江苏省专转本高数真题及答案

合集下载

江苏专转本高等数学真题(附答案)

江苏专转本高等数学真题(附答案)

江苏专转本高等数学真题(附答案)2009年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1、已知32lim 22=-++→x b ax x x ,则常数b a ,的取值分别为()A 、2,1-=-=b aB 、0,2=-=b aC 、0,1=-=b aD 、1,2-=-=b a 2、已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的 A 、跳跃间断点B 、可去间断点C 、无穷间断点D 、震荡间断点 3、设函数??>≤=0,1sin 0,0)(x x x x x f α在点0=x 处可导,则常数α的取值范围为()A 、10<<αB 、10≤<αC 、1>αD 、1≥α 4、曲线2)1(12-+=x x y 的渐近线的条数为()A 、1B 、2C 、3D 、45、设)13ln()(+=x x F 是函数)(x f 的一个原函数,则=+?dx x f )12(' ()A 、C x ++461 B 、C x ++463 C 、C x ++8121 D 、C x ++8123 6、设α为非零常数,则数项级数∑∞=+12n n n α()A 、条件收敛B 、绝对收敛C 、发散D 、敛散性与α有关二、填空题(本大题共6小题,每小题4分,满分24分)7、已知2)(lim =-∞→x x Cx x ,则常数=C . 8、设函数dt te x x t ?=20)(?,则)('x ?= . 9、已知向量)1,0,1(-=→a ,)1,2,1(-=→b ,则→→+b a 与→a 的夹角为 .10、设函数),(y x z z =由方程12=+yz xz 所确定,则x z ??= . 11、若幂函数)0(12>∑∞=a x na n n n 的收敛半径为21,则常数=a . 12、微分方程0)2()1(2=--+xdy y ydx x 的通解为 . 三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限:xx x x sin lim 30-→ 14、设函数)(x y y =由参数方程-+=+=32)1ln(2t t y t x 所确定,,求22,dx y d dx dy . 15、求不定积分:?+dx x 12sin . 16、求定积分:?-10222dx x x .17、求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程. 18、计算二重积分??Dyd σ,其中}2,2,20),{(22≥+≤≤≤≤=y x y x x y x D . 19、设函数),(sin xy x f z =,其中)(x f 具有二阶连续偏导数,求yx z 2. 20、求微分方程x y y =-''的通解.。

2006-2010年江苏省专转本高数真题集参考答案

2006-2010年江苏省专转本高数真题集参考答案

2006年—2010年江苏省专转本真题参考答案1、 计算11lim31--→x x x解:原式32)1)(1()1)(1(lim)1)(1)(1()1)(1)(1(lim332033233230=++-+-=+++-+++-=→→x x x x x x x x x x x x x x x 2、 已知)21()21(lim ,2)2(lim==∞→→xxf x x f x x 则解:设ux 41=,则当x →0时,u →∞,代入已知极限得: 21)21(lim ,2)42(lim 4)42(4lim ===∞→∞→∞→u uf u uf u uf u u u 解得 即21)21(lim =∞→xxf x3、 求极限xx xx 3)2(lim -∞→ 解:原式6)6(2)21(lim --⋅-∞→=-=e x xx4、求极限xx x x sin lim 30-→解:6sin 6lim cos 13lim sin lim02030==-=-→→→x xx x x x x x x x 5、已知32lim22=-++→x bax x x ,则常数a,b 的值为( ) A 、a=-1,b=-2 B 、a=-2,b=0 C 、a=-1,b=0 D 、a=-2,b=-1解:2lim ,24,024)(lim 2222-++--==++=++→→x bax x a b b a b ax x x x34)2(lim 2)2()4(lim 224lim 22222=+=++=--+-=---+=→→→a a x x a ax x x a ax x x x x A=-1,b=-2 6、设2)(lim =-∞→xx cx x ,常数c= 。

解:2ln ,2)1(lim )1(lim )(lim ===-+=-+=--⋅-∞→∞→∞→c e cx c c x c c x x c c c ccx x x x x x7、计算xx x x )11(lim -+∞→解:21221)121(lim )121(lim )11(lim e x x x x x x x x x x =-+=-+=-++⋅-∞→∞→∞→8、设当x →0时,函数f(x)=x-sinx 与g(x)=a n是等价无穷小,则常数a,n 的值为( ) A.4,61.4,121.3,31.3,61========n a D n a C n a B n a 解:3,61,12,21,2lim cos 1lim sin lim 120100====-=-=--→-→→n a na n nax x nax x ax x x n x n x n x 9、设423)(22-+-=x x x x f ,则x=2是f(x)的( )A 、跳跃型间断点B 、可去间断点C 、无穷型间断点D 、振荡型间断点解:4121lim 423lim 2222=+-=-+-→→x x x x x x x 10、 若,)(lim 0A x f x =→且f(x)在x=x 0处有定义,则当A= f(x 0) 时f(x)在x 0处连续。

江苏省2022年专转本高等数学考试题和答案

江苏省2022年专转本高等数学考试题和答案

江苏省2022年普通高校专转本选拔考试《高等数学》试题和答案一、选择题(本大题共8小题,每小题4分,共32分) 1.要使函数2()(1)x xf x x -=-在区间(11)-,内连续,则应补充定义(0)f =( A )A.2e -B.1e -C.eD.2e 2.2sin ()(1)xf x x x =-的第二类间断点的个数为( C )A.0B.1C.2D.33.设(1)1f '=,且0(1)(1)lim 1h f ah f ah h →--+=,则常数a 的值为( B )A.1-B.12-C.12 D.14.设()F x 为()f x 的一个原函数,且()f x 可导,则下列等式正确的是( D ) A.()()dF x f x C =+⎰ B.()()df x F x C =+⎰ C.()()F x dx f x C =+⎰ D.()()f x dx F x C =+⎰5.设二重积分=Dπ,其中222{(,|,0}D x y x y R x =+≤≥,则R 的值为( D )6.下列级数条件收敛的是( C )A.21sin n n n ∞=∑ B.211(1)sin n n n ∞=-∑C.1(1)nn ∞=-∑ D.211(1)sin n n n ∞=-∑7.若矩阵113A 12102a --⎛⎫⎪= ⎪⎪-⎝⎭的秩为2,则常数a 的值为( A ) A.4- B.2- C.2 D.48.设1100001111111234D --=--,ij M 是D 中元素ij a 的余子式,则41424344+++=M M M M ( B )A.2-B.0C.1D.2二、填空题(本大题共6小题,每小题4分,共24分)9.sin lim n n n→∞= 0 . 10.设函数20()arctan 0x x f x x x ⎧≠⎪=⎨⎪⎩,=0,则(0)f '= 1 .11.设函数()sin3f x x =,则2022(0)f =() 0 . 12.若+242=x ae dx e ∞-⎰,则常数a = -2 .13.若幂级数1nn n n x a ∞=∑的收敛半径为2,则幂级数1(1)n n n a x ∞=-∑的收敛区间为13()22, . 14.若向量组1234(1,0,2,0)(1,0,0,2)(0,1,1,1)(2,1,,2)k αααα====,,,线性相关,则k = 4 .三、计算题(本大题共8小题,每小题8分,共64分)15. 求极限sin 0sin 1lim sin x x e x x x→--解:sin 0sin 1lim sin x x e x x x →--sin 20sin 1=lim x x e x x →--sin 0cos cos =lim 2x x e x xx →- sin 0cos 1=lim 2x x x e x →-⋅0cos sin =lim 2x x x x →⋅1=216. 求极限1arctan x dx x⎰解:1arctan x dx x⎰21=arctan 2x d x ⎰2211=arctan arctan 22x x d x x ⋅-⎰2222111=arctan ()1221+x x dx x xx ⋅-⋅⋅-⎰22211=arctan +221+x x dx x x ⋅⋅⎰ 22111=arctan +(1)221x dx x x ⋅-+⎰211=arctan +(arctan )22x x x C x ⋅-+17.设31()x f x x <=≥ 1,求定积分51()f x dx -⎰。

2001—2017江苏专转本高等数学真题(与答案)

2001—2017江苏专转本高等数学真题(与答案)

2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数yx z =的全微分=dz 10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim22⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx e e xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶 连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

2001—2010年江苏专转本高等数学真题(附答案)

2001—2010年江苏专转本高等数学真题(附答案)

2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

2001—2010年江苏专转本高等数学真题(附答案)

2001—2010年江苏专转本高等数学真题(附答案)

2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分) 1、下列各极限正确的是( )A 、e xx x =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211( ) A 、211x- B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x fB 、0)('<x f ,0)(''>x fC 、0)('>x f ,0)(''<x fD 、0)('>x f ,0)(''>x f4、=-⎰dx x 21( ) A 、0 B 、2C 、-1D 、15、方程xy x 422=+在空间直角坐标系中表示( ) A 、圆柱面B 、点C 、圆D 、旋转抛物二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数y x z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos )21ln(arctan π+++=x x y ,求dy .12、计算xx dte x xt x sin lim2002⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx e e xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值.17、求x x y y sec tan '=-满足00==x y的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分)21、过)0,1(P 作抛物线2-=x y 的切线,求 (1)切线方程;(2)由2-=x y ,切线及x 轴围成的平面图形面积; (3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省普通高校专转本模拟试题及参考答案高等数学 试题卷一、单项选择题(本大题共 8 小题,每小题 4 分,共 32 分.在下列每小题中选出一个正确答 案,请在答题卡上将所选项的字母标号涂黑)1. 要使函数21()(2)xx f x x −−=−在区间(0,2) 内连续,则应补充定义 f (1) =( )A. 2eB. 1e −C. eD. 2e − 2. 函数2sin ()(1)xf x x x =−的第一类间断点的个数为( )A. 0B. 2C. 3D. 1 3. 设'()1f x =,则0(22)(22)limh f h f h h→−−+=( )A. 2−B. 2C. 4D. 4−4.设()F x 是函数()f x 的一个原函数,且()f x 可导,则下列等式正确的是( ) A. ()()dF x f x c =+∫ B. ()()df x F x c =+∫ C.()()F x dx f x c =+∫ D.()()f x dx F x c =+∫5. 设2Dxdxdy =∫∫,其中222{(,)|,0}D x y x y R x =+≤>,则R 的值为( )A. 1B.D.6.下列级数中发散的是( )A 21sin n nn∞=∑. B. 11sin n n ∞=∑C. 1(1)nn ∞=−∑ D.211(1)sinnn n ∞=−∑ 7.若矩阵11312102A a −−= 的秩为2,则常数a 的值为( )A. 0B. 1C. 1−D. 28. 设1100001111111234D =−−,其中ij M 是D 中元素ij a 的余子式,则3132M M +=( ) A. 2− B. 2 C. 0 D. 1 二、填空题(本大题共6小题,每小题4分,满分24分) 9. 1lim sinn n n→∞=____________________________.10.设函数2sin ,0()10,0xx f x x x ≠ =+ =,则'(0)f =______________________________________.11.设函数()cos 2f x x =, 则(2023)(0)f =__________________________________________. 12.若21ax e dx −∞=∫,则常数a =___________________________________.13. 若幂级数1nnn a x +∞=∑的收敛半径为2,则幂级数11(1)nn n x a +∞=−∑的收敛区间为__________________. 14.若向量组1(1,0,2,0)α=,2(1,0,0,2)α=,3(0,1,1,1)α=,4(2,1,,2)k α=线性相关,则k =_____________________________________.三、计算题(本大题共8小题,每小题8分,满分64分) 15. 求极限22sin lim(cos 1)x x t tdtx x →−∫;16.求不定积分22x x e dx ∫;17.求定积分21sin 2x dx π−∫; 18.设函数(,)z z x y =由方程cos y x e xy yz xz =+++所确定的函数,求全微分dz . 19.求微分方程''4'5x y y y xe −−−=的通解; 20.求二重积分Bxydxdy ∫∫,其中D 为由曲线2(0)y x x ≥及直线2x y +=和y 轴所围成的平面闭区域;21.设矩阵A 与B 满足关系是2AB A B =+,其中301110014A= ,求矩阵B .22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 四、证明题(本大题10分)23.证明:当04x π−<<时,0sin xt e tdt x <∫.五、综合题(本大题共2小题,每小题10分,满分20分)24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点.参考答案一、单项选择题1. B2. D3. D4. D5. B6. B7. A8. B9. C 二、填空题9. 1 10. 1 11. 0 12. 1ln 2213. (1,3)− 14. 4三、计算题15. 2232022250022sin sin 2sin()4lim lim 4lim (1cos )63()2x x x x x t tdt t tdt x x x x x x x →→→===−∫∫; 16. 2222222222222222222224x x x x x x x xxe e x e e e x e e e x e dx x x dx x dx x c =−=−+=−++∫∫∫;17.26206111sin (sin )(sin )22212x dx x dx x dx πππππ−=−+−−∫∫∫; 18. 因为sin sin ,,z zz x y zx y yz x x x x y x ∂∂∂−−−−=+++=∂∂∂+ 且0,y yz zz e x z e x z y x y yy y x∂∂∂−−−=++++=∂∂∂+ 所以可得sin y x y z e x zdzdx dy y x y x−−−−−−=+++. 19. 解:因为特征方程为2450r r −−=,特征值为125,1r r ==−,所以齐次微分方程''4'50y y y −−=的通解为5112x x y c e c e −=+; 设''4'5x y y y xe −−−=的一个特解为*()x y x ax b e −=+,可得11*()1236x y x x e −=−+,所以原方程的通解为:511211*()1236x x x y y y c e c e x x e −−=+=+−+.20. 由22y x x y =+= 可得交点坐标(11),, 可得21116xBxydxdydx xydy ==∫∫∫∫; 21. 因为2AB A B =+,所以可得(2)A E B A −=,从而可得:1(2)B A E A −=−;又因1211(2)221111A E −−−−=−−− ,所以可得1522(2)432223B A E A −−− =−=−− − ; 22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 解:111361113611136101241513601012010120101212212031240011200112100120101200112−−−−−−→−→−→− −−−−−−− →− − 一个特解为2220 ,齐次线性方程组12341234123430530220x x x x x x x x x x x x ++−=−++= −+−= 的一组基础解系为:11111η= ,所以原方程组的通解为:123412121210x x c x x=+. 四、证明题 23.证明:当04x π−<<时,0sin xt e tdt x <∫.证明:令0()sin xt f x x e tdt =−∫,则有'()1sin x f x e x =−,令:''()sin cos 0x x f x e x e x =−−=,可得4x π=−,当04x π−<<,''()0f x <,所以当04x π−<<时,'()1sin x f x e x =−为递减函数,可得'()1sin '(0)1x f x e x f =−>=,所以当04x π−<<时,0()sin xt f x x e tdt =−∫为递增函数,因此可得:0()sin (0)0xt f x x e tdt f =−>=∫,从而可证得:0sin x t e tdt x <∫; 五、综合题 24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..解:x x y = ⇒ =,则图形面积为:20Aydx dx = 旋转体的体积:2222200022y V x dy ydy ππππ====∫∫; 25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点. 解:(1)()()()1dxdxx x x f x e xe dx c e xe dx c x ce −−−−−∫∫=+=+=−++∫∫,又因为(0)0f =,所以可得:1c =−,即:()1x f x x e −=−+−; (2)令'()10x f x e −=−+=,可得0x =; x(,0)−∞ 0 (0,)+∞ '()f x −+因此可知:(,0)−∞为函数()1x f x x e −=−+−的递减区间,(0,)+∞为函数()1x f x x e −=−+−的递增区间,点(0,0)为函数()1x f x x e −=−+−的极小值点.。

2001—2010年江苏专转本高等数学真题附答案

2001—2010年江苏专转本高等数学真题附答案

2001—2010年江苏专转本高等数学真题附答案2009 一、单项选择题(本大题共6小题,每小题4分,满分24分)1、已知32lim 22=-++→x b ax x x ,则常数b a ,的取值分别为() A 、2,1-=-=b a B 、0,2=-=b a C 、0,1=-=b a D 、1,2-=-=b a2、已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的 A 、跳跃间断点B 、可去间断点C 、无穷间断点D 、震荡间断点 3、设函数??>≤=0,1sin 0,0)(x x x x x f α在点0=x 处可导,则常数α的取值范围为() A 、10<<α B 、10≤<α C 、1>α D 、1≥α4、曲线2)1(12-+=x x y 的渐近线的条数为()A 、1B 、2C 、3D 、45、设)13ln()(+=x x F 是函数)(x f 的一个原函数,则=+?dx x f )12(' () A 、C x ++461 B 、C x ++463 C 、C x ++8121 D 、C x ++8123 6、设α为非零常数,则数项级数∑∞=+12n n n α()A 、条件收敛B 、绝对收敛C 、发散D 、敛散性与α有关二、填空题(本大题共6小题,每小题4分,满分24分)7、已知2)(lim =-∞→x x Cx x ,则常数=C . 8、设函数dt te x x t ?=20)(?,则)('x ?= . 9、已知向量)1,0,1(-=→a,)1,2,1(-=→b ,则→→+b a 与→a 的夹角为 . 10、设函数),(y x z z =由方程12=+yz xz 所确定,则x z ??= . 11、若幂函数)0(12>∑∞=a x na n n n 的收敛半径为21,则常数=a .12、微分方程0)2()1(2=--+xdy y ydx x 的通解为 .三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限:xx x x sin lim 30-→14、设函数)(x y y =由参数方程-+=+=32)1ln(2t t y t x 所确定,,求22,dx y d dx dy .15、求不定积分:+dx x 12sin .16、求定积分:?-10222dx x x .17、求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程.18、计算二重积分Dyd σ,其中}2,2,20),{(22≥+≤≤≤≤=y x y x x y x D . 19、设函数),(sin xy x f z =,其中)(x f 具有二阶连续偏导数,求yx z 2.20、求微分方程x y y =-''的通解.四、综合题(本大题共2小题,每小题10分,满分20分)21、已知函数13)(3+-=x x x f ,试求:(1)函数)(x f 的单调区间与极值;(2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间]3,2[-上的最大值与最小值.22、设1D 是由抛物线22x y =和直线0,==y a x 所围成的平面区域,2D 是由抛物线22x y =和直线2,==x a x 及0=y 所围成的平面区域,其中20<(2)求常数a 的值,使得1D 的面积与2D 的面积相等.五、证明题(本大题共2小题,每小题9分,满分18分)23、已知函数≥+<=-0,10,)(x x x e x f x ,证明函数)(x f 在点0=x 处连续但不可导. 24、证明:当21<<x 时,32ln 42-+>x x x x .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学试题卷(二年级)注意事项:出卷人:江苏建筑大学-张源教授1、考生务必将密封线内的各项目及第 2页右下角的座位号填写清楚. 3、本试卷共8页,五大题24小题,满分150分,考试时间120分钟. 一、选择题(本大题共6小题,每小题4分,满分24分) 1、 极限 lim(2xsin 1 Sin 3x )=()x xA. 0B.2C.3D.52、 设f (x)二2)sinx ,则函数f (x )的第一类间断点的个数为()|x|(x -4)'A. 0B.1C.2D.3133、 设 f(x) =2x 2 -5x 2,则函数 f(x)()A.只有一个最大值B.只有一个极小值C.既有极大值又有极小值D.没有极值34、 设z =ln(2x)-在点(1,1)处的全微分为()y1 1A. dx - 3dyB. dx 3dyC. 一 dx 3dyD. - dx - 3dy2 21 15、二次积分pdy.y f (x, y )dx 在极坐标系下可化为()sec'— 'sec jA. —4d 寸 o f (「cos 〒,「sin 寸)d 「B. —4d 丁 © f (「cos 〒,「sin 寸)「d 「&下列级数中条件收敛的是()二、填空题(本大题共6小题,每小题4分,共24分)7要使函数f(x)=(1-2x )x 在点x=0处连续,则需补充定义f(0)= _________________ . 8、设函数 y = x (x 2 +2x +1)2 +e 2x ,贝卩 y ⑺(0) = _______ .江苏省 2 0 12 年普通高校专转本 选拔考试2、 考生须用钢笔或圆珠笔将答案直接答在试卷上, 答在草稿纸上无效. sec • iC. o f (「cosd 「sin Jd 「D.4sec ••2d 丁 © f (「cos 寸,「sin 寸):?d "「TVXTnW •、n9、设y =x x (x >0),则函数y 的微分dy =.(1)函数f (x)的表达式;11、设反常积分[_e 」dx=q ,则常数a= ______________ . 12、幕级数£上律(x -3)n 的收敛域为 __________________ :“二 n3 三、计算题(本大题共8小题,每小题8分,共64 分)2x +2cosx —2 lim 厂x 0x ln(1 x)2116、计算定积分",-严.17、 已知平面二通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平面二平行,又与x 轴垂直的直 线方程.18、 设函数 “ f(x,xyr (x 2 y 2),其中函数f 具有二阶连续偏导数,函数具有二阶连-2续导数,求一Zc^cy19、已知函数f(x)的一个原函数为xe x ,求微分方程丫 4/ 4^ f (x)的通解. 20、计算二重积分..ydxdy ,其中D 是由曲线y 「x-1,D闭区域.四、综合题(本大题共2小题,每小题10分,共20分)21、 在抛物线y =x 2(x 0)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平 面图形的面积为2,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积.3x322、 已知定义在(皿,畑)上的可导函数f(x)满足方程xf(x)-4( f(t)dt=x 3-3,试求:10、设向量a,b 互相垂直,且= 3,^=2,,贝 U ^+2b13、求极限 14、设函数 y = y(x)由参数方程 xdty = t 2 2lnt所确定, 求鱼dx dx 2 °15、求不定积分 2x 1 J 2~cos x1直线T 及x 轴所围成的平面(2)函数f(x)的单调区间与极值;(3)曲线y= f(x)的凹凸区间与拐点.五、证明题(本大题共2小题,每小题9分,共18分)123、证明:当0 : x :: 1 时,arcsinx x x3.6十x0 g(t)dt g(x)24、设f(x)一2—XHO,其中函数g(x)在(皿,母)上连续,且lim g(x丿=3证x T1—COSX卫(0) x = 01明:函数f (x)在X = 0处可导,且f (0)匕.一. 选择题1-5BCCABD二. 填空题7-12e°128x n(1 ln x)dx5ln 2 (0,6]三. 计算题13求极限x m0 2x 2 cos x - 216、计算定积分 ----------- dx .1x • 2x T13 t -^dt 二21 1 :; t2 1 t2dt =2arctant 1 t2原式=x叫x2 2 cos x -2 2x—2si nx=limx_0x—sin x3= lim4x3 x刃2x314、设函数y = y(x)由参数方程所确定,求2』=t +21 nt dydxd2ydx2原式号dx dydtdx2t -t12td2y_d燈)dtdx2t2 dt t2dx2dxdtt2115、求不定积分2x 12dx. cos x2x 1原式=i'2■ dx ' cosx 二(2x 1)d tanx 二(2x 1) tanx - tanxd(2x 1) 原式=令.2x -1 “,则原式=.•• 32(1)函数f (x)的表达式;17、已知平面二通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平面二平行,又与x 轴垂直的直 线方程.解:平面二的法向量n -OM 「=(0,3,一2),直线方向向量为S = n "「= (0,-2,-3),直线方程:x -1 y -1 z -10 一 -2 一 -3 18、设函数z 二f(x,xy^ (x 2 y 2),其中函数f 具有二阶连续偏导数,函数 具有二阶连Z =f i f 2 y 2x ' zf i2 x f 2 xyf 22 2x 2y : .x :x.y19、已知函数f (x)的一个原函数为xe x ,求微分方程y” • 4y ' 4y = f (x)的通解. 解:f (x) = (xe x ^ = (x 1)e x ,先求 y ” • 4y ' 4y = 0 的通解,特征方程:r 2 • 4r *4 = 0,h 、2 = -2,齐次方程的通解为Y =(G C 2X )e'x .令特解为y =(Ax B)e x ,代入原方程9Ax 6A 9^x 1,有待定系数法得:__ 120、 计算二重积分i iydxdy ,其中D 是由曲线y = :x-1,直线y= —x 及x 轴所围成的平面D 2闭区域.原式=ydy 丫 dx 1.j 0'2y12四. 综合题21、 在抛物线y =x 2(x 0)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平 面图形的面积为2,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积. 3 解:设 P 点(x 0,x ° )(x 0 0),则 k 切=2x °,切线:,y - x ° = 2x 0(x- x °)续导数,求;2z解:9A=1QA+9B =1解得* A 」9 -1,所以通解为丫"6)宀(討»2x/即,y +x ° =2x °x ,由题意((y x^ 2x 0〜s y)dy =彳,得 X0 = 2,P(2,4)(2)函数f(x)的单调区间与极值;(3)曲线—f(x)的凹凸区间与拐点.x解:(1)已知 xf(x)-4 4 f (t)dt =X 3 -3两边同时对 x 求导得:f (X )• x 「(x)-4f(x) =3x 2 3即.y" — -y=3x 则 y = —3x 2+cx 3 由题意得:f(1)=—2, c=1,贝U f(x)=—3x 2 + x 3 ■ x ' (2) f (x) =3x 2 -6x = 0,论=0,x 2 = 2 列表讨论得在(-二,0) (2,::)单调递增,在(0,2)单调递减。

极大值f(0)=0,极小值f(2) = * (3) f (x) =6x -6 =0, x =1列表讨论得在(-打)凹,在(1,凸。

拐点(1,-2) 五、证明题1 23、证明:当 0 : x :: 1 时,arcsinx x x 3.6 111 解:令 f (x) = arcsin x -x x 3, f (0) = 0, f (x) 1 x 2, f (0) = 06- x 22x1f "(x) = f 2 3_x = x( ;2 3_1)>0,在 0vxc1 ,厂(x)单调递增,¥,(1- X )仇1 - X )f (x) f (0H 0,所以在0 X : 1,f (x)单调递增,则有f (x) f (0H 0,得证x = 0,其中函数g(x)在(—::「:)上连续,且lim g( ) =3证1 - cosxx = 01明:函数f (X)在X = 0处可导,且f (0) =?.解:因为 lim g(x) =3,即 lim -g(x)二 3所以有 lim 9^ =— t 1 - cos xt 1 2t x 2X2又因为g(x)在(-"「:)上连续,所以g(0) =lim g(x) =0,则x 3 ln(1 x)|{X g(t)dt24、设 f (x)=」2,g(0X。

相关文档
最新文档