NTC热敏电阻

NTC热敏电阻
NTC热敏电阻

NTC电阻串联在交流电路中主要是起“电流保险”作用.

压敏电阻并联在交流侧电路中主要是起“限制电压超高”作用.

为了避免电子电路中在开机的瞬间产生的浪涌电流,在电源电路中串接一个功率型NTC热敏电阻器,能有效地抑制开机时的浪涌电流,并且在完成抑制浪涌电流作用以后,由于通过其电流的持续作用,功率型NTC热敏电阻器的电阻值将下降到非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响,所以,在电源回路中使用功率型NTC热敏电阻器,是抑制开机时的浪涌,以保证电子设备免遭破坏的最为简便而有效的措施。

压敏电阻的工作原理:比如一个“标称300V”的压敏电阻在220V的工作中,突然220V上升到310V!这时压敏电阻被击穿,通过很大的电流,熔断了保险丝后,就保护了后面的电路,然后压敏电阻又恢复了原来的状态. 我的故事讲完了.

老人家:^_^按照你说的意思是压敏电阻设计时最好是放在保险管后面咯,那样压敏电阻导通时不会对电网有什么危害吗?而保险管一般都是慢断的!

是NTC没错.

没通电时,NTC的阻值高,一通电霎那,阻值仍高,限制了涌流,随着NTC有电流流过,温度增加,阻值下降到很低,可以忽略.

明白了,但是这样的话,正常工作时,电流小,阻值就小,那么突然来一个浪涌电流,或者电路那段路使得电流增大,那就起不了保护作用了吧,也就是说只能拿来防通电时的浪涌了吗?

正常工作后基本就没有浪涌电流了吧?只有浪涌电压.如果真有浪涌电流,例如电源短路了,由于NTC已经导通了,对它也无能为力,只有靠保险丝起作用.记住NTC只是起开机保护的就可以了.

试想若电路已经正常上电,NTC已低阻,这时遭遇高压NTC是无能为力的

说的不错,在电源正常工作一段时间后,再进行频繁开关机,会对电源造成伤害的,因为这时由于NTC的温度上升,阻值下降,对浪涌的抑制能力已经及其有限了

说的对,采用NTC抑制开机浪涌的电源设备,不能够频繁的开关机.需要等NTC冷却,恢复至其冷态阻值后,才能再次开机.要不,安装NTC的意义就没有了.

对小功率电源电流小NTC不怎么发热,所以有一定作用.

我知道是用NTC电阻.

如果用普通电阻+继电器或者可控硅,不知可否?

很好,比单纯用NTC电阻强多了,NTC在断电又立即上电时将失去抑制作用.

所以频繁开关机,NTC就无效了

好东西啊,有创意!哥们.

但是可控硅的偏置电路单搞电阻也不行啊,并且估计大功率电源上不行,那样肯定损耗有点大啊

PTC是保险作用,NTC是限制浪涌电流.

NTC:负温电阻,温度越高,电阻越小,用于串在输入回路中限制开机浪涌电流.正常工作时发热,电阻降低,不影响工作,但是它是消耗能量的,功耗不能忽略.NTC也可用于测温.

PTC:正温电阻,串在输入回路中,又称为:自恢复保险丝.过流时发热,电阻增大,与输入等效断开,冷确后电阻降低,可继续工作,不需要更换,常与压敏电阻、TVS同时使用.

压敏电阻:类似稳压DIODE的雪崩效应,超过嵌位电压后电流迅速增大,但不会短路,这点与放电管不同.

PTC用途很多,如彩电的消磁电路,电冰箱压缩机的启动电路等.

过温保护有时也用PTC

串在回路中PTC,NTC都可能用到,但PTC是相当于保险丝作用的,NTC 是限制开机电流用的.

受教谢谢前辈们.

用压敏电阻(突波吸收器)

NTC(负温度系数)即温度变高阻值变小,(PTC)热敏电阻(正温度系数)则相反,两个作用截然不同,NTC串联于L线上,而PTC并联于L,N线上,NTC的作用起到一个缓冲作用,即开机瞬冲击电流很大,所以串一个NTC可以降低开机瞬间冲击电流,(在电路上串一电阻也可得此效果,但电阻上有一定损耗,造成效率低)它工作情况如下:刚开机瞬间,由于常温,那么阻抗大,此时相当于在电路上串一电阻,当电路工作,电流流过NTC,温度升高,阻抗变小,此时相当于短路,即开机可以抑制瞬间电流,而正常工作时又可损耗小(几乎零损耗).不能当保险丝看等,要想炸掉NTC,恐怕PCB也全黑了.PTC是一高压抑制作用,也可叫防雷管,说到防雷管也许大家就不陌生了,标准电压AV2500V,工作原

理相似于稳压管,也就是两脚电压达到击穿电压时,两脚相当于短路,电流可达十几A到上百A不等,而工作电压也取决于取值.7D471K/271K.还有一种放电压管200,高压可达AC4000V.但大家可能会想到,雷电打在输入端,那么在输入线接PTC怎么于起到防雷作用呢?这个如果要解释,那么我又得说好多了,所以这个问题其它网友回答吧

如果电源炸压敏电阻,可能是那些情况引起的呢? 还有电路设计时如何选择压敏电阻呢?

问一下,SCK057热敏电阻稳定电流是多大!

我串在220AC中电流在1A时就开始发烫,到3A已经烫得不得了!! 现在220AC电路上有个好10A得该怎么办呀??

请问热敏电阻放在零线上可以吗,是不是一定要放在火线上啊?

对于2PIN的线来说,交流输入其实哪条都一样了

哦,那对于3PIN的来说还是有要求的吧,还有,有没有安规要求啊,比如,在热敏电阻的两脚之间有没有不能走铜的距离要求,其本体有没有要架高的要求?谢谢!

东西是死的,人是活的,理解它的工作原理,明白自己的需要,灵活运用才是关键

有哪位XD帮忙解释下PTC的工作原理啊,小弟先谢谢了!

你可以看看书籍《开关电源设计技术与应用实例》,上面有很清楚的介绍.

开关电源,热敏电阻的选取原则是什么?

在满足稳态电流的情况下,在温度在25摄氏度的条件下测到的电阻值应为: R>=1.414*E/Im E:输入电压

Im:浪涌电流,其提到,一般在开关电源中,浪涌电流为稳态电流的100倍.

NTC 是负温度系数的电阻:温度升高时阻值减小,温度降低时阻值增大.

一般开关电源都有一个比较大容量的滤波电容,这个电容在未未通电时候两端电压几乎为零,当你将插头插入220V电源插座时候,如果没有NTC,瞬间相当于让220V电压通过电容短路,这样可以看出插

座孔里面打出火花,即使有NTC也会有比较小的火花,伴随啪啪声,我实测过许多开关电源串联的NTC常温下电阻为5-10欧姆左右,

有了NTC负温电阻,插上电源瞬间,电路中电路巨大,NTC大量发热,电阻迅速下降到0欧姆左右,但下降过程中电容两端电压越来越高,最后稳定,电流变得非常小,如果开关电源待机状态,一个比较优质的开关电源待机电流会有最开始的10A下降到1-5毫安,正常工作时候,视功率而定,大概220W,电流为1A左右。实际上NTC 就是保护瞬间接通电源过程中巨大电流对开关电路,尤其是滤波电容的冲击,防止整流二极管,电容等各个部件的损坏,而实际待机和正常工作时候,它就会因为电流小而不发热,不发热电阻又回到5-10欧姆,总电流限制在20安左右,可以通过计算获得他正常工作时候,假设电流为1A,电阻为10欧姆,消耗的功率为 p=1*2X10=10W,实际上10w 功率会使NTC继续发热,直到它热稳态,发热使NTC电阻下降到0.5欧姆左右,这样,功率消耗为0.5W,而待机时候,由于电流非常微小,NTC上消耗功率仅仅为,0.004W左右。大家明白了吧。

如果是小功率开关电源,10-50W, 在设计开关电源时候,调整实验时在电源输入端接一个PTC正温系数保险比较好,就是自恢复保险,例如接一个0.5A,250Vptc,做实验时候,每当

大于0.5A左右,保险强烈发热,瞬间电阻非常大,自动断开断开电源输入,这样保护了开关管不至于发热过大而烧毁,要知道做实验的时候,往往要调整电路,排除开关电源故障后保险温度才会降低,但真的当开关管烧坏后,直接导致电流急升,这个时候PTC会发生强烈的爆裂声音,并且冒烟,因此做实验时,请将PTC 遮盖住,以免当电路内部短路时,爆炸物伤及眼睛,因此做实验时候也不要忘记在输入电路里面加0.5-5A保险丝,这样减少炸管的机会,因此在开关电源正常使用时,切勿加入PTC做保保险丝,因为开关管损坏时候,PTC 很有可能导致炸裂并冒烟危及周围零部件安全,另外开关电源都有输出短路保护,初级电流增加很多情况下自然就会自动保护。在开关电源次级线圈输出回路中不使用PTC,因为PTC电阻的接入过流保护时电阻呈现为高阻抗,几乎只有几十毫安电流流过,维持ptc强发热状态(这个发热状态目的是断开次级回路),次级回路被断开后,就会让光电耦合反馈失效,一般情况下光耦不导通会让开关电源驱动芯片加强驱动开关管进行工作,这样就会导致开关管强烈发热最终烧毁,所以很少看到PTc在开关电源中做自恢复保护器。如果真的要ptc保护开关电源的话,那么不要将 PTC串入次级线圈,而是在开关电源输出端,到负载之间串联一个合适的PTC,这样负载假设短路,PTC进行保护,这样完全别开了光耦调整电路。事实上在自治开关电源中,在输出到负载之间串联PTC可以很好的解决过流保护。尤其当你设计

负载与开关电源功率不匹配的情况下将发挥更好性能。要知道初学者不一定能很好的设计好过流保护,而导致开关管烧毁发热等。

常规铁心变压器输出功率100W以下,输出电压60V以下,端接一个1.1A,ptc做保护非常理想,当电路大于2.2A时候,立即发强热保护变压器不至于烧毁。另外电池组件里面接个PTC保护既简单又有保护作用。

NTC热敏电阻原理及应用.

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) B 值( K )

ntc热敏电阻作用 7个常见例子

ntc热敏电阻作用7个常见例子 负温度NTC热敏电阻利用其特性,在N多种场合、N多种产品中发挥重要的作用。随温度的增大、阻值变小;温度下降,阻值变大~ NTC热敏电阻在体温探头的作用 体温探头其温度精度达到±0.1℃。这对NTC热敏电阻的要求是:体积小,高精度,高可靠,良好的耐热循环能力. 档监护仪采用双道体温测量电路,用于重症病人监护方面.它要求一个体温探头能同时提供双道测量温度,以配合监护仪的双道测量电路. 传统的做法,是将两粒NTC热敏电阻并联起来,制作成一个体温探头。但因受其尺寸限制,这种做法不能适应其小型化要求。 一是测量精度更准确,因其两粒芯片所测温度可以作对比,可以更能准确的测量出实际温度。二是可靠性更强,在工作中,即使其中一粒芯片突然失效,另一粒芯片仍可继续工作。 NTC热敏电阻医用植入式传感器 植入式传感器应当体积小,重量轻,并且和身体兼容,同时还要求其功率非常小。更重要的是,它们不能随着时间的推移而衰变。由于这类传感器属于第Ⅲ类医疗器械,因此需要有食品及药物管理局(FDA)的批准才能使用。一般来讲,这类传感器价格非常昂贵,而且需要专家做外科手术进行移植。 NTC热敏电阻和体液相接触的外用传感器 有几类一次性传感器是附在体外使用的,但是它们却是和体液相接触的。比如一次性血压传感器(DSP),(见图5)。这类传感器用于外科手术和重症监护,以便持续地监控病人的血压情况。这是在给病人进行静脉输液(IV)的同时测量

其血压的最理想方式。这类传感器需要每24个小时更换一次,以保证传感器的清洁卫生。这类传感器被连到一个监控器上,以便记录下所有的信息。还有其它几类与药物或是体液相接触的传感器。 NTC热敏电阻 "临时性"插入传感器 这类传感器要求能够通过切口插入体内(典型的方式是通过导管插入)。和植入式传感器相比,这种传感器的危险性不高。这种传感器的应用也很敏感,同样需要食品及药物管理局的批准才能使用。根据外科手术的不同,这些传感器可能会发挥几分钟到几个小时的功效。在理想情况下,这些传感器不需要外部动力进行驱动,但是如果必要的话,也可以通过外部途径进行驱动。 NTC热敏电阻太阳能热水器水温水位传感器 传感器就是一种能够感受水温水位,并且将感受到的水温水位转变成变化的电信号的仪器。在太阳热水器的发展史上,水温水位传感器一直起着举足轻重的作用,热水器的智能化、人性化都与水温水位传感器密不可分,水温水位测控仪更是离不开水温水位传感器,水温水位传感器工作稳定是对整个热水器智能控制的保障。 NTC热敏电阻在电源电路中的作用 NTC电阻串联在交流电路中主要是起"电流保险"作用. 压敏电阻并联在交流侧 电路中主要是起"限制电压超高"作用. 采用NTC抑制开机浪涌的电源设备,不能够频繁的开关机.需要等NTC冷却,恢复至其冷态阻值后,才能再次开机.要不,安装NTC的意义就没有了 NTC热敏电阻在医疗电子体温计中的应用 现在,很多大型医院都采用电子式体温计,这种温度传感器测量时间短、测量精度高、读数方便,并且还具有记忆功能,在临床上使用方面,性能突出。它通常由感温探头、信号处理单元、显示屏、电源四部分构成。感温探头是敏感部件,一般选用一个或几个高精度快速反应的热敏电阻,它直接关系到输出温度的准确性和响应速度;信号处理单元内部有加热和预测两种算法。

NTC热敏电阻温度传感器

APPLICATIONS Temperature test in all kinds of air-condition,refrigerator,water boiler,microwave oven. PART NUMBERING FEATURES High precision and high stability Quick temperature response Resistant to heat shock Moisture resistant Excellent quality and high stability Guang Dong Fenghua Advanced Technology (Holding)Co.,LTD.code NTC NTC temperature sensors code 25 Rated zero-power resistance R unit: The first two are significant figure of resistance and the third one expresses number of following zeros 25 FH -CWF XXX X XXXX X X /XXXX X % Tolerance of R % 25 B B value Code B %Tolerance of B value % B B value Temperature Code Length of the sensor unit:mm Termination shape code NTC NTC THERMISTOR TEMPERATURE SENSORS

NTC热敏电阻参数

NTC热敏电阻 NTC热敏电阻: NTC热敏电阻是一种可以通过1~10A强电流的负温度系数的热敏元件,直径在5~20mm之间的可分为六种。表3列出常用型号及主要参数供参考。 参数值及名称 型号 直径(mm) 最大稳定电流Imax(A) 零功率电阻值Rto Imax时电阻值R'to 热时间常数t(s) 功率热敏参数中, A零功率电阻值是元件在45℃环境下无电流作用时的自身电阻值。 在元件外形一定时,零功率电阻值越大,最大稳定电流值将越校零功率电阻值相同而外形直径不同的NTC热敏电阻,其最大稳定电流不同,直径大的电流值大,直径小的电流值校即最大稳定电流值与零功率值成反比,与直径成正比。 B,最大稳定电流值是指NTC热敏电阻能长时间稳定工作而不造成性能恶化的电流最大值。C,热时间常数是指NTC热敏电阻在25环境中从通电工作开始,到最后达到最大稳定电流的时间。 直径越大,热时间常数也越大。 在实际软启动应用中,主要对功率电阻器的最大稳定电流Imax,零功率电阻值Rto及直径大小三项提出要求: 最大稳定电流Imax是以负载工作电流IL按1~5倍IL选取Imax值。如IL=1A., NTC热敏电阻的Imax应为1~5A。 零功率电阻的选取,是以负载(如灯泡)未通电时的冷阻Ro,按R/1~5来选用Rto值。 元件直径是根软启动过程中所需要的时间即热时间常数来确定。通常直径较大的元件,其软启动时间较长,反之越短。另外,直径较大的,允许通过元件的Imax值也较大。 NTC热敏电阻使用注意事项: •安装位置应院里电器中的发热元件,也不宜靠近发热窗,不能靠近散热板或有排风扇气流吹动处,引脚应尽量长。 •关机后,在热时间常数内,NTC热敏电阻没有恢复到零功率电阻值,所以不宜频繁的开启。

NTC热敏电阻

NTC电阻串联在交流电路中主要是起“电流保险”作用. 压敏电阻并联在交流侧电路中主要是起“限制电压超高”作用. 为了避免电子电路中在开机的瞬间产生的浪涌电流,在电源电路中串接一个功率型NTC热敏电阻器,能有效地抑制开机时的浪涌电流,并且在完成抑制浪涌电流作用以后,由于通过其电流的持续作用,功率型NTC热敏电阻器的电阻值将下降到非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响,所以,在电源回路中使用功率型NTC热敏电阻器,是抑制开机时的浪涌,以保证电子设备免遭破坏的最为简便而有效的措施。 压敏电阻的工作原理:比如一个“标称300V”的压敏电阻在220V的工作中,突然220V上升到310V!这时压敏电阻被击穿,通过很大的电流,熔断了保险丝后,就保护了后面的电路,然后压敏电阻又恢复了原来的状态. 我的故事讲完了. 老人家:^_^按照你说的意思是压敏电阻设计时最好是放在保险管后面咯,那样压敏电阻导通时不会对电网有什么危害吗?而保险管一般都是慢断的! 是NTC没错. 没通电时,NTC的阻值高,一通电霎那,阻值仍高,限制了涌流,随着NTC有电流流过,温度增加,阻值下降到很低,可以忽略.

明白了,但是这样的话,正常工作时,电流小,阻值就小,那么突然来一个浪涌电流,或者电路那段路使得电流增大,那就起不了保护作用了吧,也就是说只能拿来防通电时的浪涌了吗? 正常工作后基本就没有浪涌电流了吧?只有浪涌电压.如果真有浪涌电流,例如电源短路了,由于NTC已经导通了,对它也无能为力,只有靠保险丝起作用.记住NTC只是起开机保护的就可以了. 试想若电路已经正常上电,NTC已低阻,这时遭遇高压NTC是无能为力的 说的不错,在电源正常工作一段时间后,再进行频繁开关机,会对电源造成伤害的,因为这时由于NTC的温度上升,阻值下降,对浪涌的抑制能力已经及其有限了 说的对,采用NTC抑制开机浪涌的电源设备,不能够频繁的开关机.需要等NTC冷却,恢复至其冷态阻值后,才能再次开机.要不,安装NTC的意义就没有了. 对小功率电源电流小NTC不怎么发热,所以有一定作用. 我知道是用NTC电阻. 如果用普通电阻+继电器或者可控硅,不知可否?

NTC热敏电阻的基本特性

NTC热敏电阻的基本特性 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 电阻-温度特性 热敏电阻的电阻-温度特性可近似地用式1表示。 (式1) R=R0 exp {B(1/T-1/T0)} R: 温度T(K)时的电阻值 Ro:温度T0(K)时的电阻值 B: B 值 *T(K)= t(oC)+273.15 exp:指数函数,e(无理数)=2.71828;exp {B(1/T-1/T0)} 指e 的{B(1/T-1/T0)} 次方。 但实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。 此处,若将式1中的B值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。 (式2) B T=CT2+DT+E 上式中,C、D、E为常数。 另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D 不变。因此,在探讨B值的波动量时,只需考虑常数E即可。 ?常数C、D、E的计算 常数C、D、E可由4点的(温度、电阻值)数据 (T0, R0). (T1, R1). (T2, R2) and (T3, R3),通过式3~6计算。 首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。

?电阻值计算例 试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C 的电阻值。 ?步骤 (1) 根据电阻-温度特性表,求常数C、D、E。 T o=25+273.15 T1=10+273.15 T2=20+273.15 T3=30+273.15 (2) 代入B T=CT2+DT+E+50,求B T。 (3) 将数值代入R=5exp {(B T1/T-1/298.15)},求R。 *T : 10+273.15~30+273.15 ?电阻-温度特性图如图1所示

NTC热敏电阻功率型系列简介和技术参数

NTC热敏电阻功率型系列简介、应用范围及特点 1.产品简介 为了避免电子电路中在开机的瞬间产生的浪涌电流,在电源电路中串接一个功率型NTC 热敏电阻器,能有效地抑制开机时的浪涌电流,并且在完成抑制浪涌电流作用以后,由于通过其电流的持续作用,功率型NTC热敏电阻器的电阻值将下降到非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响,所以,在电源回路中使用功率型NTC 热敏电阻器,是抑制开机时的浪涌,以保证电子设备免遭破坏的最为简便而有效的措施。 2.应用范围 适用于转换电源、开关电源、UPS电源、各类电加热器、电子节能灯、电子镇流器、各种电子装置电源电路的保护以及彩色显示像管、白炽灯及其它照明灯具的灯丝保护。 3.特点: ·体积小,功率大,抑制浪涌电流能力强 ·反应速度快 ·材料常数(B值)大,残余电阻小 ·寿命长,可靠性高 ·系列全,工作范围宽 1. 电阻器的最大工作电流〉实际电源回路的工作电流 2. 功率型电阻器的标称电阻值 R≥1.414*E/Im 式中 E为线路电压 Im为浪涌电流 对于转换电源,逆变电源,开关电源,UPS电源, Im=100倍工作电流 对于灯丝,加热器等回路 Im=30倍工作电流 3. B值越大,残余电阻越小,工作时温升越小 4. 一般说,时间常数与耗散系数的乘积越大,则表示电阻器的热容量越大,电阻器抑制浪涌电流的能力也越强。 零功率电阻值RT(Ω)

RT指在规定温度T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度T (K )时的NTC 热敏电阻阻值。 RN :在额定温度TN (K )时的NTC 热敏电阻阻值。 T :规定温度(K )。 B :NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数e 为底的指数(e = 2.71828 …)。 该关系式是经验公式,只在额定温度TN 或额定电阻阻值RN 的有限范围内才具有一定的精确度,因为材料常数B 本身也是温度T 的函数。 额定零功率电阻值R25 (Ω) 根据国标规定,额定零功率电阻值是NTC 热敏电阻在基准温度25 ℃时测得的电阻值 R25,这个电阻值就是NTC 热敏电阻的标称电阻值。通常所说NTC 热敏电阻多少阻值,亦指该值。 最大稳态电流 在环境温度为25℃时允许施加在热敏电阻器上的最大连续电流。 25℃下最大电流时近似电阻值(Ω) 25℃下最大电流时近似电阻值就是在环境温度25℃时,对热敏电阻施加允许的最大连续电流时,热敏电阻剩余的阻值,亦称最大残余电阻值。 材料常数(热敏指数)B 值(K ) B 值被定义为: RT1 :温度T1 (K )时的零功率电阻值。 RT2 :温度T2 (K )时的零功率电阻值。 T1,T2 :两个被指定的温度(K )。 对于常用的NTC 热敏电阻,B 值范围一般在2000K ~6000K 之间。 零功率电阻温度系数(αT )

NTC热敏电阻工作原理

NTC热敏电阻工作原理、参数解释 作者:时间:2010-3-14 5:09:12 ntc负温度系数热敏电阻工作原理 ntc是negative temperature coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓ntc热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。ntc热敏电阻器在室温下的变化范围在10o~1000000欧姆,温度系数-2%~-6.5%。ntc热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 ntc负温度系数热敏电阻专业术语 零功率电阻值 rt(ω) rt指在规定温度 t 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: rt = rn expb(1/t – 1/tn) rt :在温度 t ( k )时的 ntc 热敏电阻阻值。 rn :在额定温度 tn ( k )时的 ntc 热敏电阻阻值。 t :规定温度( k )。 b : nt c 热敏电阻的材料常数,又叫热敏指数。 exp:以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 tn 或额定电阻阻值 rn 的有限范围内才具有一定的精确度,因为材料常数b 本身也是温度 t 的函数。 额定零功率电阻值 r25 (ω) 根据国标规定,额定零功率电阻值是 ntc 热敏电阻在基准温度25 ℃ 时测得的电阻值 r25,这个电阻值就是ntc 热敏电阻的标称电阻值。通常所说 ntc 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) b 值( k )

NTC热敏电阻的作用

抑制浪涌电流用NTC热敏电阻器 产品概述 在有电容器,加热器和马达的电子电路中,在电流接通的瞬间,必将产生一个很大的电流,这种浪涌电流作用的时间虽短,但其峰值却很大。在转换电源,开关电源,UPS电源中,这种浪涌电流甚至超过工作电流的100倍以上。因此,必须有效的抑制这种浪涌电流。当电流直接加在功率型NTC热敏电阻器上时,其电阻值就会随着电阻体发热而迅速下降。由于功率型NTC热敏电阻器有一个规定的零功率电阻值,当其串联在电源回路中时,就可以有效地抑制开机浪涌电流,并且在完成抑制浪涌电流作用以后,由于通过其电流的持续作用,功率型NTC热敏电阻器的电阻值将下降到非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响。所以,在电源回路中使用功率型NTC热敏电阻器,是抑制开机时的浪涌电流,以保护电子设备免遭破坏的最为简便而有效的措施。 主要参数 额定零功率电阻R25(Ω) 最大稳态电流I(A) 最大电流时近似电阻值R(Ω) 时间常数(S) 耗散系数(mW/℃ ) 工作温度范围: -55 ~ +200℃ 抑制浪涌电流用NTC热敏电阻器应用前后对比

负荷--温度特性曲线应用实例:

温度测量、控制用NTC热敏电阻器 产品概述 NTC热敏电阻器给许多温度测量与控制设备提供实用的,低成本的解决方案,适用于-55 ℃到+300 ℃的温度范围内。 MF58型玻壳精密型 MF58型热敏电阻器采用陶瓷工艺与半导体工艺相结合的工艺技术制作而成,为两端轴向引出线玻璃封装结构。 MF52 E型珠状精密型 MF52 E型热敏电阻器是采用新材料、新工艺生产的小体积的环氧树脂包封型NTC热敏电阻器,具有高精度和快速反应等优点。 主要参数额定零功率电阻值R25 (Ω) R25允许偏差(%) B值(25/50 ℃)/(K) B值允许偏差(%) 耗散系数≥2.0mW/ ℃ 热时间常数≤7S 额定功率≤50mW 工作温度范围: -55 ~+300 ℃ 应用原理及实例 温度测量(惠斯登电桥电路)

NTC热敏电阻应用

NTC热敏电阻的原理及应用 1、原理 NTC热敏电阻是指负温度系数热敏电阻。它是以锰(Mn)、钴(Co)、镍(Ni)、铜(Cu)和铝(Al)等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上类似锗、硅等半导体材料。温度低时,NTC热敏电阻材料的载流子(电子-空穴)数目少,所以其电阻值较高;随着温度的升高,受热激发跃迁到较高能级而产生新的电子-空穴,使参加导电的载流子数目增加,所以电阻值降低。NTC热敏电阻的阻值在室温下的变化范围为1欧姆 - 106欧姆,温度系数为-2% - -6%。利用NTC热敏电阻器的不同特性,可广泛应用在温度测量、温度补偿、抑制浪涌电流等场合。 1.1、主要参数 零功率电阻(Rt):“零功率”一词容易使人费解,因为物理含义上的零功率检测是不存在的,工程含义是自热导致的电阻值变化相对于总的测量误差可以忽略不计。通常,对NTC热敏电阻的零功率测量是在恒温槽中进行,影响总的测量误差有二个主要因素:一是通过NTC热敏电阻的电流,二是恒温槽精度。一般说来,减少通过NTC热敏电阻的电流的方法比较多,一但电流下降到一定程度,影响测量误差的往往是恒温槽的精度。 B值:NTC热敏电阻器的材料常数(热敏指数),可以通过测量NTC热敏电阻在25℃和50℃(或85℃)时的电阻值后计算得出。B值是与电阻温度系数成正比的,也就是说B值越大,其电阻温度系数也就越大。但不能简单地说B值是大好还是小好,作温度测量使用时,B值大则在测量低温和常温时灵敏度高,而在测量高温时灵敏度低,B值小则相反;作温度补偿使用时,则要根据需补偿的元件特性选择合适的B值;作抑制浪涌使用时,B值大则通过电流能力强、残余电阻小、消耗功耗低。B值被定义为: 式中,RT1 :温度 T1 ( K )时的零功率电阻值; RT2 :温度 T2 ( K )时的零功率电阻值; T1、T2 :两个被指定的温度( K ) 自热:当我们对NTC热敏电阻进行测量和运用时总会通过一定量的电流,这一电流使NTC热敏电阻自身产生热量。NTC热敏电阻的自热会导致其阻值下降,在测量及应用过程中出现动态变化,所以控制自热是运用NTC热敏电阻的关键。当NTC用于温度测量时,应当尽量避免自热,而当NTC热敏电阻用于抑制浪涌电流时,则是利用其自热。 热时间常数(τa):NTC热敏电阻在稳定的温度Ta下,迅速进入设定(和要求

NTC热敏电阻10K

NTC热敏电阻 10K (型号:MF52AT) 5%精度 B值:3950 1% 1、型号说 MF52103H3950F A NTC热敏电 阻环氧系列 电阻值阻值允差B值B值允差B值类别 10KΩ±5% 3950K ±1% B25/50 2、电气性能 序 号 项目符号测试条件最小值正常值最大值单位 3-1 . 25℃的电阻值R25Ta=25±0.05℃ P T≦0.1mw 9.9 10.0 10.1 kΩ 3-2 . 50℃的电阻值R50Ta=50±0.05℃ P T≦0.1mw / 4.065 / kΩ 3-3 . B值B25/503436 3470 3504 K 3-4 . 耗散系数σTa=25±0.5℃ 2.0 / / mw/℃ 3-5 . 时间常数τTa=25±0.5℃/ / 15 sec 3-6 . 绝缘电阻/ 500V DC50 / / MΩ 3-7 . 使用温度范围/ / -55 / +125 ℃3、机械试验

项目技术要求测试条件及方法 4-1.可焊性引出端焊料自由流动 和浸润良好,上锡面积 95%以上将引出端沾助焊剂后,浸入温度为230±5℃锡槽中,锡面距NTC本体下端2-2.5mm处,持续2±0.5S (参照IEC60068-2-20试验Ta/GB2423.28 Ta) 4-2.耐焊接热无可见性损伤 ΔR/R25≤±2% 将引出端浸入温度为260±5℃锡槽中,锡面距NTC 本体下端5mm处持续5±1S (参照IEC60068-2-20试验Tb/GB2423.28 Tb) 4-3.引出端强度无脱落 ΔR/R25≤2% 试验Ua:拉力5N,持续10S; (参照IEC60068-2-21 / GB2423.29 U试验) 4、可靠性试验 序 号 项目技术要求测试条件及方法 5-1 . 高温试验ΔR/R25≤±2% 125±5℃,通电1000±24h,DC0.2mA (参照IEC60068-2-2/GB2423.2试验) 5-2 . 低温试验ΔR/R25≤±2% -55±5℃,通电1000±24h,DC0.2mA (参照IEC60068-2-1/GB2423.1试验) 5-3 . 耐潮湿试验ΔR/R25≤±2% 40±2℃,90%-95%RH环境下放置100±24h (参照IEC60068-2-3/GB2423.3试验) 5-4 . 温度冷热循环 试验 ΔR/R25≤±2% –55℃×30min→80℃×5min→125℃×30min →80℃×5min,反复5次 (参照IEC60068-2-14/GB2423.22试验) 5、使用注意事项 将产品引线裁剪成所需要的长度,注意最小长度≧5mm。 MF52 10K3950 温度特性表 R25℃=10K B(25/ 50)=3 950K T(℃) R(KΩ) T(℃) R(KΩ) T(℃) R(KΩ) T(℃) R(KΩ) -40 190.5562 -27 99.5847 -14 53.1766 -1 29.2750 -39 183.4132 -26 94.6608 -13 50.7456 0 28.0170 -38 175.6740 -25 90.0326 -12 48.4294 1 26.8255

NTC热敏电阻手册

NTC Thermistors

!Note? Please read rating and !CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc. ? This catalog has only typical speci? cations. Therefore, please approve our product speci? cations or transact the approval sheet for product speci? cations before ordering.

!Note ? Please read rating and !CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc. ? This catalog has only typical speci? cations. Therefore, please approve our product speci? cations or transact the approval sheet for product speci? cations before ordering. Contents Please check the MURATA home page (https://www.360docs.net/doc/221798289.html,/) if you cannot find the part number in the catalog. Product specifications are as of December 2014. 1 2 3 4 5 6 7 8

基于RC充放电的NTC热敏电阻测温试验

基于RC充放电的NTC热敏电阻测温试验 利用单片机I/O口使用RC充放电原理进行温度测量,前提是单片机的I/O口应有高阻功能,若为AT89C5 1/AT89C2051系列单片机其I/O口为准双向口无高阻功能;所以,需加一只三极管进行高阻功能扩展。下图中RK 为10K精密电阻(精度为1%),RT为10K精度为1%的NTC热敏电阻,C1为0.1uf的瓷片电容。其中电阻和电容的选择应更据单片机的时钟频率及RC充放电时间常数进行选择;选择方法是在保证RK与RT和C1之间的充放电时间常数不能大于单片机内部的定时器的最大定时时间,若无法达到要求,则需降低单片机的时钟频率。本文提供了一种电路非常简单,且易于实现,并且适用于几乎所有类型的单片机。其电路原理图如下所示: 图中: P1.0、P1.1和P1.2是单片机的3个I/O脚; RK为100k的精密电阻; RT为100K-精度为1%的热敏电阻; R1为100Ω的普通电阻,若单片机的I/O口灌入电流大于20mA则R1可用导线代替; C1为0.1μ的瓷片电容。 1.先将P1.0、P1.1、P1.2都设为低电平输出,使C1放电至放完。 2.将P1.1、P1.2设置为输入状态,P1.0设为高电平输出,通过RK电阻对C1充电,单片机内部计时器清零并开始计时,检测P1.2口状态,当P1.2口检测为高电平时,即C1上的电压达到单片机高电平输入的门嵌电压时,单片机计时器记录下从开始充电到P1.2口转变为高电平的时间TK。 3.将P1.0、P1.1、P1.2都设为低电平输出,使C1放电至放完。 4.再将P1.0、P1.2设置为输入状态,P1.1设为高电平输出,通过RT电阻对C1充电,单片机内部计时器清零并开始计时,检测P1.2口状态,当P1.2口检测为高电平时,单片机计时器记录下从开始充电到P1.2口转变为高电平的时间TT。 5.从电容的电压公式: 可以得到:TK/RK=TT/RT,即 通过单片机计算得到热敏电阻RT的阻值。并通过查表法可以得到温度值。 从上面所述可以看出,该测温电路的误差来源于以下几个方面:单片机的定时器精度,RK电阻的精度,热敏电阻RT的精度,而与单片机的输出电压值、门嵌电压值、电容精度无关。因此,适当选取热敏电阻和精密电阻的精度,单片机的工作频率够高,就可以得到较好的测温精度。当单片机选用4MHz的工作频率,RK、RT均为1%

KNTC热敏电阻对照表

10K NTC温度阻值对照表 温度T1 阻值Rt 温度T1 阻值Rt 温度T1 阻值Rt 温度T1 阻值Rt -40 235.83075593 2 25.795966881 44 5.070437823 86 1.4580779678 -39 221.67240981 3 24.673611964 45 4.9034011598 87 1.4204703156 -38 208.47382602 4 23.607666567 46 4.7428627464 88 1.3840329328 -37 196.16305694 5 22.594945784 47 4.5885344983 89 1.3487237721 -36 184.67403487 6 21.632463086 48 4.4401425688 90 1.314502486 -35 173.94605364 7 20.717416866 49 4.2974265762 91 1.2813303512 -34 163.92329912 8 19.847177965 50 4.1601388769 92 1.2491701959 -33 154.55442376 9 19.019278111 51 4.028043881 93 1.2179863314 -32 145.79216068 10 18.231399185 52 3.9009174074 94 1.1877444861 -31 137.59297352 11 17.481363273 53 3.7785460774 95 1.1584117439 -30 129.91673843 12 16.767123414 54 3.6607267421 96 1.1299564843 -29 122.72645506 13 16.086755023 55 3.5472659437 97 1.1023483265 -28 115.9879839 14 15.438447903 56 3.4379794071 98 1.075558075 -27 109.66980711 15 14.820498836 57 3.3326915609 99 1.0495576687 -26 103.74281093 16 14.231304683 58 3.2312350849 100 1.024******* 0.9998195293 -25 98.180087362 17 13.669355966 59 3.1334504839 101 2 -24 92.956753436 18 13.133230897 60 3.0391856852 102 0.9760309181

NTC热敏电阻

热敏电阻器(thermistor)——型号MZ、MF: 是一种对温度反应较敏感、阻值会随着温度的变化而变化的非线性电阻器,通常由单晶、多晶半导体材料制成。 文字符号:“RT”或“R” 热敏电阻器的种类: A.按结构及形状分类——圆片形(片状)、圆柱形(柱形)、圆圈形(垫圈形)等多种热敏电阻器。 B.按温度变化的灵敏度分类——高灵敏度型(突变型)、低灵敏度型(缓变型)热敏电阻器。 C.按受热方式分类——直热式热敏电阻器、旁热式热敏电阻器。 D.按温变(温度变化)特性分类——正温度系数(PTC)、负正温度系数(NTC)热敏电阻器。 热敏电阻器的主要参数:除标称阻值、额定功率和允许偏差等基本指标外,还有如下指标: 1)测量功率:指在规定的环境温度下,电阻体受测量电源加热而引起阻值变化不超过0.1%时所消耗的功率。 2)材料常数:是反应热敏电阻器热灵敏度的指标。通常,该值越大,热敏电阻器的灵敏度和电阻率越高。 3)电阻温度系数:表示热敏电阻器在零功率条件下,其温度每变化1℃所引起电阻值的相对变化量。 4)热时间常数:指热敏电阻器的热惰性。即在无功功率状态下,当环境温度突变时,电阻体温度由初值变化到最终温度之差的63.2%所需的时间。 5)耗散系数:指热敏电阻器的温度每增加1℃所耗散的功率。 6)开关温度:指热敏电阻器的零功率电阻值为最低电阻值两倍时所对应的温度。 7)最高工作温度:指热敏电阻器在规定的标准条件下,长期连续工作时所允许承受的最高温度。 8)标称电压:指稳压用热敏电阻器在规定的温度下,与标称工作电流所对应的电压值。 9)工作电流:指稳压用热敏电阻器在在正常工作状态下的规定电流值。 10)稳压范围:指稳压用热敏电阻器在规定的环境温度范围内稳定电压的范围值。 11)最大电压:指在规定的环境温度下,热敏电阻器正常工作时所允许连续施加的最高电压值。 12)绝缘电阻:指在规定的环境条件下,热敏电阻器的电阻体与绝缘外壳之间的电阻值。 ●正温度系数热敏电阻器(PTC—positive temperature coefficient thermistor)

NTC热敏电阻的作用

NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰(Mn)、钴(Co)、镍(Ni)、铝(Al)、锌(Zn)等两种或者两种以上高纯度金属氧化物为主要材料,经共同沉淀或水热法合成的纳米粉体材料,后经球磨充分混合、等静压成型、高温烧结、半导体切片、划片、玻封烧结或环氧包封等封结工艺制成的接近理论密度结构的半导体电子陶瓷材料,这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。它具有电阻值随着温度的变化而相应变化的特性。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在100~1500000欧姆,温度系数-2%~-5%。其电阻率和材料参数(B值)随材料成分比例、烧结温度、烧结气氛和结构状不同而变化,这种具有负温度系数特征的热敏电阻具有灵敏度高、稳定性好、响应快、寿命长、成本低等特点,NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 抑制浪涌电流用NTC热敏电阻器 产品概述 在有电容器,加热器和马达的电子电路中,在电流接通的瞬间,必将产生一个很大的电流,这种浪涌电流作用的时间虽短,但其峰值却很大。在转换电源,开关电源,UPS电源中,这种浪涌电流甚至超过工作电流的100倍以上。因此,必须有效的抑制这种浪涌电流。当电流直接加在功率型NTC热敏电阻器上时,其电阻值就会随着电阻体发热而迅速下降。由于功率型NTC热敏电阻器有一个规定的零功率电阻值,当其串联在电源回路中时,就可以有效地抑制开机浪涌电流,并且在完成抑制浪涌电流作用以后,由于通过其电流的持续作用,功率型NTC热敏电阻器的电阻值将下降到非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响。所以,在电源回路中使用功率型NTC热敏电阻器,是抑制开机时的浪涌电流,以保护电子设备免遭破坏的最为简便而有效的措施。 主要参数 额定零功率电阻R25(Ω) 最大稳态电流I(A) 最大电流时近似电阻值R(Ω) 时间常数(S) 耗散系数(mW/℃ ) 工作温度范围: -55 ~ +200℃

NTC热敏电阻温度传感器

GUANG DONG ZHAO QING FNEG HUA ELECTRONIC ENGINEERING R&D CO.,LTD

■特性FEATURES ·高精度、高稳定性 High precision and high stability ·响应快速 Quick temperature response ·优良的抗热冲击性 Resistant to heat shock ·耐湿性能优良 Moisture resistant ·高科技批量化生产保证了产品的高品质和高稳定性 Excellent quality and high stability by high technical mass production ■ 用途 APPLICATIONS ·各种空调机、电冰箱、热水器、微波炉等的温度检测 Temperature test in all kinds of air-condition,refrigerator,hot boiler,microwave oven. ■ 型号命名PART NUMBERING FH - CWF ××××××××××/ ×××× × ①② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ① 风华公司标示记号 Fenghua Electronics Engineering R&D CO.,LTD.code ② NTC热敏电阻温度传感器标示符号 NTC temperature sensors code ③ 公称电阻值 为25度时的数值 单位为欧姆 Rated zero-power resistance(R25) unit:Ω 前两位数字表示电阻值的有效数字,第三位数字表示其后零的个数。 The first two are significant figure of resistance and the third one expresses number of following zeros ④ 电阻值公差符号(%)Tolerance of R25(%) 记号Code E F G H J X 电阻值公差Tolerance of R25±0.5±1.0±2.0±3.0±5.0特殊公差 Specific tolerance ⑤ B值常数记号 B value Code ⑥ B值公差符号(%)Tolerance of B value(%) 记号Code E F G H J X B值公差Tolerance of B ±0.5 ±1.0±2.0±3.0±5.0特殊公差 Specific tolerance ⑦ 计算B值温度代码 B value Temperature Code 记号Code A B C D E F G H M N 两温度点25/5025/ 85 0/25 0/50 0/1000/8025/100-18/25 -20/25 5/25 ⑧ 器件的长度标示记号 单位为毫米 Length of the sensor unit:mm ⑨ 器件头外型标示记号Termination shape code 记号Code C E 外型Termination shape 铜壳灌封型 Copper shell 环氧树脂包封型 Epoxy Resin 广东肇庆风华电子工程开发有限公司 GUANG DONG ZHAO QING FNEG HUA ELECTRONIC ENGINEERING R&D CO.,LTD

相关主题
相关文档
最新文档