 【分析】本题可以设甲,乙,丙三辆卡车所运货物的质量分别为:6x ,7x ,4.5x ,根据乙车运货量-甲车运货量=12吨,可以列出方程7x-6x=12,解得即可. 【详解】解:设甲,乙,丙三辆卡车所运货物的质量分别为:6x 吨,7x 吨,4.5x 吨, 根据题意得:7x-6x=12, 解得:x=12.所以三辆卡车共运货物=6x+7x+4.5x=17.5x=17.5×12=210. 故选:C . 【点睛】此题考查了一元一次方程的应用,解题的关键是:根据题意设甲,乙,丙三辆卡车所运货物的质量分别为:6x 吨,7x 吨,4.5x 吨,找到等量关系,然后列出方程.二、填空题13.8【分析】理解题意根据工作总量等于各分量之和设先植树的有x 人可得【详解】设先植树的有x 人可得解得x =8故答案为:8【点睛】考核知识点:一元一次方程应用根据工作量关系列出方程是关键解析:8 【分析】理解题意,根据工作总量等于各分量之和,设先植树的有x 人,可得()42518080x x ++=. 【详解】设先植树的有x 人,可得()42518080x x ++=,解得x =8. 故答案为:8 【点睛】考核知识点:一元一次方程应用.根据工作量关系列出方程是关键.14.x 【分析】根据题意得第一个等式等号右边为-x+4第二个等式等号右边为4因为(-x+4)+x=4所以等号两边同时加x 【详解】两边同时加x 得3x+x=4故答案为:x 【点睛】本题考查的是等式的性质熟知等式解析:x 【分析】根据题意,得第一个等式等号右边为-x+4 ,第二个等式等号右边为4,因为(-x+4)+x=4 ,所以等号两边同时加x . 【详解】两边同时加x ,得3x+x=4, 故答案为:x 【点睛】本题考查的是等式的性质,熟知等式两边加或减同一个数或式子,结果仍相等是解答此题的关键.15.2【分析】设8月份晚间用电量为a 度则:8月份白天用电量为(1+50)a=15a 度8月份电费为:15ma+na=(15m+n )a 元9月份白天用电量为:15a (1-60)=06a 度9月份晚间用电量为:(解析:2 【分析】设8月份晚间用电量为a 度,则:8月份白天用电量为(1+50%)a=1.5a 度,8月份电费为:1.5ma+na=(1.5m+n )a 元,9月份白天用电量为:1.5a (1-60%)=0.6a 度,9月份晚间用电量为:(a+1.5a )(1+20%)-0.6a=2.4a 度,9月份电费为:0.6ma+2.4na=(0.6m+2.4n )a 元,然后根据题意即可列出方程,求出m 与n 的比值即可. 【详解】解:白天的单价为每度m 元,晚间的单价为每度n 元, 设8月份晚间用电量为a 度,则: 8月份白天用电量为:(1+50%)a=1.5a 度,8月份电费为:1.5ma+na=(1.5m+n )a 元, 9月份白天用电量为:1.5a (1-60%)=0.6a 度,9月份晚间用电量为:(a+1.5a )(1+20%)-0.6a=2.4a 度, 9月份电费为:0.6ma+2.4na=(0.6m+2.4n )a 元, 根据题意得:(0.6m+2.4n )a =(1.5m+n )(1-10%)a . 整理得:0.75m=1.5n ,∴1.520.75m n ==. 故答案为:2. 【点睛】此题主要考查了一元一次方程的应用,分别表示出8,9月份的用电量是解决问题的关键.16.【分析】设火车的长度为x 米则火车的速度为根据列车的速度×时间=列车长度+隧道长度列方程求解即可【详解】设火车的长度为x 米则火车的速度为依题意得:45×=600+x 解得:x=300故答案为:300【点解析:【分析】设火车的长度为x 米,则火车的速度为15x,根据列车的速度×时间=列车长度+隧道长度列方程,求解即可. 【详解】设火车的长度为x 米,则火车的速度为15x,依题意得: 45×15x=600+x 解得:x =300. 故答案为:300. 【点睛】本题考查了一元一次方程的应用,学生理解题意的能力,根据隧道顶部一盏固定灯在火车上垂直照射的时间为15秒钟,可知火车的速度为15x,根据题意可列方程求解. 17.1或-2【分析】分类讨论:①当时将等式变形即可求出k 的值;②当时则代入原等式即可求出k 的值【详解】解:①当时∵∴∴∴∴∴;②当时则∴故答案为:1或-2【点睛】此题考查的是等式的基本性质根据等式的基本解析:1或-2 【分析】分类讨论:①当0a b c ++≠时,将等式变形,即可求出k 的值;②当0a b c ++=时,则a b c +=-,代入原等式即可求出k 的值. 【详解】解:①当0a b c ++≠时,∵222a b c k b c a c a b===+++, ∴()()()2,2,2a k b c b k a c c k a b =+=+=+,∴()222a b c k b c a c a b ++=+++++,∴()()22a b c k a b c ++=++,∴22k =,∴1k =;②当0a b c ++=时,则a b c +=-. ∴222c c k a b c===-+- 故答案为:1或-2【点睛】 此题考查的是等式的基本性质,根据等式的基本性质将等式变形是解决此题的关键. 18.x=1【分析】利用一元一次方程的定义求解即可【详解】∵关于x 的方程3xm-2-3m+6=0是一元一次方程∴m-2=1解得:m=3此时方程为3x-9+6=0解得:x=1故答案为x=1【点睛】此题考查一解析:x=1【分析】利用一元一次方程的定义求解即可.【详解】∵关于x 的方程3x m-2-3m+6=0是一元一次方程,∴m-2=1,解得:m=3,此时方程为3x-9+6=0,解得:x=1,故答案为x=1.【点睛】此题考查一元一次方程的定义以及解一元一次方程,熟练掌握一元一次方程的定义是解题的关键.19.800元【分析】该题目中的等量关系:该旅客购买的行李票=飞机票价格×15×超重公斤数根据题意列方程求解【详解】设他的飞机票价格是x 元可列方程x ⋅15×(30−20)=120解得:x=800则他的飞机解析:800元【分析】该题目中的等量关系:该旅客购买的行李票=飞机票价格×1.5%×超重公斤数,根据题意列方程求解.【详解】设他的飞机票价格是x 元,可列方程x ⋅1.5%×(30−20)=120解得:x=800则他的飞机票价格是800元.故答案为:800.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意列出方程.20.1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x 列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x 则长=(14-10x )=2x 解得x=1即小长方形的宽为1长为2;故答解析:1【解析】【分析】观察图形找出大长方形与小长方形的关系,设小长方形的宽为x ,列出方程即可求出其长和宽的值.【详解】解:设小长方形的宽为x ,则长=12(14-10x )=2x , 解得x=1, 即小长方形的宽为1,长为2;故答案为:2;1.【点睛】本题考查了一元一次方程的应用,准确识图并列出方程是解题的关键.三、解答题21.存活期用了1600元,买债券用了3200元【分析】设存活期用了x 元,则买债券用了(4800)x -元,由题意列式求解即可.【详解】解:设存活期用了x 元,则买债券用了(4800)x -元由题意,得0.35%0.6%(4800)24.8x x +-=.解得1600x =.48003200x -=.答:大明存活期用了1600元,买债券用了3200元.【点睛】本题主要考查了实际问题与一元一次方程,根据题意找出未知量,列方程是解题的关键. 22.(1)到乙商店较省钱;(2)买30本;(3)最多可买41本练习本.【分析】(1)分别按照甲商店与乙商店给的优惠活动,计算出费用,哪个商店的费用更低,即更省钱,即可解决;(2)可设买x 本时到两个商店付的钱一样多,分别用x 表示到甲商店购买的钱与到乙商店购买的钱,令其相等,解出x ,即可解决本题;(3)设可买y 本练习本,分别算出到甲商店能买多少本,到乙商店能买多少本,取更多的即可解决.【详解】解:(1)∵甲商店:101(2010)170%17⨯+-⨯⨯=(元);乙商店:20180%16⨯⨯=(元).又∵17>16,∴小明要买20本练习本时,到乙商店较省钱.(2)设买x 本时到两个商店付的钱一样多.依题意,得10170%(10)80%x x ⨯+-=,解得30x =.∴买30本时到两个商店付的钱一样多.(3)设可买y 本练习本.在甲商店购买:1070%(10)32y +-=. 解得29034177y ==. ∵y 为正整数,∴在甲商店最多可购买41本练习本.在乙商店购买:80%32y =.解得40y =.∴在乙商店最多可购买40本练习本.∵41>40,∴最多可买41本练习本.【点睛】本题主要考查了一元一次方程的实际应用,能够找出等量关系,列出方程是解决本题的关键.23.(1) x =400;(2) 当s >200时,选择火车运输;当s <200时,选择汽车运输;当s =200时,两种方式都一样【分析】(1)设路程为x 千米,题中等量关系是:汽车的总支出费用比火车费用多1100元,列出方程解答;(2)根据(1)中结论分别算出火车和汽车所需的运费,再进行比较即可求解.【详解】(1) 设本市与A 市之间的路程是x 千米200•20015200011002090010080x x x x +++=++, 解得x =400(2) 火车的运输费用为•200152000172000100s s s ++=+ 汽车运输的费用为•2002090022.590080s s s ++=+当17s +2000=22.5s +900,解得s =200当s >200时,选择火车运输当s <200时,选择汽车运输当s =200时,两种方式都一样【点睛】本题主要考查了一元一次方程的应用,根据题意列出方程是解答本类问题的关键. 24.5【分析】设两队合作x 个月完成,甲队原来的工作效率为112,将工作效率提高40%以后为112(1+40%),乙队原来的工作效率为115,将工作效率提高25%以后为115(1+25%),根据工作效率×工作时间=工作总量1,列出方程,解方程即可【详解】 解:设两队合作x 个月完成,由题意,得[112(1+40%)+115(1+25%)]x =1, 解得x =5.答:两队合作,5个月可以完工.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.25.(1)1.22a ;(2)盈利0.098a【分析】(1)根据:标价=成本()122%⨯+,列出代数式,再进行整理即可;(2)根据:售价=标价0.9⨯,利润=售价-成本,列出代数式,即可得出答案.【详解】(1)∵每件成本a 元,原来按成本增加22%定出价格,∴每件售价为()122% 1.22a a +=(元);(2)现在售价:1.220.9 1.098a a ⨯=(元);每件还能盈利:1.0980.098a a a -=(元);∴实际按标价的九折出售,盈利0.098a (元)【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到等量关系,注意把列出的式子进行整理.26.a=2,x=-3【分析】由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a 的值,然后将a 的值代入方程求解即可.【详解】解:将x=1代入2x﹣1=x+a﹣2得:1=1+a﹣2.解得:a=2,将a=2代入21233x x a-+=-得:2x﹣1=x+2﹣6.解得:x=﹣3.【点睛】本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a)-2的解是解题的关键.。
湖北黄冈中学七年级数学上册第二单元《整式加减》-解答题专项测试

一、解答题1.用代数式表示:(1)比x 的平方的5倍少2的数;(2)x 的相反数与y 的倒数的和;(3)x 与y 的差的平方;(4)某商品的原价是a 元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x 表示十位上的数字,用代数式表示这个三位数.解析:(1)5x 2-2;(2)-x +1y ;(3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4). 【分析】(1)明确是x 的平方的5倍与2的差;(2)先求出x 的相反数与y 的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x 2-2;(2)-x +1y; (3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4) .【点睛】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.2.已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.3.某商店出售一种商品,其原价为m 元,现有如下两种调价方案:一种是先提价10%,在此基础上又降价10%;另一种是先降价10%,在此基础上又提价10%.(1)用这两种方案调价的结果是否一样?调价后的结果是不是都恢复了原价?(2)两种调价方案改为:一种是先提价20%,在此基础上又降价20%;另一种是先降价20%,在此基础上又提价20%,这时结果怎样?(3)你能总结出什么规律吗?解析:(1)这两种方案调价的结果一样,都没有恢复原价;(2)这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价..【分析】(1)先提价10%为110m%,再降价10%后价钱为99m%;先降价10%为90m%,再提价10%后价钱为99m%,据此可得答案;(2)先提价20%为120%m ,再降价20%后价钱为96%m ;先降价20%为80%m ,再提价20%后价钱为96%m ,据此可得答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)方案一:先提价10%价钱为()110%110%m m +=,再降价10%后价钱为()110%110%99%m m ⨯-=;方案二:先降价10%价钱为()110%90%m m -=,再提价10%后价钱为()90%110%99%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(2)方案一:先提价20%价钱为()120%120%m m +=,再降价20%后价钱为()120%120%96%m m ⨯-=;方案二:先降价20%价钱为()120%80%m m -=,再提价20%后价钱为()80%120%96%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价.【点睛】本题考查了列代数式的知识,解题的关键是能够表示出降价或涨价后的量,难度不大. 4.有一道化简求值题:“当1a =-,3b =-时,求222(32)2(())44a b ab ab a ab a b ---+-的值.”小明做题时,把“1a =-”错抄成了“1a =”,但他的计算结果却是正确的,小明百思不得其解,请你帮他解释一下原因,并求出这个值.解析:2228a b a +,解释见解析,2.【分析】将原式化简后即可对计算结果进行解释;将a 、b 的值代入化简后的式子计算即得结果.【详解】解:原式22232284a b ab ab a ab a b =--++-2228a b a =+.因为无论1a =-,还是1a =,2a 都等于1,所以代入的结果是一样的.所以当1a =-,3b =-时,原式222(1)(3)8(1)=⨯-⨯-+⨯-682=-+=.【点睛】本题考查了整式的加减运算及代数式求值,属于常考题型,熟练掌握整式加减运算法则是解题关键.5.已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值. 解析:m =1,n =4.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m 的值,根据单项式的次数是单项式中所有字母指数和,可得n 的值.【详解】∵多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同, ∴2+2m +1=5,n +4m ﹣3=5,解得m =1,n =4.【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键.6.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
(完整)人教版七年级数学整式的加减综合测试题附答案

人教版七年级数学 整式的加减综合测试题(附答案)一、选择题(本大题共10小题,每小题3分,共30分)1.用语言叙述1a -2表示的数量关系,下列表述不正确的是( ) A .比a 的倒数小2的数 B .比a 的倒数大2的数C .a 的倒数与2的差D .1除以a 的商与2的差2.有下列各式:m ,-12,x -2,1x ,x 2,-2x 2y 33,2+a 5,其中单项式有( ) A .5个 B .4个 C .3个 D .2个3.在下列式子中,次数为3的单项式是( )A .xy 2B .x 3+y 3C .x 3y D. 3xy4.多项式1+2xy -3xy 2的次数及最高次项的系数分别是( )A .3,-3B .2,-3C .5,-3D .2,35.下列各组单项式中,是同类项的一组是() A .3x 2y 与3xy 2 B.51abc 与51ac C. -2xy 与-3ab D. xy 与-xy 6.下列计算正确的是( )A. 6a -5a=1B. a+2a 2=3a 3C. -(a -b )=-a+bD. 2(a+b )=2a+b7.化简-16(x -0.5)的结果是( )A. -16x -0.5B. 16x+0.5C. 16x -8D. -16x+88.若多项式3x 2-2xy-y 2减去多项式M 所得的差是-5x 2+xy-2y 2,则多项式M 是( )A. -2x 2-xy-3y 2B. 2x 2+xy+3y 2C. 8x 2-3xy+y 2D. -8x 2+3xy-y 29.某企业今年3月份的产值为a 万元,4月份比3月份的产值减少了10%,5月份比4月份的产值增加了15%,则该企业5月份的产值是( )A.(a-10%)(a+15%)万元B.(1-10%)(1+15%)a 万元C.(a-10%+15%)万元D. (1-10%+15%)a 万元10.已知a ,b 两数在数轴上的位置如图1所示,化简式子|a+b |-|a -1|+|b+2|的结果是( )A.1B. 2b+3C. 2a -3D. -1图1 二、填空题(本大题共8小题,每小题4分,共32分)11. 当x=-1时,整式x 3-x 2+4的值为 .12. 多项式3m 2-5m 3+2-m 是 次 项式.13.请你写出一个多项式,使它含有字母m ,n ,最高次项的系数为-2,次数为3,你写出的多项式是 . 14.若多项式3x 2+kx-2x+1(k 为常数)中不含有x 的一次项,则k= .15.单项式-3x 2加上单项式-4x 2y ,-5x 2,2x 2y 的和,列算式为________,计算后的结果是________.16. 已知a 2+2ab =-8,b 2+2ab =14,则a 2+4ab +b 2=________;a 2-b 2=________.17.一个两位数,十位上的数字是2,个位上的数字是x ,这个两位数是___.18. 有一组按规律排列的单项式:2a ,4a 3,6a 5,8a 7,…,第25个单项式是___. 19.多项式2x 3-x 2y 2-3xy+x-1是 次 项式.20.若单项式3a 5b m+1与-2a n b 2是同类项,则m-n= .21.若2x -3y -1=0,则5-4x+6y 的值为 .三、解答题(本大题共5小题,共58分)22.(没小题6分,共12分)计算:(1)4x 2-8x +5-3x 2+6x -2; (2)156()3a a a +--. 23.(10分)化简并求值:(a 2-ab +2b 2)-2(b 2-a 2),其中a =-13,b =5.24. (10分)如图4所示,某长方形广场的四角都有一块半径相同的41圆形的草地,已知圆形的半径为r 米,长方形的长为a 米,宽为b 米. (1)请列式表示广场空地的面积;(2)若长方形的长为300米,宽为200米,圆形的半径为10米,计算广场空地的面积(计算结果保留π).图425. (12分)玲玲做一道题:“已知两个多项式A 、B ,其中A=x 2+3x -5,计算A -2B的值.”她误将“A -2B ”写成“2A -B ”,得到的答案是x 2+8x -7,你能帮助她求出A -2B 的值吗?26.(7分)已知多项式-5x 2y m+1+xy 2-3x 3-6是六次四项式,且3x 2n y 5-m 的次数与它相同.(1)求m ,n 的值;(2)写出该多项式的常数项以及各项的系数.第二章 整式的加减测试题(二)一、1. B 2.B 3. A 4. A 5. D6. C 提示:合并同类项,只把系数相加减,字母与字母的次数不变,6a -5a=a ,选项A 错误;a 与2a 2 不是同类项,不能合并,选项B 错误;根据去括号法则,-(a -b )=-a+b ,选项C 正确;2(a+b )=2a+2b ,选项D 错误.7. D8. C 提示:M =3x 2-2xy-y 2-(-5x 2+xy-2y 2)=3x 2-2xy-y 2+5x 2-xy+2y 2=8x 2-3xy+y 2.9. B 提示:根据4月份比3月份减少10﹪,可得4月份产值是(1-10﹪)a 万元, 5月份比4月份增加15﹪,可得5月份产值是(1-10﹪)(1+15﹪)a 万元.10.B 提示:由数轴可知-2<b <-1,1<a <2,且|a |>|b |,所以a+b >0,故|a+b |-|a -1|+ |b+2|=a+b -(a -1)+(b+2)=2b+3.二、11.2 12.三 四 13. 答案不唯一,如-2mn 2+mn -114. 14. 215. -3x 2 -4x 2y -5x 2+2x 2y -8x 2-2x 2y16. 6 -22 17. 20+x 18. 50a 49提示:这组单项式的分母为从2开始的连续的偶数,分子中a 的次数为从1开始的连续的奇数.19. 四 五 20.-4 21. 3三、22.解:(1)原式=(4x 2-3x 2)+(-8x +6x )+(5-2)=x 2-2x +3;(2)原式=5a -6a+2(a+1)=5a -6a+2a+2=a+2.23. 解:原式=a 2-ab +2b 2-2b 2+2a 2=(a 2+2a 2)+(2b 2-2b 2)-ab =3a 2-ab .当a =-13,b =5时,原式=3×⎝⎛⎭⎫-132-⎝⎛⎭⎫-13×5=13+53=2. 24. 解:(1)广场空地的面积(单位:平方米)为:ab -πr 2;(2)当a=300,b=200,r=10时,ab -πr 2=300×200-π×102=60 000-100π.所以广场空地的面积(单位:平方米)为:60 000-100π.25. 解:能,如下:B=2A -(x 2+8x -7)=2(x 2+3x -5)-(x 2+8x -7)=2x 2+6x -10-x 2-8x+7=x 2-2x -3.所以A -2B=x 2+3x -5-2(x 2-2x -3)=x 2+3x -5-2x 2+4x+6=-x 2+7x+1.26. 解:(1)由题意,得2+m+1=6,所以m=3.因为3x 2n y 5-m 的次数也是六次,可得2n+5-m=6,所以n=2.所以m ,n 的值分别为3,2.(2)该多项式为-5x2y4+xy2-3x3-6,常数项是-6,各项的系数分别为:-5,1,-3.。
人教版2024-2025学年七年级上册数学单元检测(整式的加减)含答案

A. B. C. D.1(4)2a -124a -124a +324a +9.多项式是关于x.y 的四次二项式,则m 的值为( )2||2(2)1m x ym xy --+A.2B.-B.-2 C.±2 D.±110.当0a >,0b <时,化简|65||81||32|b b a b -+---的结果是( )A.35a b ++B.3117a b -+C.D.355a b -++3117a b --+二、填空题(每小题4分,共20分)11.若的系数是m ,的系数是n ,则的值为__________.2a b -23xy -m n +12.化简:________________.()()17372x x ---=13.若,则的值为________.244239m n x y ax y x y +=a m n ++14.若一个多项式加上,结果是,则这个多项式为___________.234y xy +-2325xy y +-15.阅读下面材料:计算.123499100++++++ 如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度..12399100(1100)(299)(5051)101505050+++++=++++++=⨯= 根据材料中提供的方法,计算:_________.()(2)(3)(100)a a m a m a m a m +-+-+-++-= 三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)已知多项式243352261079x x x x +-+-.(1)把这个多项式按x 的降幂重新排列;(2)该多项式是几次几项式?直接写出它的常数项.17.(8分)已知下列式子:(1)计算小长方形C的周长(用含(2)小明发现阴影图形A与阴影图形(3)已知,,求的值.22x xy +=2235y xy +=222116x xy y ++21.(12分)观察下列单项式:,,,解答下列问题:23x 35x 47x ⋅⋅⋅⋅⋅⋅(1)对这组单项式,你发现了什么规律?(2)根据你发现的规律,第5个单项式和第6个单项式分别是什么?(3)根据上面的归纳,你猜想第n 个单项式是什么?(4)请你根据猜想,写出第2022个单项式.答案以及解析1.答案:B解析:单项式的系数和次数分别是和3.22a b -2-2.答案:A解析:多项式的次数是3,最高次项是,22325xy xy -+23xy -的系数是,23xy -3-所以多项式的次数和最高次项的系数分别是3,,22325xy xy -+3-故选:A.3.答案:D解析:选项A ,多项式的项数是3、次数是2,故此选项不符合题意;221x y -+选项B ,多项式的项数是2、次数是3,故此选项不符合题意;33x y -选项C ,多项式的项数是3、次数是4,故此选项不符合题意;37xy y ++选项D ,多项式的项数是3、次数是3,故此选项符合题意.故选D.222x x y y ++4.答案:C解析:多项式的次数是4,有3项,是四次三项式,故A 项、B 项错误;22521ab a bc --它的常数项是-1,故D 项错误.5.答案:A解析:A.是同类项,此选项符合题意;B.字母a 的次数不相同,不是同类项,故此选项不符合题意;C.相同字母的次数不相同,不是同类项,故此选项不符合题意;D.相同字母的次数不相同,不是同类项,故此选项不符合题意.故选:A.6.答案:C解析:剩余白色长方形的长为b ,宽为,()b a -所以剩余白色长方形的周长.()2242b b a b a =+-=-故选:C.7.答案:A解析:A 、是四次三项式,故该选项正确,符合题意.22521ab a bc --B 、单项式的系数是1,故该选项错误,不符合题意.xy C 、的常数项是,故该选项错误,不符合题意.231x x --1-D 、最高次项是,故该选项错误,不符合题意.23231x y xy -+33xy -故选:A.8.答案:C解析:由题意得第三边的长为.11111(4)2242424a a a a a a a ---=--+=+9.答案:A解析:多项式是关于x ,y 的四次二项式,2||2(2)1m x y m xy --+且,2m ∴=20m -=.2m ∴=故选:A.10.答案:D解析:因为,,所以,,,所以0a >0b <650b ->810b -<320a b ->.|65||81|3265(81)(32)6581323117b b a b b b a b b b a b a b -+---=-----=--+-+=--+∣∣11.答案:53-解析:因为的系数是m ,的系数是n ,2a b -23xy -所以,,则的值为.1m =-23n =-m n +25133--=-12.答案:10x -解析:()()17372x x ---17372x x =--+10x=-故答案为.10x-13.答案:12解析:, 244239m n x y ax y x y +=,,,∴4m =2n =39a +=,∴6a =,∴64212a m n ++=++=故12.14.答案:21y -解析:依题意这个多项式为.故答案为.()()2222232534325341xy yy xy xy y y xy y +--+-=+---+=-21y -15.答案:1015050a m-解析:()(2)(3)(100)101(23100)a a m a m a m a m a m m m m +-+-+-++-=-++++ 101[(100)(299)(398)(5051)]101101501015050a m m m m m m m m a m a m=-++++++++=-⨯=- 16.答案:(1)432351022679x x x x -++-(2)四次五项式,59-解析:(1)含有5项,分别是、243352261079x x x x +-+-222x 、、6x 、,x 的次数分别是2、4、0、1、3,437x 59-310x -这个多项式按x 的降幂重新排列为.∴432351022679x x x x -++-(2)由(1)得,该多项式是四次五项式,常数项是.59-17.答案:(1)①②⑦;、、143- 6.1-(2)④⑥;3、2解析:(1)单项式是由数字与字母的积组成的整式,,,a 是单项式,243x y ∴-226.1a b -即①②⑦是单项式,的系数为,的系数为,a 的系数是1,243x y ∴-43-226.1a b - 6.1-故答案为①②⑦;、、1;43- 6.1-(2)多项式是由若干个单项式相加组成的整式,,,233a ab b ∴-+2412m n -+即④⑥,的次数为3,的次数为2,233a ab b ∴-+2412m n -+故答案为④⑥;3、2.18.答案:(1)216y -(2)见解析解析:(1)因为小长方形C 的宽为4,所以小长方形C 的长为,12y -所以小长方形C 的周长为.2(124)216y y ⨯-+=-(2)由题图可知,阴影图形A 的较长边长为,较短边长为,12y -8x -阴影图形B 的较长边长为12,较短边长为,(12)12x y x y --=-+所以阴影图形A 和阴影图形B 的周长之和为,2(128)2(1212)2402482248y x x y y x x y x -+-++-+=-+++-=+所以阴影图形A 与阴影图形B 的周长之和与y 值无关.19.答案:(1),322x y -+(2),54223a b ab -解析:(1)()()22222322x xy y x yx y +--+-222223224x xy y x yx y =+---+,22x y =-+将代入中得:1x =-2y =,22x y -+;22143x y -+=-+=(2)22225343a b ab ab a b---+()2222155412a b ab ab a b=-+-,223a b ab =-将,代入中得.2a =-3b =223a b ab -()2233432954a b ab -=⨯⨯--⨯=20.答案:(1)22()m n -(2)10(3)19解析:(1)把看成一个整体,2()m n -2223()4()3()m n m n m n ---+-()2343()m n =-+-;22()m n =-故;22()m n -(2),224x y += ;()2236232234210x y x y ∴+-=+-=⨯-=故10;(3),,22x xy += 2235y xy +=①,②,2224x xy ∴+=26915y xy +=得,,+①②222269415x xy y xy +++=+.22219161x xy y +=∴+21.答案:(1)系数是从3开始连续的奇数,次数是从2开始连续的整数;(2),611x 713x (3)()121n n x++(4)20234045x 解析:(1)观察下列单项式:,,,……23x 35x 47x 可得,系数是从3开始连续的奇数,次数是从2开始连续的整数;(2)由(1)发现的规律可得,第5个单项式为,第6个单项式为;611x 713x (3)由(1)发现的规律可得,第n 个单项式为()121n n x++;(4)由(3)中的猜想可得,第2022个单项式为()2022120232202214045x x +⨯+=.。
(人教版)武汉市七年级数学上册第二单元《整式的加减》检测卷(含答案解析)

一、选择题1.若│x -2│+(3y+2)2=0,则x+6y 的值是( ) A .-1B .-2C .-3D .322.已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x 元,下列方程正确的是( ) A .6(x+2)+4x =18 B .6(x ﹣2)+4x =18 C .6x+4(x+2)=18D .6x+4(x ﹣2)=183.下列各等式的变形中,等式的性质运用正确的是( ) A .由02x=,得2x = B .由14x -=,得5x = C .由23a =,得23a =D .由a b =,得a b c c= 4.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( )A .①②③④B .①③④C .②③④D .①② 5.下列方程中,是一元一次方程的是( )A .243x x -=B .0x =C .21x y +=D .11x x-=6.方程6x+12x-9x=10-12-16的解为( ) A .x=2 B .x=1 C .x=3 D .x=-27.若代数式4x +的值是2,则x 等于( ) A .2 B .2- C .6 D .6- 8.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-39.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( ) A .3x ﹣20=24x +25 B .3x +20=4x ﹣25 C .3x ﹣20=4x ﹣25D .3x +20=4x +2510.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( ) A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x +=11.某个体商贩在一次买卖中同时卖出两件上衣,每件售价均为135元,若按成本计算,其中一件盈利25%,一件亏本25%,则在这次买卖中他( ) A .不赚不赔B .赚9元C .赔18元D .赚18元12.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( ) A .2B .12C .-2D .1-2二、填空题13.已知三个数的比是2:4:7,这三个数的和是169,这三个数分别是____,____,____ 14.如果3m -与21m +互为相反数,则m =________.15.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有______________幅.16.某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于_________元 17.若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则m n +的值是_________.18.喜欢集邮的小惠共有中、外邮票145张,其中中国邮票的张数比外国邮票的张数的2倍少5张,问小惠有中国邮票______张,外国邮票_____张.19.(1)由等式325x x =+的两边都________,得到等式5x =,这是根据____________; (2)由等式1338x -=的两边都______,得到等式x=_____,这是根据__________________. 20.有一位工人师傅要锻造底面直径为40cm 的“矮胖”形圆柱,可他手上只有底面直径是10cm 、高为80cm 的“瘦长”形圆柱,若不计损耗,则锻造出的“矮胖”形圆柱的高为________.三、解答题21.解下列方程:(1)(1)2(1)13x x x +--=-; (2)30564x x --=; (3)3 1.4570.50.46x x x --=. 22.一项工程,甲队独做10h 完成,乙队独做15h 完成,丙队独做20h 完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h ,问甲队实际工作了几小时?23.为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.下表是小明家1至4月份水量和缴纳水费情况,根据表格提供的数据,回答:)规定用量内的收费标准是元吨,超过部分的收费标准是元/吨;(2)问该市每户每月用水规定量是多少吨?(3)若小明家六月份应缴水费50元,则六月份他们家的用水量是多少吨?24.小丽用的练习本可以从甲乙两家商店购买,已知两家商店的标价都是每本 2 元,甲商店的优惠条件是:购买十本以上,从第 11 本开始按标价的 70%出售;乙商店的优惠条件是:从第一本起按标价的80%出售。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的加减单元测试题
一、选择题(每小题3分,共30分)
1、用代数式表示a 与-5的差的2倍是( )
A 、a-(-5)×2
B 、a+(-5)×2
C 、2(a-5)
D 、2(a+5) 2、用字母表示有理数的减法法则是( )
A 、a-b=a+b
B 、a-b=a+(-b)
C 、a-b=-a+b
D 、a-b=a-(-b) 3、某班共有学生x 人,其中女生人数占35%,那么男生人数是( ) A 、35%x B 、(1-35%)x C 、
35%x D 、135%
x - 4、若代数式473b a x + 与代数式 y b a 24- 是同类项,则 y x 的值是( ) A 、9 B 、9- C 、4 D 、4- 5、把-x-x 合并同类项得( )
A 、0
B 、-2
C 、-2x
D 、-2x 2
6、一个两位数,十位上的数字是x ,个位上的数字是y ,如果把十位上的数与个位上的数对调,所得的两位数是( )
A 、yx
B 、y+x
C 、10y+x
D 、10x+y
7、如果代数式4252y y -+的值为7,那么代数式21
2
y y -+的值等于( ) A 、2 B 、3 C 、-2 D 、4
8、下面的式子,正确的是( )
A 、3a 2+5a 2=8a 4
B 、5a 2b-6ab 2=-ab 2
C 、6xy-9yx=-3xy
D 、2x+3y=5xy
9、一个多项式加上x 2y-3xy 2得2x 2y-xy 2,则这个多项式是( ) A 、3x 2y-4xy 2; B 、x 2y-4xy 2; C 、x 2y+2xy 2; D 、-x 2y-2xy 2 10、若A=x 2-5x +2,B=x 2-5x-6,则A 与B 的大小关系是( ) (A )A>B (B )A=B (C )A<B (D )无法确定
二、填空题(每小题3分,共18分)
11、单项式23
35
a bc -的系数是______,次数是______;
12、21
43
x x -+-是 次 项式,它的项分别是 ,
其中常数项是 ;
13、为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a 元收费;如果超过100度,那么超过部分....每度电价按b 元收费。
某户居民在一个月内用电160度,他这个月应缴纳电费是 元;(用含a 、b 的代数式表示)
14、三个连续偶数中,2n 是最小的一个,这三个数的和为______ _; 15、如图1是小明用火柴搭的1条、2条、3条“金鱼” ,则搭n 条“金鱼”需要火柴
根.
16、根据如图所示的程序计算,
若输入x 的值为1,则输出y 的值为 ;
三、用心想一想:(本题共72分)
21.(6分)合并同类项: )1()2
1
(1)31(61-+-+---x x x
(6分)化简: {}])([22y x -----
1条 2条
3条
图1
22.(10分)解答: 张华在一次测验中计算一个多项式加上5xy-3yz+2xz 时,误认为减去
此式,计算出错误结果为2xy-6yz+xz ,试求出正确答案.
23. (10分)已知32,62,3423223-+=-+=++-=x x C x x B x x x A ,求
)(C B A +-的值,其中2-=x .
24.(10分)若1)2(2+++b a =0,求{})]24(3[2522222b a ab ab b a ab ----的值.
25.(10分)有这样一道题,计算(
)()4322
4
33222422x x y x y
x
x y y x y -----+的值,
其中x=0.25,y=-1;甲同学把“x=0.25”,错抄成“x=-0.25”,但他的计算结果也是正确的,你说这是为什么?
26. (10分) “十一”黄金周期间,某风景区在7天中来旅游的人数变化如下表:(正数表示比前一天多的人数,负数表示比前一天少的人数。
)
s=12
n=4s=8
n=3s=4
n=2
(1)若9月30日来旅游人数记为a 万人,请用a 的代数式表示10月2日来旅游的人数。
(2)请判断七天内来旅游的人数最多是哪一天?最少是哪一天?它们相差多少万人? (3)统计来旅游的人数,最多的一天是3万人,问9月30日来旅游的人数有多少人?
27.(10分)观察右面的图案,每条边上有n (n ≥2)个方点,每个图案中方点的总数是S.
(1)请写出n=5时, S= ; (2)请写出n=18时,S= ;
(3)按上述规律,写出S 与n 的关系式S= .。