生物化学名词解释答案
生物化学名词解释

生物化学名词解释第十九章1, 翻译(translation): 在蛋白质合成期间, 将存在于mrna上代表一个多肽的核苷酸残基序列转换为多肽链氨基酸残基序列的过程。
2, 遗传密码(genetic code): 核酸中的核苷酸残基序列与蛋白质中的氨基酸残基序列之间的对应关系。
;连续的3个核苷酸残基序列为一个密码子, 特指一个氨基酸。
标准的遗传密码是由64个密码子组成的, 几乎为所有生物通用。
3, 起始密码子(iniation codon): 指定蛋白质合成起始位点的密码子。
最常见的起始密码子是蛋氨酸密码: aug4, 终止密码子(termination codon): 任何trna分子都不能正常识别的, 但可被特殊的蛋白结合并引起新合成的肽链从翻译机器上释放的密码子。
存在三个终止密码子: uag , uaa和uga.5, 密码子(condon): mrna(或dna)上的三联体核苷酸残基序列, 该序列编码着一个指定的氨基酸 , trna 的反密码子与mrna的密码子互补。
6, 反密码子(anticodon): trna分子的反密码子环上的三联体核苷酸残基序列。
在翻译期间, 反密码子与mrna中的互补密码子结合。
7, 简并密码子(degenerate codon): 也称为同义密码子。
是指编码相同的氨基酸的几个不同的密码子。
8, 氨基酸臂(amino arm): 也称为接纳茎。
trna分子中靠近3ˊ端的核苷酸序列和5ˊ端的序列碱基配对, 形成的可接收氨基酸的臂(茎)。
9, tψc臂(tψc arm): trna中含有胸腺嘧啶核苷酸-假尿嘧啶核苷酸-胞嘧啶核苷酸残基序列的茎-环结构。
10, 氨酰-trna(aminoacyl-trna): 在氨基酸臂的3ˊ端的腺苷酸残基共价连接了氨基酸的trna分子。
11, 同工trna(isoacceptor trna): 结合相同氨基酸的不同的trna分子。
12, 摆动(wobble): 处于密码子3ˊ端的碱基与之互补的反密码子5ˊ端的碱基(也称为摆动位置), 例如i可以与密码子上3ˊ端的u, c和a配对。
生物化学一名词解释及简答题

DNA的溶解温度(Tm值):引起DNA发生“溶解”的温度变化范围只不过几度,这个温度变化范围的中点称为氨的同化:由生物固氮和硝酸还原作用产生的氨,进入生物体后被转变为含氮有机化合物的过程氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的PH值,用符号PL表示氨基酸同功受体:每一个氨基酸可以有多过一个tRNA作为运载工具,这些tRNA称为该氨基酸同功受体半保留复制:双链DNA的复制方式,亲代链分离,每一子代DNA分子由一条亲代链和一条新合成的链组成必需脂肪酸:为人体生长所必需单不能自身合成,必须从食物中摄取的脂肪酸变构酶:或称别构酶,是代谢过程中的关键酶,它的催化活性受其三维结构中的构象变化的调节不对称转录:转录通常只在DNA的任一条链上进行,这称为不对称转录超二级结构:蛋白质分子中相邻的二构耽误组合在一起所形成的有规则的在空间上能辨认的二构组合体单体酶:只有一条多肽链的酶称为单体酶蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象蛋白质的沉淀作用:指在外界因素影响下,蛋白质分子失去水化膜或被中和其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象蛋白质的二级结构:指蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定球状分子结构的构象蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,一级二硫键的位置底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键,有此高能磷酸键提供能量使ADP磷酸化生成ATP的过程称为底物水平磷酸化底物专一性:酶对底物及其催化反应的严格选择性多酶体系:有几个酶彼此嵌合形成的复合体称为多酶体系发夹结构:RNA是单链线形分子,只有局部区域为双链结构,这些结构是由于RNA单链分子通过自身回折使得互补的碱基对相遇,形成氢键结合而成的,称为发夹结构反密码子:在tRNA链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA链上的密码反密码子:在转移RNA反密码子环中的三个核苷酸的序列,在蛋白质合成中通过互补的碱基配对,这部分结合到信使RNA的特殊密码上反义RNA:具有互补序列的RNA非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体内的各种组织和细胞分子杂交:不同的DNA片段之间,DNA片段与RNA片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。
生物化学名词解释

1.提问:为什么中间分子都带磷酸基团?答案:①传递能量;②不能由生物膜渗漏出细胞。
2.提问:发酵不产生能量,其生物意义何在呢?答案:消耗糖酵解脱下的 H,保持细胞内的pH稳定。
3.糖酵解+三羧酸循环的效率:糖酵解 1G → 2ATP+2NADH+2H++2丙酮酸=2+2×3=8ATP三羧酸循环 2丙酮酸→ 30ATP+6CO2+4H2O38ATP储能效率=38 ×7.3/686= 42%比世界上任何一部热机的效率都高!提问:其余能量何处去?答案:以热量形式。
一部分维持体温,一部分散失。
4.提问:丙酮酸通过糖异生形成一个G,消耗多少个ATP能量?答案:6个ATP5.提问:其他多糖是如何产生的?答案:由磷酸戊糖途径提供各种单糖,由类似糖元合成途径合成。
6.研究表明反应的平衡常数≈1,但该反应始终能够持续向正反应进行,?答案:PPi水解消耗,平衡右移7.核苷酸的生物功能①合成核酸②是多种生物合成的活性中间物糖原合成,UDPG.磷脂合成,CDP-乙醇胺,CDP-二脂酰甘油。
③生物能量的载体ATP、GTP④腺苷酸是三种重要辅酶的组分(NAD、FAD、CoA)⑤信号分子cAMP、cGMP8.肽链合成后的“加工处理”:(1)切除甲硫氨酸(与起始符对应);(2)到位置后切除信号肽;(3)糖基化修饰(对于糖蛋白);(4) 多亚基、辅基缔合;9.肽链合成后的“加工处理”(1)细菌蛋白质的N-端为fMet,往往先被脱甲酰基酶催化水解除去N-端的甲酰基,然后在氨肽酶的作用下,再切去一个或多个N-端氨基酸.在真核生物中,N-端的Met常常在肽键的其他部分还未完全合成时就已经水解下来。
(2)某些蛋白质在合成过程中,在氨基末端额外生成 15~30个氨基酸组成的信号顺序(信号肽),用以指导合成的蛋白质去往细胞的固定部位。
最后,这些信号顺序将在特异的肽酶作用下除去。
(3)某些蛋白质的一些Ser、Thr及Tyr残基中的羟基,可通过酶促磷酸化作用,生成磷酸丝氨酸、磷酸苏氨酸及磷酸酪氨酸残基。
名词解释及答案生物化学

1.氨基酸amino acid:是含有一个碱性氨基-NH2和一个酸性羧基-COOH的有机化合物,氨基一般连在α-碳上;氨基酸是蛋白质的构件分子;2.必需氨基酸essential amino acid:指人或其它脊椎动物自己不能合成,需要从食物中获得的氨基酸;3.非必需氨基酸nonessential amino acid:指人或其它脊椎动物自己能由简单的前体合成,不需要从食物中获得的氨基酸;4.等电点pI, isoelectric point:使氨基酸处于兼性离子状态,分子的静电荷为零,在电场中不迁移的pH值;5.肽键peptide bond:一个氨基酸的羧基与另一个的氨基酸的氨基缩合,除去一分子水形成的酰氨键;6.肽peptide:两个或两个以上氨基酸通过肽键共价连接形成的聚合物;7.茚三酮反应ninhydrin reaction:在加热条件下,α-氨基酸或肽与茚三酮反应生成紫色与脯氨酸及羟脯氨酸反应生成黄色化合物的反应;8.层析chromatography:按照在移动相和固定相可以是气体或液体之间的分配比例将混合成分分开的技术;9.离子交换层析ion-exchange column:使用带有固定的带电基团的聚合树脂或凝胶层析柱;一种用离子交换树脂作支持剂的层析技术;10.透析dialysis:利用蛋白质分子不能通过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖等分开的一种分离纯化技术;11.凝胶过滤层析gel filtration chromatography,GPC:也叫做分子排阻层析/凝胶渗透层析;一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术;12.亲合层析affinity chromatograph:利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术;13.高压液相层析HPLC:使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术;14.凝胶电泳gel electrophoresis:以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术;聚丙烯酰胺凝胶电泳SDS-PAGE:在去污剂十二烷基硫酸钠存在下的聚丙烯酰胺凝胶电泳;SDS-PAGE只跟分子的大小有关,跟分子所带的电荷大小、多少无关;16.等电聚焦电泳IEF:利用一种特殊的缓冲液两性电解质在聚丙烯酰胺凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点pI处,即梯度中为某一pH时,就不再带有净的正或负电荷了;17.双向电泳two-dimensional electrophoresis:等电聚焦电泳和SDS-PAGE 的组合,即在同一块胶上先进行等电聚焦电泳按照pI分离,然后再进行SDS-PAGE按照分子大小分离;经染色得到的电泳图是二维分布的蛋白质图; 降解Edman degradation:从多肽链游离的N末端测定氨基酸残基的序列的过程;N末端氨基酸残基被苯异硫氰酸酯PITC修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链少了一个残基被回收再进行下一轮降解循环;19.同源蛋白质homologous protein:在不同生物体内行使相同或相似功能的蛋白质,例如血红蛋白;20.构型configuration:有机分子中各个原子特有的固定的空间排列;这种排列不经过共价键的断裂和重新形成是不会改变的;构型的改变往往使分子的光学活性发生变化;21.构象conformation:指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布;一种构象改变为另一种构象时,不要求共价键的断裂和重新形成;构象改变不会改变分子的光学活性;22.蛋白质一级结构primary structure:指多肽链的氨基酸序列;23.蛋白质二级结构protein secondary structure:指肽链主链不同肽段通过自身的相互作用,形成氢键,沿某一主轴盘旋折叠而形成的局部空间结构,是蛋白质结构的构象单元,通过骨架上的羰基和酰胺基团之间形成的氢键维持;常见的有α-螺旋、β-折叠、β-转角、Q环和无规则卷曲等;24.蛋白质三级结构protein tertiary structure:多肽链借助各种非共价键弯曲、折叠成具特定走向的紧密球状构象;它包括一级结构中相距较远的肽段之间的几何相互关系和侧链在三维空间中彼此间的相互关系;三级结构主要是靠氨基酸侧链之间的疏水相互作用、氢键、范德华力和盐键离子键维持的;25.蛋白质四级结构protein quaternary structure:寡聚蛋白质所有,eg:血红蛋白,寡聚蛋白质中各亚基之间在空间上的相互关系和结合方式; 26;.α-螺旋α-helix:蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的;每个氨基酸残基第n个的羰基与多肽链C端方向的第4个残基第4+n个的酰胺氮形成氢键;在古典的右手α-螺旋结构中,螺距为,每一圈含有个氨基酸残基,每个残基沿着螺旋的长轴上升.27.β-折叠β-pleated sheet: 蛋白质中常见的二级结构,是由伸展的多肽链组成的;折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链的另一个酰氨氢之间形成的氢键维持的;氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列由N到C方向或者是反平行排列肽链反向排列;28.β-转角β-turn:也是多肽链中常见的二级结构,是连接蛋白质分子中的二级结构α-螺旋和β-折叠,使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基;含有5个以上的氨基酸残基的转角又常称为环loop;常见的转角含有4个氨基酸残基有两种类型:转角I的特点是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往是甘氨酸;这两种转角中的第二个残基大都是脯氨酸;29.无规卷曲random coil直链多聚体的一种比较不规则的构象,其侧链间的相互作用比较小;无规卷曲对围绕单键转动阻力极小,并且由于溶剂分子的碰撞而不断扭曲,因此不具独特的三维结构和最适构象;无规卷曲可因环境而改变,有其生物学意义,这类有序的非重复性结构经常构成酶活性部位和其他蛋白质特异的功能部位;30.超二级结构super-secondary structure:在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,种类不多的二级结构组合或二级结构串,在各种蛋白质中充当三级结构的构件;分为αα,βαβ,ββ三种31.结构域domain:多肽链在二级结构或超二级结构的基础上形成三级结构的局部折叠区,它是相对独立的紧密球状实体;32.纤维蛋白fibrous protein:一类主要的不溶于水的蛋白质,通常都含有呈现相同二级结构的多肽链许多纤维蛋白结合紧密,并为单个细胞或整个生物体提供机械强度,起着保护或结构上的作用;33.球蛋白globular protein:紧凑的,近似球形的,含有折叠紧密的多肽链的一类蛋白质,许多都溶于水;典形的球蛋白含有能特异的识别其它化合物的凹陷或裂隙部位;34.角蛋白keratin:由处于α-螺旋或β-折叠构象的平行的多肽链组成不溶于水的起着保护或结构作用蛋白质;35.胶原蛋白collagen:是动物结缔组织最丰富的一种蛋白质,它是由原胶原蛋白分子组成;原胶原蛋白是一种具有右手超螺旋结构的蛋白;每个原胶原分子都是由3条特殊的左手螺旋螺距,每一圈含有个残基的多肽链右手旋转形成的;36.疏水相互作用hydrophobic interaction:水介质中球状蛋白质的折叠总是倾向于把疏水残基埋藏在分子的内部的现象;37.蛋白质变性denaturation:天然蛋白质受到某些物理因素如加热、紫外线照射、高温和表面张力等或化学因素如有机溶剂、脲、胍、酸、碱等的影响时,生物活性丧失,溶解度降低,不对称程度增高以及其他的物理化学常数发生改变,这种过程称蛋白质变性;其实质是次级键被破坏,但一级结构仍完好;38.蛋白质的三维结构:蛋白质分子所有原子和基团在三维空间结构的构象及走向;39.肌红蛋白myoglobin:是由一条肽链和一个血红素辅基组成的结合蛋白,是肌肉内储存氧的蛋白质,它的氧饱和曲线为双曲线型;40.复性renaturation:当变性因素除去后,变性的生物大分子恢复成具有生物活性的天然构象的现象;41.波尔效应Bohr effect:增加CO2浓度和降低pH都能提高血红蛋白亚基的协同效应,引起红细胞内血红蛋白氧亲和力下降,促进血红蛋白释放氧,反之,增加氧气的浓度,使血红蛋白释放H+及CO2,这种现象称波尔效应;42.血红蛋白hemoglobin:存在于脊椎动物、某些无脊椎动物血液和豆科植物根瘤中;血红蛋白是使血液呈红色的蛋白,它由四条链组成,两条α链和两条β链,每一条链有一个包含一个铁原子的环状血红素;氧气结合在铁原子上,被血液运输;血红蛋白的氧解离曲线呈S形,提示亚基之间存在正协同作用;43.别构效应allosteric effect:又称为变构效应,寡聚蛋白质一般具多个结合部位,结合在蛋白质分子的特定部位上的配体对该分子的其他部位所产生的影响;44.伴娘蛋白chaperone:又称分子伴侣,是一种与新合成的多肽链形成复合物并协助它正确折叠成具有生物功能构象的蛋白质;伴娘蛋白可以防止不正确折叠中间体的形成和没有组装的蛋白亚基的不正确聚集,协助多肽链跨膜转运以及大的多亚基蛋白质的组装和解体;45.二硫键disulfide bond:通过两个半胱氨酸巯基的氧化形成的共价键;二硫键在稳定某些蛋白的三维结构上起着重要的作用;46.范德华力van der Waals force:中性原子之间通过瞬间静电相互作用产生的一弱的分子之间的力;当两个原子之间的距离为它们范德华力半径之和时,范德华力最强;强的范德华力的排斥作用可防止原子相互靠近;47.镰刀型细胞贫血病sickle-cell anemia: 血红蛋白分子遗传缺陷造成的一种疾病,病人的大部分红细胞呈镰刀状;其特点是病人的血红蛋白β—亚基N端的第六个氨基酸残缺是缬氨酸Val,而不是下正常的谷氨酸残基Glu;48.二面角:两个肽键平面之间的α-碳原子,可以作为一个旋转点形成二面角dihedral angle;绕Cα-N键轴旋转的二面角C-N-Cα-C称为φ,绕Cα-C键轴旋转的二面角N-Cα-C-N称为ψ,原则上φ和ψ可以取-180°~+180°之间的任一值,这样多肽链主链的各种可能构象都可用φ和ψ这两个二面角或扭角来描述;49.蛋白质特定构象形成的驱动力:1R-侧链基团间的相互作用 2肽链与环境水分子的相互作用 3天然构象的形成过程是一个自发的过程G<050. 两性离子ampholyte:又称兼性离子,偶极离子,即在同一分子中含有等量的正负两种电荷;51.氢键hydrogen bond:氢原子与电负性的原子X共价结合时,共用的电子对强烈地偏向X的一边,使氢原子带有部分正电荷,能再与另一个电负性高而半径较小的原子Y结合,形成的X—H┅Y型的键;52.肽平面peptide plane:也叫酰胺平面,指肽链主链上的肽键因具有部分双键性质,不能自由旋转,使连接在肽键上的6个原子共处的同一平面;53.谷胱甘肽glutathione ,GSH:由谷氨酸、半胱氨酸、甘氨酸组成的短肽,主要生理作用是做为体内一种重要的抗氧化剂,它能够清除掉人体内的自由基,清洁和净化人体内环境污染,从而增进了人的身心健康;谷胱甘肽有还原型G-SH和氧化型G-S-S-G两种形式,在生理条件下以还原型谷胱甘肽占绝大多数;谷胱甘肽还原酶催化两型间的互变;该酶的辅酶为磷酸糖旁路代谢提供的NADPH;54.亚基subunit又称亚单位,组成蛋白质四级结构最小的共价单位,是指四级结构的蛋白质中具有三级结构的球蛋白;55.分子病molecular disease:由于基因或DNA分子的缺陷,致使细胞内RNA及蛋白质合成出现异常、人体结构与功能随之发生变异的疾病;DNA分子的此种异常,有些可随个体繁殖而传给后代;如镰状细胞性贫血,是合成血红蛋白的基因异常所致的贫血疾患;56.模序Motif:也称模体,在许多分子中,可以发现2到3个具有二级结构的肽段,在空间上互相接近,形成一个具有特殊功能的空间结构,称为蛋白质的“模序”;一个模序总有其特异的氨基酸序列,发挥特殊的功能,例如“锌指结构”zinc finger,此模体由一个α-螺旋和两个反平行的β-折叠三个肽段组成,形似手指,具有结合锌离子的功能;模体的特征性空间结构使其特殊功能的结构基础;57.抗原决定簇antigenic determinant:又称表位,是决定抗原性的特殊化学基团,大多存在于抗原物质的表面,有些存在于抗原物质的内部,须经酶或其他方式处理后才暴露出来;58.抗体antibody;Ab:机体的免疫系统在抗原刺激下,由B淋巴细胞或记忆细胞增殖分化成的浆细胞所产生的、可与相应抗原发生特异性结合的免疫球蛋白;主要分布在血清中,也分布于组织液及外分泌液中;59.抗原antigen;Ag:是指能够刺激机体产生特异性免疫应答,并能与免疫应答产物抗体和致敏淋巴细胞在体外结合,发生免疫效应特异性反应的物质;抗原的基本特性有两种:一是诱导免疫应答的能力,也就是免疫原性;二是与免疫应答的产物发生反应,也就是抗原性;60.半抗原hapten:能与对应抗体结合出现抗原-抗体反应、又不能单独激发人或动物体产生抗体的抗原;它只有反应原性,不具免疫原性,又称不完全抗原;大多数多糖和所有的类脂都属于半抗原;如果用化学方法把半抗原与某种纯蛋白的分子载体结合,纯蛋白会获得新的免疫原性,并能刺激动物产生相应的抗体;半抗原一旦与纯蛋白结合,就构成该蛋白质的一个抗原簇;一些比一般半抗原分子量小,但有特异结构的化学活性基团物质如青霉素、磺胺剂等 ,称为简单半抗原;当简单半抗原进入过敏体质的机体时,能与体内组织蛋白结合,成为完全抗原,这种完全抗原可引起超敏反应;一般来说,B淋巴细胞识别半抗原决定簇,T淋巴细胞识别载体抗原决定簇;61.单克隆抗体monoclonal antibody;McAb;mAb:高度均质性的特异性抗体,由一个识别单一抗原表位的B细胞克隆所分泌;一般来自杂交瘤细胞;62.多克隆抗体polyclonal antibody:由多个B细胞克隆所产生的抗体,可与不同抗原表位结合且免疫球蛋白类别各异;63.活性肽Active Peptide:肽是两个或两个以上的氨基酸以肽键相连的化合物,在人体内起重要生理作用,发挥生理功能;具有活性的多肽称为活性肽,又称生物活性肽或生物活性多肽;64.肌红蛋白myoglobin,MYO,Mb:由153个氨基酸残基组成,是由一条肽链和一个血红素辅基组成的结合蛋白,和血红蛋白同源,与氧的结合能力介于血红蛋白和细胞色素氧化酶之间,可帮助肌细胞将氧转运到线粒体;它的氧饱和曲线为双曲线型;65.盐溶salting-in:在蛋白质水溶液中,加入少量的中性盐,如硫酸铵、硫酸钠、氯化钠等,会增加蛋白质分子表面的电荷,增强蛋白质分子与水分子的作用,从而使蛋白质在水溶液中的溶解度增大,这种现象称为盐溶;66.盐析salting-out:增加中性盐浓度使蛋白质、气体、未带电分子溶解度降低的现象;是蛋白质分离纯化中经常使用的方法,最常用的中性盐有硫酸铵、硫酸钠和氯化钠等;blot :蛋白质印迹,它是分子生物学、生物化学和免疫遗传学中常用的一种实验方法;其基本原理是通过特异性抗体对凝胶电泳处理过的细胞或生物组织样品进行着色,通过分析着色的位置和着色深度获得特定蛋白质在所分析的细胞或组织中的表达情况的信息;68.协同效应synergistic effect:是指两种或两种以上的组分相加或调配在一起,所产生的作用大于各种组分单独应用时作用的总和; 而其中对混合物产生这种效果的物质称为增效剂synergist;分为正协同效应、负协同效应;。
生物化学名词解释

绪论1.生物化学(biochemistry):从分子水平来研究生物体(包括人类、动物、植物和微生物内基本物质的化学组成、结构,以及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能关系的一门科学,是一门生物学与化学相结合的基础学科。
2.新陈代谢(metabolism):生物体与外界环境进行有规律的物质交换,称为新陈代谢。
通过新陈代谢为生命活动提供所需的能量,更新体内基本物质的化学组成,这是生命现象的基本特征,是揭示生命现象本质的重要环节。
3.分子生物学(molecular biology):分子生物学是现代生物学的带头学科,它主要研究遗传的分子基础(分子遗传学),生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能等。
4.药学生物化学:是研究与药学科学相关的生物化学理论、原理与技术,及其在药物研究、药品生产、药物质量控制与药品临床中应用的基础学科。
第一章糖的化学1.糖基化工程:通过人为的操作(包括增加、删除或调整)蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。
2.单糖(monosaccharide):凡不能被水解成更小分子的糖称为单糖。
单糖是糖类中最简单的一种,是组成糖类物质的基本结构单位。
3.多糖(polysaccharide):由许多单糖分子缩合而成的长链结构,分子量都很大,在水中不能成真溶液,有的成胶体溶液,有的不溶于水,均无甜味,也无还原性。
4.寡糖(oligosaccharide):是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。
5.结合糖(glycoconjugate):也称糖复合物或复合糖,是指糖和蛋白质、脂质等非糖物质结合的复合分子。
6.同聚多糖(homopolysaccharide):也称为均一多糖,由一种单糖缩合而成,如淀粉、糖原、纤维素、戊糖胶、木糖胶、阿拉伯糖胶、几丁质等。
7.杂多糖(heteropolysaccharide):也称为不均一多糖,由不同类型的单糖缩合而成,如肝素、透明质酸和许多来源于植物中的多糖如波叶大黄多糖、当归多糖、茶叶多糖等。
生物化学名词解释

生化名词解释生物化学:是研究生命现象的本质即研究生物体的化学组成及这些化学物质在生物体内所发生的化学变化以及这些化学变化与生物的生命活动之间的关系,当前定义为研究生物分子特别是生物大分子之间的相互作用,相互影响以表现生命活动现象原理的科学。
分子伴侣:又叫伴娘蛋白,是细胞中一类帮助新生肽链折叠成正确的构象,但其自身并作为终产物的组成成分的蛋白分子。
结构域:在蛋白质三级结构内的独立折叠单元。
结构域通常都是几个超二级结构单元的组合,不同结构域之间以共价键相连。
别构效应:又叫变构效应,是指配基与寡聚蛋白分子中的一个亚基结合后改变了其构象,并导致相邻其他亚基构象和功能的改变,最终使蛋白质生物活性改变的现象。
协同作用:变构效应的一种特殊类型,是亚基之间的一种相互作用。
指寡聚蛋白的某一个亚基与配基结合时可以改变其他亚基构象,进而改变蛋白质生物活性的现象,分为正协同作用和负协同作用。
回文序列:双链DNA中的一段倒置重复序列,当该序列的双链被打开后,可形成局部“+”字形结构。
同工酶:是指有机体内能够催化同一种化学反应,但其酶蛋白本身分子结构、理化性质和免疫学性质不同的一组酶。
竞争性抑制:抑制剂与酶的天然底物结构相似,可与底物竞争酶的活性中心,从而降低酶的结合效率,抑制酶的活性,这种抑制作用称竞争性抑制作用。
非竞争性抑制:抑制剂与酶活性中心以外的必需基团结合,但不影响酶与底物的结合,酶与底物的结合也不影响酶与抑制剂的结合,但形成的酶-底物-抑制剂复合物不能进一步释放出产物,致使酶活性丧失的抑制作用。
酶的专一性:一种酶只能作用与一类化合物或一定的化学键,催化一定类型的化学反应,并生成一定的产物的现象。
Km:酶反应速度达到最大反应速度一半时底物的浓度,是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。
变构酶:或称别构酶,是代谢过程中的关键酶,它的催化活性受其三维结构中的构象变化所调节。
比活力:是指每毫克酶蛋白所具有的活力单位数。
(完整)生物化学名词解释

生物化学名词解释第一章蛋白质的结构与功能1。
肽键:一分子氨基酸的氨基和另一分子氨基酸的羧基通过脱去水分子后所形成的酰胺键称为肽键。
2. 等电点:在某一pH溶液中,氨基酸或蛋白质解离成阳离子和阴离子的趋势或程度相等,成为兼性离子,成点中性,此时溶液的pH称为该氨基酸或蛋白质的等电点。
3. 模体:在蛋白质分子中,由两个或两个以上具有二级结构的肽段在空间上相互接近,形成一个特殊的空间构象,并发挥特殊的功能,称为模体。
4. 结构域:分子量较大的蛋白质三级结构常可分割成多个结构紧密的区域,并行使特定的功能,这些区域被称为结构域.5。
亚基:在蛋白质四级结构中每条肽链所形成的完整三级结构。
6. 肽单元:在多肽分子中,参与肽键的4个原子及其两侧的碳原子位于同一个平面内,称为肽单元。
7. 蛋白质变性:在某些理化因素影响下,蛋白质的空间构象破坏,从而改变蛋白质的理化性质和生物学活性,称之为蛋白质变性。
第二章核酸的结构与功能1。
DNA变性:在某些理化因素作用下,DNA分子稳定的双螺旋空间构象破环,双链解链变成两条单链,但其一级结构仍完整的现象称DNA变性.2。
Tm:即溶解温度,或解链温度,是指核酸在加热变性时,紫外吸收值达到最大值50%时的温度.在Tm时,核酸分子50%的双螺旋结构被破坏。
3. 增色效应:核酸加热变性时,由于大量碱基暴露,使260nm处紫外吸收增加的现象,称之为增色效应.4. HnRNA:核内不均一RNA。
在细胞核内合成的mRNA初级产物比成熟的mRNA分子大得多,称为核内不均一RNA。
hnRNA在细胞核内存在时间极短,经过剪切成为成熟的mRNA,并依靠特殊的机制转移到细胞质中.5。
核酶:也称为催化性RNA,一些RNA具有催化能力,可以催化自我拼接等反应,这种具有催化作用的RNA分子叫做核酶。
6. 核酸分子杂交:不同来源但具有互补序列的核酸分子按碱基互补配对原则,在适宜条件下形成杂化双链,这种现象称核酸分子杂交.第三章酶1. 酶:由活细胞产生的具有催化功能的一类特殊的蛋白质。
生物化学名词解释和简答题综合终极版

生物化学名词解释和简答题名词解释1.两性离子:又称兼性离子,偶极离子,即在同一分子中含有等量的正负两种电荷。
2.等电点:蛋白质是两性电解质,溶液中蛋白质的带电情况与它所处环境的pH有关。
调节溶液的Ph值,可以使一个蛋白质带正电或带负电或不带电;在某一pH时,蛋白质分子中所带的正电荷数目与负电荷数目相等,即静电荷为零,且在电场中不移动,此时溶液的pH值即为该中蛋白质的等电点。
3.构型:指在立体异构体中,取代基团或原子因受某种因素的限制,在空间取不同的位臵所形成的不同立体异构。
4.构象:指分子内各原子或基团之间的相互立体关系。
构象的改变是由于单键的旋转儿产生的,不需有共价键变化(断裂或形成),但涉及到氢键等次级键的改变。
5.结构域:结构域又成为辖区。
在较大的蛋白质中,往往存在两个或多个在空间上可明显区分的、相对独立的三维实体,这样的三维实体即结构域;结构域自身是紧密装配的,但结构域与结构域之间关系松懈。
结构域与结构域之间常常有一段长短不等的肽链相连,形成所谓铰链区。
6.蛋白质一ֻ二.三.四级结构以及超二级结构:蛋白质中氨基酸的排列顺序称为蛋白质的一级结构。
多肽链中的主骨架上所含的羰基和亚氨基,在主链骨架盘绕折叠时可以形成氢键,依靠这种氢键维持固定,多肽链主链骨架上的若干肽段可以形成有规律性的空间排布而其它部分在空间的排布是无规则的,如无规则的卷曲结构。
这种由多肽链主链骨架盘绕折叠,依靠氢键维持固定所形成的有规律性结构称为蛋白质的二级结构,包括无规则卷曲结构。
二级结构与侧链R的构象无关。
维持二级结构稳定的化学键主要是氢键。
蛋白质分子中的多肽链在二级结构或超二级结构甚至结构域的基础上进一步盘绕折叠,依靠非共价键(如氢键、离子键、疏水的相互作用等)维系固定所形成的特定空间结构称为蛋白质的三级结构。
三级结构指多肽链所有原子在空间中的排布。
此外,在某些蛋白质分子中,二硫键对其三级结构的稳定也起重要的作用。
有些蛋白质分子中含有两条或多条肽链,每一条肽链都具有各自的三级结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生化名词解释
Exon外显子
真核基因中与成熟mRNA、rRNA或tRNA分子相对应的DNA序列,为编码序列。
Intron内含子
存在于真核生物基因中无编码意义而被切除的序列。
Km value of enzyme Km值
酶促反应速度等于最大反应速度一半时所对应的底物浓度。
ketone bodies酮体
包括乙酰乙酸、β-羟丁酸和丙酮,是脂肪酸在肝脏氧化分解的特有产物。
Semi-conservation replication of DNA半保留复制
DNA复制时以双链中的每一条单链作为模板,分别合成一条互补新链,重新形成的双链中各保留一条原有DNA单链。
Specific activity of enzyme酶的比活力
每毫克蛋白质所含的酶活力单位数(U/mg)。
pI of amino acid氨基酸等电点氨基酸所带净电荷为零时溶液的PH。
Oxidative phosphorylation氧化磷酸化
物质在体内氧化时释放的能量供给ADP与无机磷合成ATP的偶联反应。
主要在线粒体中进行。
Promoter启动子
RNA聚合酶结合位点及其周围的DNA序列,至少包括一个转录起始点及一个以上的机能组件。
Renaturation of DNA DNA复性
变性DNA 在适当条件下,二条互补链全部或部分恢复到天然双螺旋结构的现象,它是变性的一种逆转过程。
Okazaki fragments冈崎片段
在DNA不连续复制过程中,沿着后随链的模板链合成的新DNA片段,其长度在真核与原核生物当中存在差别,真核生物的冈崎片段长度约为100~200核苷酸残基,而原核生物的为1000~2000核苷酸残基。
Ketogenic AA生酮氨基酸/ Glucogenic AA生糖氨基酸
经过代谢能产生酮体的氨基酸。
/在代谢中可以作为丙酮酸、葡萄糖和糖原前体的氨基酸。
Denaturation of protein蛋白质变性
蛋白质在某些物理和化学因素作用下其特定的空间构象被改变,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质变性。
Isoenzyme同工酶
生物体内催化相同反应而分子结构不同的酶。
Structural domain结构域
生物大分子中具有特异结构和独立功能的区域,特别指蛋白质中这样的区域。
/Super-secondary structure超二级结构
蛋白质二级结构和三级结构之间的一个过渡性结构层次,在肽链折叠过程中,因一些二级结构的构象单元彼此相互作用组合而成。
Ribozyme核酶
具有自我催化能力的RNA 分子自身可以进行分子的剪接,这种具有催化作用的RNA 被称为核酶。
Melting temperature of DNA解链温度
双链DNA或RNA分子丧失半数双螺旋结构时的温度。
要认识的英文
Amino acid/ protein/ Nucleotides核苷酸/Glycolysis糖酵解EMP
Citric acid cycle或Krebs cycle 三羧酸循环TCA
DNA polymerases I / polymerase II / polymerase III/RNA polymerases。