温室大棚监控系统解决方案

合集下载

《智能温室大棚监控系统的研究与设计》范文

《智能温室大棚监控系统的研究与设计》范文

《智能温室大棚监控系统的研究与设计》篇一一、引言随着现代科技的不断进步,农业科技作为支撑现代农业发展的重要支柱,也正在逐步升级与优化。

智能温室大棚监控系统是这一进步的体现之一,它不仅为农业种植提供了精准的环境控制,还能显著提高农作物的产量与品质。

本文旨在探讨智能温室大棚监控系统的设计与实现,通过对其系统架构、技术运用以及实施效果的研究,为现代农业的智能化发展提供一定的理论支持与实践指导。

二、系统架构设计1. 硬件架构智能温室大棚监控系统的硬件架构主要包括传感器网络、数据传输设备、中央处理单元和控制执行设备等部分。

传感器网络负责实时监测温室内的环境参数,如温度、湿度、光照强度等;数据传输设备将收集到的数据传输至中央处理单元;中央处理单元对数据进行处理与分析,并发出控制指令;控制执行设备则根据指令调整温室内的环境条件。

2. 软件架构软件架构则包括数据采集模块、数据处理与分析模块、控制指令输出模块以及用户交互界面等部分。

数据采集模块负责从传感器网络中获取数据;数据处理与分析模块对数据进行处理与存储,并运用算法进行环境预测与优化;控制指令输出模块根据分析结果发出控制指令;用户交互界面则提供友好的操作界面,方便用户进行系统操作与监控。

三、关键技术运用1. 传感器技术传感器技术是智能温室大棚监控系统的核心之一。

通过使用高精度的传感器,系统能够实时监测温室内的环境参数,如温度、湿度、光照强度等,为后续的数据处理与分析提供准确的数据支持。

2. 数据处理与分析技术数据处理与分析技术是智能温室大棚监控系统的关键环节。

通过对传感器收集到的数据进行处理与分析,系统能够实时掌握温室内的环境状况,并运用算法进行环境预测与优化,为控制指令的发出提供依据。

3. 控制执行技术控制执行技术是实现智能温室大棚监控系统精确控制的关键。

通过控制执行设备,系统能够根据中央处理单元发出的指令,调整温室内的环境条件,如开启或关闭通风口、调整遮阳设备等。

智慧农业大棚解决方案 蔬菜大棚整体解决方案

智慧农业大棚解决方案 蔬菜大棚整体解决方案

3G/GPRS/ WIFI
智慧农业云平台
控制中心
种植区作物的生长情况 种植区作物的病虫害情况 突发异常事件
视频
高清红外摄像
对突发性异常事件的过程进行及时监视和记忆,用以提供及时高效的指挥和调度。
智能农业功能描述:设施农业智能控制(水肥一体 化)
3G/GPRS/ WIFI
智慧农业云平台
控制中心
3G/GPRS/ WIFI
智慧农业云平台
控制中心
气象站采集土壤墒情、土 壤温度、空气温度、空气
畜禽养殖控制器
湿度、辐射、风向、风速、
降水量
信息采集节点负责采集圈 内的空气温湿度、光照、
光照
风机
湿度
饲料添加
CO2、硫化氢、氨气、
PM2.5等
摄像头负责温室内实时监 控
对养殖环境、水质、畜禽类生长状况等进行监测管理、达到省电、增产增收的目标。
踪和放大; 数据断电不丢失,来电后自劢回到断电前的云台和镜头状态,增加安全系数; 支持定时任务预置点,具有花样扫描、巡航扫描、水平扫描、垂直扫描、随 机扫描、帧扫描、全景扫描等功能; 镜头运转平稳,偏差小于0.1度,对摄像过程无影响; 具有自劢识别功能,支持RS-485控制下的HIKVISION、Pelco-P/D协议2;
智能农业功能描述: 电子商务
前 商品查询 购物管理
订单跟踪
产品

发布
功 能
资讯
电子支付 产品定制不 售后服务
展示
导购
产品
后 订单管理
用户管理
产品管理 定制管理
交易

在线
功 能
配送管理
销售管理
营销管理 支付管理

智慧大棚解决方案

智慧大棚解决方案

智慧大棚解决方案智慧大棚解决方案是一种基于先进技术的农业生产模式,旨在提高农作物的生产效率和质量。

该方案结合了物联网、大数据分析和人工智能等技术,通过实时监测和自动控制,实现对大棚环境的精确调控,从而最大程度地满足作物的生长需求。

一、方案概述智慧大棚解决方案由以下几个主要组成部分构成:1. 传感器网络:通过布置在大棚内的各个位置的传感器,实时监测大棚内的温度、湿度、光照强度、二氧化碳浓度等环境参数。

2. 数据采集与传输:传感器采集到的数据通过无线网络传输到云端服务器,确保数据的实时性和可靠性。

3. 数据存储与管理:云端服务器将接收到的数据进行存储和管理,建立起大棚环境的历史数据库,为后续分析和决策提供基础。

4. 数据分析与决策支持:通过对大棚环境数据的分析,结合作物的生长特性和需求,提供决策支持,帮助农户制定合理的生产计划和管理策略。

5. 自动控制系统:根据数据分析的结果和决策支持的指导,自动控制系统可以对大棚内的温度、湿度、光照等参数进行调节,保持最佳的生长环境。

二、方案的优势智慧大棚解决方案具有以下几个优势:1. 提高生产效率:通过精确的环境调控和自动化的生产管理,可以最大程度地提高农作物的生产效率,减少生产成本。

2. 提高农产品质量:合理的环境调控可以使农作物生长得更加健康,提高农产品的品质和口感。

3. 节约资源:智慧大棚可以根据实际需求调节光照、温度和湿度等参数,避免能源和水资源的浪费。

4. 减少人力投入:自动控制系统可以实现对大棚环境的自动调节,减少对人工的依赖,节省人力成本。

5. 实时监测与远程管理:通过云端服务器,农户可以实时监测大棚内的环境参数和作物生长情况,进行远程管理和及时决策。

三、方案应用案例以下是一个智慧大棚解决方案的应用案例:某农户拥有一座智慧大棚,种植蔬菜和水果。

通过安装在大棚内的传感器,实时监测大棚内的温度、湿度和光照强度等环境参数,并将数据传输到云端服务器。

云端服务器通过数据分析和决策支持系统,提供给农户合理的生产计划和管理建议。

《2024年智慧农业大棚监控系统的设计与实现》范文

《2024年智慧农业大棚监控系统的设计与实现》范文

《智慧农业大棚监控系统的设计与实现》篇一一、引言随着科技的发展,智慧农业成为了农业领域发展的重要方向。

智慧农业大棚监控系统是智慧农业的重要组成部分,通过集成物联网、传感器、大数据等先进技术,实现对农业大棚环境的实时监测和智能调控,提高农业生产效率和产品质量。

本文将介绍智慧农业大棚监控系统的设计与实现过程。

二、系统设计1. 系统架构设计智慧农业大棚监控系统采用分层设计的思想,主要包括感知层、传输层、应用层。

感知层负责采集大棚环境数据,传输层负责将数据传输到服务器端,应用层负责数据的处理和展示。

2. 硬件设计(1)传感器:传感器是智慧农业大棚监控系统的核心组成部分,主要包括温度传感器、湿度传感器、光照传感器、CO2浓度传感器等,用于实时监测大棚环境参数。

(2)控制器:控制器负责接收传感器数据,并根据预设的阈值进行相应的调控操作,如调节温室遮阳帘、通风口等。

(3)网络设备:网络设备包括无线通信模块和有线网络设备,用于将传感器数据传输到服务器端。

3. 软件设计(1)数据采集与处理:软件系统通过与硬件设备的通信,实时采集大棚环境数据,并进行预处理和存储。

(2)数据分析与展示:软件系统对采集的数据进行分析和挖掘,通过图表、报表等形式展示给用户,帮助用户了解大棚环境状况和作物生长情况。

(3)智能调控:软件系统根据预设的阈值和调控策略,自动或手动调节温室设备,如调节温室遮阳帘、通风口等,以保持大棚环境在最佳状态。

三、系统实现1. 硬件实现硬件设备选型与采购:根据系统需求,选择合适的传感器、控制器和网络设备,并进行采购。

设备安装与调试:将硬件设备安装在大棚内,并进行调试,确保设备能够正常工作并采集准确的数据。

2. 软件实现(1)数据采集与处理模块:通过与硬件设备的通信,实时采集大棚环境数据,并进行预处理和存储。

采用数据库技术对数据进行管理和维护。

(2)数据分析与展示模块:通过数据分析算法对采集的数据进行分析和挖掘,以图表、报表等形式展示给用户。

农业大棚物联网监测解决方案_含物联网设备清单-信锐技术

农业大棚物联网监测解决方案_含物联网设备清单-信锐技术

农业大棚物联网监测解决方案信锐网科技术有限公司版权声明本文档版权归深圳市信锐网科技术有限公司所有,并保留对本文档及本声明的最终解释权和修改权。

本文档中出现的任何文字叙述、文档格式、插图、照片、方法、过程等内容,除另有特别注明外,其著作权或其它相关权利均属于深圳市信锐网科技术有限公司。

未经深圳市信锐网科技术有限公司书面同意,任何人不得以任何方式或形式对本文档内的任何部分进行复制、摘录、备份、修改、传播、翻译成其他语言、将其全部或部分用于商业用途。

免责条款本文档仅用于为最终用户提供信息,其内容如有更改或撤回,恕不另行通知。

信锐网科技术有限公司已尽最大努力确保本文档内容准确可靠,但不提供任何形式的担保,任何情况下,信锐网科技术有限公司均不对(包括但不限于)最终用户或任何第三方因使用本文档而造成的直接或间接的损失或损害负责。

信息反馈如果您有任何宝贵意见,请反馈:地址:深圳市南山区学苑大道1001号南山智园A4栋邮编:518055您也可以访问信锐技术网站:获得最新技术和产品信息。

1.1.农业大棚物联网监测需求背景随着国家经济社会的发展,人口密度也随之快速增长,农业生产的高效生态化、智能化要求将越来越高,重点在于通过收集各类农作物种植信息、环境因子,准确快速对大棚使用科学化的管理,从而实现科学种植与调控、病害预警及突发管理事件的及时处理。

智能农业大棚无线监测系统运用成熟的信息获取、传输和处理技术,网络由数量众多的低能源、低功耗的智能传感器节点所组成,能够协同地实时监控、感知和采集各种环境或监测对象的信息,通过LoRa网络汇聚到LoRa网关,并由网关转发至信锐物联平台,为农业生产、科学种植提供数据支撑。

1.2.大棚物联网监测整体系统架构智能农业大棚无线监测系统网络拓扑图无线监测系统由土壤传感器、空气温湿度传感器、通用数据采集器、LoRa网关、上层云平台等组成,大棚中土壤传感器和空气温湿度传感器采集环境因子,通过RS485线缆将数据汇集至通用数据采集器中,采集器汇总数据之后,通过LoRa协议无线传输至LoRa网关,网关通过以太网或者局域网转发数据至上层应用平台,从而实现大棚环境信息的上传与收集,终端应用使用网络访问平台可实时监测环境变化,适当调整农作物生长环境达到科学化种植管理。

智慧大棚整体解决方案

智慧大棚整体解决方案

数据分析与预测
远程监控与管理
通过手机APP或电脑客户端实现对智 慧大棚的远程监控和管理,方便用户 随时了解大棚内的环境参数和作物生 长情况。
对采集到的环境参数数据进行实时分 析,预测作物生长趋势,为农业生产 提供决策支持。
03 智慧大棚的硬件设备
CHAPTER
传感器设备
温度传感器
监测大棚内的温度,为作物提供适宜的生 长环境。
应用拓展
拓展智慧大棚的应用领域,不仅限于农业生产,还可应用于生态 旅游、科普教育等领域。
商业模式创新
创新商业模式,探索智慧大棚与电商、社交等领域的结合,拓展 市场渠道。
谢谢
THANKS
喷淋设备
根据湿度传感器的监 测结果,自动为大棚 内的植物提供适量的 水分。
CO2发生器
根据CO2浓度传感器 的监测结果,自动为 大棚内的植物提供充 足的二氧化碳。
遮阳设备
根据光照传感器的监 测结果,自动调节大 棚内的光照强度。
通风设备
根据温度和湿度的监 测结果,自动调节大 棚内的通风条件。
数据采集与传输设备
数据传输网络
通过无线网络或有线网络 将传感器节点采集到的数 据传输到网关或云平台。
网关设备
用于接收传感器节点发送 的数据,并将其传输到云 平台或本地服务器进行处 理。
云平台
接收网关设备发送的数据 ,进行存储、分析和处理 ,为应用层提供数据支持 。
应用层
智能控制
根据环境参数数据和作物生长需求, 自动调节大棚内的环境参数,如温度 、湿度、光照等。
02 智慧大棚系统架构
CHAPTER
感知层
01
02
03
传感器节点
部署在智慧大棚内的传感 器节点,用于监测环境参 数,如温度、湿度、光照 、土壤养分等。

设施农业(温室大棚)环境智能监控系统解决方案

设施农业(温室大棚)环境智能监控系统解决方案

设施农业(温室大棚)环境智能监控系统解决方案1、系统简介该系统利用物联网技术,可实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像,通过模型分析,远程或自动控制湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备,保证温室大棚内环境最适宜作物生长,为作物高产、优质、高效、生态、安全创造条件。

同时,该系统还可以通过手机、PDA、计算机等信息终端向农户推送实时监测信息、预警信息、农技知识等,实现温室大棚集约化、网络化远程管理,充分发挥物联网技术在设施农业生产中的作用。

本系统适用于各种类型的日光温室、连栋温室、智能温室。

2、系统组成该系统包括:传感终端、通信终端、无线传感网、控制终端、监控中心和应用软件平台。

620)this.style.width=620;" border=0>(1)传感终端温室大棚环境信息感知单元由无线采集终端和各种环境信息传感器组成。

环境信息传感器监测空气温湿度、土壤水分温度、光照强度、二氧化碳浓度等多点环境参数,通过无线采集终端以GPRS方式将采集数据传输至监控中心,以指导生产。

(2)通信终端及传感网络建设温室大棚无线传感通信网络主要由如下两部分组成:温室大棚内部感知节点间的自组织网络建设;温室大棚间及温室大棚与农场监控中心的通信网络建设。

前者主要实现传感器数据的采集及传感器与执行控制器间的数据交互。

温室大棚环境信息通过内部自组织网络在中继节点汇聚后,将通过温室大棚间及温室大棚与农场监控中心的通信网络实现监控中心对各温室大棚环境信息的监控。

620)this.style.width=620;" border=0>(3)控制终端温室大棚环境智能控制单元由测控模块、电磁阀、配电控制柜及安装附件组成,通过GPRS模块与管理监控中心连接。

根据温室大棚内空气温湿度、土壤温度水分、光照强度及二氧化碳浓度等参数,对环境调节设备进行控制,包括内遮阳、外遮阳、风机、湿帘水泵、顶部通风、电磁阀等设备。

国外温室大棚监测技术法案例

国外温室大棚监测技术法案例

国外温室大棚监测技术法案例
在国外,温室大棚监测技术有许多案例,其中一些采用了无线追踪解决方案。

例如,德国瓦赫宁根大学研究中心(WUR)的研究人员测试了新研发的基
于RFID技术的无线追踪解决方案,该方案在德国和荷兰的温室大棚中进行
了应用。

这种无线追踪解决方案可以监控植物生产环境,并已经投放市场。

在采用这种新系统之前,温室大棚的温度和湿度等数据通过有线连接发送到后台数据库。

然而,有线解决方案的设备购买和安装成本较高,因此只有少数温室大棚采用了这种系统。

此外,有线传感器还受到监测范围限制的问题,无法覆盖整个大棚环境。

相比之下,基于RFID技术的无线追踪解决方案可以克服这些问题。

该系统
通过无线方式传输数据,不需要布线,因此降低了设备和安装成本。

此外,无线传感器可以放置在温室内的任何位置,从而实现对整个环境的监测。

除了RFID技术外,还有许多其他技术在温室大棚监测中得到应用。

例如,
物联网技术和传感器技术也被广泛应用于监测温室内温度、湿度、光照、二氧化碳浓度等环境参数。

这些技术可以提供实时数据,帮助种植者了解植物生长情况,及时调整环境参数,提高产量和质量。

总之,国外温室大棚监测技术有许多案例,其中一些采用了基于RFID技术的无线追踪解决方案。

这些技术为种植者提供了更准确、更方便、更低成本的方法来监测植物生长环境,提高了生产效率和产品质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.神州通电子科技温室大棚监控系统解决方案神州通电子科技2015 年月目录前言 (2)1、中国农业发展现状 (3)2、温室大棚控制系统在农业应用中的意义 (3)2.1、促进农业三个方面的发展: (3)2.2、社会经济效益: (5)3、温室大棚控制系统设计方案概述 (6)3.1、系统设计原则 (6)3.2 系统功能特点 (6)3.3 系统组成 (6)3.4 系统示意图 (7)4 温室大棚控制系统功能 (8)4.1 环境信息采集系统 (8)4.2 视频监控系统 (9)4.3 智能控制系统 (11)4.4 信息展示系统 (12)4.5 管理平台 (14)4.6 公司资料 (17)前言物联网信息技术在2006 年被评为未来改变世界的十大技术之一,是继互联网之后的又一次产业升级,是十年一次的产业机会。

总体来说,物联网是指各类传感器和现有的互联网相互衔接的新技术,物物相连,相互感知,若干年后,地球上的每一粒沙子都有可能分配到一个确定地址,它的各种状态、参数可被感知。

2009 年8 月温家宝总理在提出“感知中国”,物联网开始在中国受到政府的重视和政策牵引。

2010 年国家发布了“十二五”发展规划纲要,其中第十三章“全面提高信息化水平”第一节“构建下一代信息基础设施”中明确提到:推动物联网关键技术研发和在重点领域的应用示。

在第五章“加快发展现代农业”第二节“推进农业结构战略性调整”中提出:加快发展设施农业,推进蔬菜、水果、茶叶、花卉等园艺作物标准化生产。

提升畜牧业发展水平。

促进水产健康养殖。

推进农业产业化经营,促进农业生产经营专业化、标准化、规模化、集约化。

推进现代农业示区建设。

第三节“加快农业科技创新”中提出:推进农业技术集成化、劳动过程机械化、生产经营信息化。

加快农业生物育种创新和推广应用,做大做强现代种业。

加强高效栽培、疫病防控、农业节水等领域的科技集成创新和推广应用,实施水稻、小麦、玉米等主要农作物病虫害专业化统防统治。

加快推进农业机械化,促进农机农艺融合。

发展农业信息技术,提高农业生产经营信息化水平。

物联网信息技术与现代农业的结合更加是国家重点推动的关键示应用。

1、中国农业发展现状我国是农业大国,而非农业强国。

近30 年来农业高产量主要依靠农药化肥的大量投入,大部分化肥和水资源没有被有效利用而随地弃置,导致大量养分损失并造成环境污染。

我国农业生产仍然以传统生产模式为主,传统耕种只能凭经验施肥灌溉,不仅浪费大量的人力物力,也对环境保护与水土保持构成严重威胁,对农业可持续性发展带来严峻挑战。

我国人口占世界总人口的22%,耕地面积只占世界耕地面积的7%,随着经济的飞速发展,人民生活水平不断提高,资源短缺,环境恶化与人口剧增的矛盾越来越突出。

特别是我国加入世贸组织后,国外价格低廉的优质农副产品源源不断的流入我国,这对我国的农产品市场构成极大威胁。

因此,如何提高我国农产品的质量和生产效率,如何对大面积土地的规模化耕种实时信息技术指导下科学的精确管理,是一个即前沿又当务之急的科研课题。

而现实情况是,粗放的管理与滥用化肥,其低效益和环境污染令人惊叹。

传统农业产生的物质技术手段落后,主要依靠人力、畜力和各种手工工具以及一些简单机械。

在现实中主要存在的问题是:(1)农业科技含量、装备水平相对滞后(2)农业生产存在污染和浪费,据农业、水利部门测算,我国每年农业所消耗化肥、农药和水资源量都在飞速增长,数据惊人,农业的污染问题困扰着不少乡村,不少农民群众饮水安全受到影响(3)农业产出少、农民收入低(4)农产品的品种少2、温室大棚控制系统在农业应用中的意义目前,我国大多数农业生产主要依靠人工经验管理,缺乏系统的科学指导。

设施栽培技术的发展,对于农业现代化进程具有深远的影响。

设施栽培为解决我国城乡居民消费结构和农民增收,为推进农业结构调整发挥了重要作用,温室种植已在农业生产中占有重要地位。

要实现高水平的设施农业生产和优化设施生物环境控制,信息获取手段是最重要的关键技术之一。

物联网信息技术在农业领域中有着广泛的应用。

我们从农产品生产不同的阶段来看,无论是从种植的培育阶段和收获阶段,都可以用物联网的技术来提高它工作的效率和精细管理。

具体有如下社会经济效益。

2.1、促进农业三个方面的发展:■增产增收相关资料表明,在可自动控制室的温度、湿度、灌溉、通风、二氧化碳浓度和光照的温室中,每平方米温室一季可产番茄30kg~50kg,黄瓜40kg,相当于露地栽培产量10 倍以上。

其他各类作物在这种环境下的产量也将得到明显的提升。

■节约能源温室大棚控制系统可以准确采集温度、湿度、土壤含水量、光照度、雨雪天气、风速等参数,并将室温、光、水、等诸多因素综合直接协调到最佳状态,据计算,可有效节水、节肥、节药,使整体能耗降低15%~50%。

■作物多样化温室大棚控制系统对室温生产环境的改善,可以使得一些在此前的耕作条件下较难种植的作物得以生长,并为新品种作物的培育提供更好的条件,这有利利于推广高附加值得经济作物,提升单位面积的农业经济产值,促进农户增产增收。

2.2、社会经济效益:(1)合理施用化肥,降低生产成本,减少环境污染采用因土、因作物、因时间全面平衡施肥、彻底扭转传统农业中因经验施肥而造成的三多三少(化肥多,有机肥少;N 肥多,P、K 肥少;三要素肥多,微量元素少),N、P、K 比例失调的状况,因此有明显的经济和环境效益。

(2)减少和节约水资源目前传统农业因大水漫灌和沟渠漏对灌溉水的利用率只有40%左右,温室大棚控制系统可根据作物动态监控技术定时定量供给水分,可通过滴灌微灌等一系列新型灌溉技术,使水的消耗量减少到最低程度,并能获取尽可能高的产量。

(3)使农作物的物质营养得到合理利用,保证了农产品的产量和质量通过各类传感器和智能控制设备,对农作物的生产过程进行动态监测和控制,并根据其结果采用相应的措施。

总而言之,温室大棚控制系统能大大的提高生产管理效率,节省人工(例如:对于大型农场来说,几千亩的土地如果用人力来进行浇水施肥,手工加温,手工卷帘等工作,其工作量相当庞大且难以管理,如果应用了温室大棚控制系统,手动控制也只需点击鼠标的微小的动作,前后不过几秒,完全替代了人工操作的繁琐;),而且能非常便捷的为农业各个领域研究等方面提供强大的科学数据理论支持,其作用在当今的高度自动化、智能化的社会中是不言而谕的。

农业示园区作为最新的农业技术的应用与推广载体,是现代农业的集中体现,是现代信息技术的在农业中最先应用的场合。

3、温室大棚控制系统设计方案概述3.1、系统设计原则从需求情况分析系统,制订设计原则,以指导我们的方案设计:先进性原则采用先进的设计思想,选用先进的软硬件设备,保证项目整体在未来一定时期的技术领先性。

开放性原则方案的设计及选型遵从国际标准及工业标准,使项目具有高度的开放性和所提供设备在技术上的兼容性。

可扩展性原则项目设计在充分考虑当前情况的同时,必须考虑到今后较长时期业务发展的需要,留有充分的升级和扩充的可能性。

可靠性原则项目的设计必须贯彻可靠性原则,使系统具有很高的可用性。

经济适用性原则在考虑必要的扩展性原则下,使用功能适度的软硬件产品。

3.2 系统功能特点超低功耗,节能环保低功耗设计,在供电需求不方便的地域采用太阳能供电的方式完全可以满足大部分设备的需要。

采用无线技术采用Zigbee,3G 等无线技术,安装方便,携带方便,降低建设成本、减少改造成本,避免了布线带来的火灾隐患,突破了有线只能在本地计算机进行查看和浏览的劣势,用户可以突破时间和地域的限制,随时随地的了解生产现场状况。

多种显示方式采用LED 显示屏,液晶电视,电脑,手机等不同的显示方式,适合在示园区不同地方使用,充分体现现代农业与现代光电信息技术的融合。

完全自动化现有大型农业生产企业、农业示园区的信息化改造,用自动化的技术手段替代了用户现有的定期数据采集工作,提升了数据采集的准确度和可靠度,让用户可以将精力专注在数据的分析和整理上。

3.3 系统组成针对现代农业需求而开发的自动化系统整体解决方案,主要包括三个部分:信息采集、设备的自动控制、信息的发布与智能处理组成。

信息采集包括温室空气温湿度信息监测、土壤信息监测、视频信息采集等。

设备控制包括灌溉控制、卷帘电机控制和遮阳板电机控制等。

信息的发布与数据处理包括LED 信息发布系统、中央控制室的管理平台和意外信息的手机报警处理等功能。

3.4 系统示意图以下为示园区温室大棚控制系统拓扑结构图:4 温室大棚控制系统功能4.1 环境信息采集系统主要是前端的传感器、采集仪等硬件设备,通过后端的蔬菜生长环境信息监测管理系统软件,实现农业环境信息的在线管理与控制。

在监测点安装环境温湿度等传感器或室外气象站(,监测的该区域的环境信息,包括空气温度、空气湿度、土壤温度、土壤湿度、光照强度、二氧化碳浓度、风速、风向、降雨量等参数,将该信息展现给管理人员。

同时数据也通过无线通讯模块传输至监控中心管理系统,为作物生长管理提供精准监测和科学依据。

一体化环境监测仪和室外气象站采集系统提供的功能包括:环境监测空气温度空气湿度土壤温度土壤湿度光照强度二氧化碳浓度报警功能短信报警报警实时抓拍图片……4.2 视频监控系统作为管理农业生产的人员而言,仅仅数值化的物物相联并不能完全营造作物最佳生长条件。

视频与图像监控提供了更直观的表达方式。

比如:哪块地缺水了,在物联网单层数据上看仅仅能看到水分数据偏低。

应该灌溉到什么程度也不能死搬硬套地仅仅根据这一个数据来作决策。

因为农业生产环境的不均匀性决定了农业信息获取上的先天性弊端,而很难从单纯的技术手段上进行突破。

视频监控的引用,直观地反映了农作物生产的实时状态,引入视频图像与图像处理,既可直观反映一些作物的生长长势,也可以侧面反映出作物生长的整体状态及营养水平。

可以从整体上给农户提供更加科学的种植决策理论依据。

在监测点安装高清网络摄像机,通过光端机、光缆等传输设备将高清视频信息传输至监控中心视频监控系统,实现管理人员在监控中心实时监测果菜区作物的病虫害情、果实大小及颜色等信息。

监控摄像头监控界面 4.3 智能控制系统根据环境参数采集系统获取的数据,以及各类作物适宜环境参数,驱动各类监控器和灌溉系统、湿帘降温系统、通风系统等构成整个自动化控制网络。

具体包括以下设备:1、实现远程自动(手动)灌溉2、实现远程自动(手动)排风3、实现远程自动(手动)加湿4、实现远程自动(手动)温度控制5、实现温室、路灯等各种灯光的远程控制6、其它设备的控制……4.4 信息展示系统1、信息展示系统信息展示系统即为显示终端及其配套软件组成的信息发布和查询窗口,一种方式通过普通液晶电视或监视器来实现,此方式成本较低,但展示效果一般;另外一种方式通过液晶拼接大屏幕系统,是由拼接单元组合墙体、图形控制器、大屏控制管理软件、接口设备、专用线缆等单元组成,此方式成本较高,但展示效果好。

相关文档
最新文档