高考数学函数的单调性1

合集下载

2024年高考数学总复习第二章《函数与基本初等函数》函数的单调性与最值

2024年高考数学总复习第二章《函数与基本初等函数》函数的单调性与最值

2024年高考数学总复习第二章《函数与基本初等函数》§2.2函数的单调性与最值最新考纲1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义.2.学会运用函数图象理解和研究函数的性质.1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件(1)对于任意的x ∈I ,都有f (x )≤M ;(2)存在x 0∈I ,使得f (x 0)=M(3)对于任意的x ∈I ,都有f (x )≥M ;(4)存在x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值概念方法微思考1.在判断函数的单调性时,你还知道哪些等价结论?提示对∀x 1,x 2∈D ,f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数,减函数类似.2.写出对勾函数y =x +ax (a >0)的增区间.提示(-∞,-a ]和[a ,+∞).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.(×)(2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)(3)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).(×)(4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.(×)(5)所有的单调函数都有最值.(×)题组二教材改编2.函数f (x )=x 2-2x 的单调递增区间是____________.答案[1,+∞)(或(1,+∞))3.函数y =2x -1在[2,3]上的最大值是______.答案24.若函数f (x )=x 2-2mx +1在[2,+∞)上是增函数,则实数m 的取值范围是________.答案(-∞,2]解析由题意知,[2,+∞)⊆[m ,+∞),∴m ≤2.题组三易错自纠5.函数y =12log (x 2-4)的单调递减区间为________.答案(2,+∞)6.若函数f (x )=|x -a |+1的增区间是[2,+∞),则a =________.答案2解析∵f (x )=|x -a |+1的单调递增区间是[a ,+∞),∴a =2.7.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.答案[-1,1)解析-2≤a+1≤2,-2≤2a≤2,a+1>2a,解得-1≤a<1.8.函数f(x)1x,x≥1,-x2+2,x<1的最大值为________.答案2解析当x≥1时,函数f(x)=1x为减函数,所以f(x)在x=1处取得最大值,为f(1)=1;当x<1时,易知函数f(x)=-x2+2在x=0处取得最大值,为f(0)=2.故函数f(x)的最大值为2.题型一确定函数的单调性命题点1求函数的单调区间例1(1)函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)答案D解析函数y=x2-2x-8=(x-1)2-9图象的对称轴为直线x=1,由x2-2x-8>0,解得x>4或x<-2,所以(4,+∞)为函数y=x2-2x-8的一个单调递增区间.根据复合函数的单调性可知,函数f(x)=ln(x2-2x-8)的单调递增区间为(4,+∞).(2)函数y=-x2+2|x|+3的单调递减区间是__________________.答案[-1,0],[1,+∞)解析由题意知,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4,二次函数的图象如图.由图象可知,函数y=-x2+2|x|+3的单调递减区间为[-1,0],[1,+∞).命题点2讨论函数的单调性例2判断并证明函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上的单调性.解函数f (x )=ax 2+1x(1<a <3)在[1,2]上单调递增.证明:设1≤x 1<x 2≤2,则f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1=(x 2-x 1)a (x 1+x 2)-1x 1x 2,由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4,1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上单调递增.引申探究如何用导数法求解本例?解f ′(x )=2ax -1x 2=2ax 3-1x 2,因为1≤x ≤2,所以1≤x 3≤8,又1<a <3,所以2ax 3-1>0,所以f ′(x )>0,所以函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上是增函数.思维升华确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.跟踪训练1(1)下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是()A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x -xD .f (x )=ln(x +1)答案C解析由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A ,D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.(2)函数f (x )=(a -1)x +2在R 上单调递增,则函数g (x )=a |x -2|的单调递减区间是______________.答案(-∞,2]解析因为f (x )在R 上单调递增,所以a -1>0,即a >1,因此g (x )的单调递减区间就是y =|x -2|的单调递减区间(-∞,2].(3)函数f (x )=|x -2|x 的单调递减区间是________.答案[1,2]解析f (x )2-2x ,x ≥2,x 2+2x ,x <2.画出f (x )图象,由图知f (x )的单调递减区间是[1,2].题型二函数的最值1.函数y =x 2-1x 2+1的值域为____________.答案[-1,1)解析由y =x 2-1x 2+1,可得x 2=1+y 1-y.由x 2≥0,知1+y1-y≥0,解得-1≤y <1,故所求函数的值域为[-1,1).2.函数y =x +1-x 2的最大值为________.答案2解析由1-x 2≥0,可得-1≤x ≤1.可令x =cos θ,θ∈[0,π],则y =cos θ+sin θ=2sin θ∈[0,π],所以-1≤y ≤2,故原函数的最大值为 2.3.函数y =|x +1|+|x -2|的值域为________.答案[3,+∞)解析函数y 2x +1,x ≤-1,,-1<x <2,x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞).4.函数y =3x +1x -2的值域为________________.答案{y |y ∈R 且y ≠3}解析y =3x +1x -2=3(x -2)+7x -2=3+7x -2,因为7x -2≠0,所以3+7x -2≠3,所以函数y =3x +1x -2的值域为{y |y ∈R 且y ≠3}.5.函数f (x )-log 2(x +2)在区间[-1,1]上的最大值为________.答案3解析由于y 在[-1,1]上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.6.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ()A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关答案B 解析方法一设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.故选B.方法二由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b 的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关,故选B.思维升华求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(4)分离常数法:形如求y=cx+dax+b(ac≠0)的函数的值域或最值常用分离常数法求解.(5)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.题型三函数单调性的应用命题点1比较函数值的大小例3已知函数f(x)的图象向左平移1个单位后关于y轴对称,当x2>x1>1时,[f(x2)-f(x1)]·(x2-x1)<0恒成立,设a=f -12,b=f(2),c=f(3),则a,b,c的大小关系为()A.c>a>b B.c>b>aC.a>c>b D.b>a>c答案D解析根据已知可得函数f(x)的图象关于直线x=1对称,且在(1,+∞)上是减函数,因为a=f -12f522<52<3,所以b>a>c.命题点2解函数不等式例4(2018·四川成都五校联考)设函数f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则f(x)<0的解集是()A.{x|-3<x<0或x>3}B.{x|x<-3或0<x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}答案B解析∵f(x)是奇函数,f(-3)=0,∴f(-3)=-f(3)=0,解得f(3)=0.∵函数f(x)在(0,+∞)内是增函数,∴当0<x<3时,f(x)<0;当x>3时,f(x)>0.∵函数f(x)是奇函数,∴当-3<x<0时,f(x)>0;当x<-3时,f(x)<0.则不等式f (x )<0的解集是{x |0<x <3或x <-3}.命题点3求参数的取值范围例5(1)(2018·全国Ⅱ)若f (x )=cos x -sin x 在[0,a ]上是减函数,则a 的最大值是()A.π4B.π2C.3π4D .π答案C解析∵f (x )=cos x -sin x =-2sin∴当x -π4∈-π2,π2,即x ∈-π4,3π4时,y =sinf (x )=-2sin ∴-π4,3π4是f (x )在原点附近的单调减区间,结合条件得[0,a ]⊆-π4,3π4,∴a ≤3π4,即a max =3π4.(2)已知函数f (x )2+12a -2,x ≤1,x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案(1,2]解析由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.(3)(2018·安徽滁州中学月考)已知函数f (x )=log 2(x 2-ax +3a )在[2,+∞)上是增函数,则实数a 的取值范围是______________.答案(-4,4]解析设g (x )=x 2-ax +3a ,根据对数函数及复合函数的单调性知,g (x )在[2,+∞)上是增函数,且g (2)>0,2,a >0,∴-4<a ≤4,∴实数a 的取值范围是(-4,4].思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小.(2)解不等式.利用函数的单调性将“f ”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.(3)利用单调性求参数.①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的;③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.跟踪训练2(1)如果函数f (x )2-a )x +1,x <1,x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.答案32,解析对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,所以y =f (x )在(-∞,+∞)上是增函数.-a >0,>1,2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是32,(2)已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f x 的取值范围是______________.答案12,解析因为函数f (x )是定义在区间[0,+∞)上的增函数,且满足f (2x -1)<所以0≤2x -1<13,解得12≤x <23.1.下列函数中,在区间(0,+∞)上为增函数的是()A .y =ln(x +2)B .y =-x +1C .yD .y =x +1x答案A解析函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.已知函数f(x)=x2-2x-3,则该函数的单调递增区间为()A.(-∞,1]B.[3,+∞)C.(-∞,-1]D.[1,+∞)答案B解析设t=x2-2x-3,由t≥0,即x2-2x-3≥0,解得x≤-1或x≥3,所以函数f(x)的定义域为(-∞,-1]∪[3,+∞).因为函数t=x2-2x-3的图象的对称轴为x=1,所以函数t在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f(x)的单调递增区间为[3,+∞).3.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3)答案A解析因为f(x)是偶函数,所以f(-3)=f(3),f(-2)=f(2).又因为函数f(x)在[0,+∞)上是增函数,所以f(π)>f(3)>f(2),即f(π)>f(-3)>f(-2).4.已知函数f(x)-2a)x,x≤1,a x+13,x>1,当x1≠x2时,f(x1)-f(x2)x1-x2<0,则a的取值范围是(),13 B.13,12,12 D.14,13答案A解析当x1≠x2时,f(x1)-f(x2)x1-x2<0,∴f(x)是R上的减函数.∵f(x)-2a)x,x≤1,a x+13,x>1,-2a<1,a<1,-2a≥13,∴0<a≤13.5.设f (x )x -a )2,x ≤0,+1x +a ,x >0,若f (0)是f (x )的最小值,则a 的取值范围为()A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]答案D 解析∵当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2.∴a 的取值范围是0≤a ≤2.故选D.6.已知函数f (x )2x ,x ≥1,+c ,x <1,则“c =-1”是“函数f (x )在R 上单调递增”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A 解析若函数f (x )在R 上单调递增,则需log 21≥c +1,即c ≤-1.由于c =-1,即c ≤-1,但c ≤-1不能得出c =-1,所以“c =-1”是“函数f (x )在R 上单调递增”的充分不必要条件.7.已知奇函数f (x )在R 上是增函数.若a =-b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为________________.答案a >b >c 解析∵f (x )在R 上是奇函数,∴a =-log f (log 25).又f (x )在R 上是增函数,且log 25>log 24.1>log 24=2>20.8,∴f (log 25)>f (log 24.1)>f (20.8),∴a >b >c .8.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是______________.答案-14,0解析当a =0时,f (x )=2x -3在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上,实数a 的取值范围是-140.9.记min{a ,b },a ≤b ,,a >b ,若f (x )=min{x +2,10-x }(x ≥0),则f (x )的最大值为________.答案6解析由题意知,f (x )+2,0≤x ≤4,-x ,x >4,易知f (x )max =f (4)=6.10.设函数f (x )x 2+4x ,x ≤4,2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a的取值范围是__________________.答案(-∞,1]∪[4,+∞)解析作函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.11.已知f (x )=x x -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明当a =-2时,f (x )=x x +2.设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增.(2)解设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1.综上所述,0<a ≤1.12.(2018·河南南阳一中月考)设函数f (x )=ax 2+bx +1(a ,b ∈R ),F (x )x ),x >0,f (x ),x <0.(1)若f (-1)=0,且对任意实数x 均有f (x )≥0成立,求F (x )的解析式;(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解(1)∵f (-1)=0,∴b =a +1.由f (x )≥0恒成立,知a >0且方程ax 2+bx +1=0中Δ=b 2-4a =(a +1)2-4a =(a -1)2≤0,∴a =1.从而f (x )=x 2+2x +1.∴F (x )x +1)2,x >0,(x +1)2,x <0.(2)由(1)可知f (x )=x 2+2x +1,∴g (x )=f (x )-kx =x 2+(2-k )x +1,由g (x )在[-2,2]上是单调函数,知-2-k 2≤-2或-2-k 2≥2,得k ≤-2或k ≥6.即实数k 的取值范围为(-∞,-2]∪[6,+∞).13.已知函数f (x )3,x ≤0,(x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是()A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)答案D 解析∵当x =0时,两个表达式对应的函数值都为0,∴函数的图象是一条连续的曲线.又∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.14.已知f (x )2-4x +3,x ≤0,x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.答案(-∞,-2)解析二次函数y 1=x 2-4x +3的对称轴是x =2,∴该函数在(-∞,0]上单调递减,∴x 2-4x +3≥3,同样可知函数y 2=-x 2-2x +3在(0,+∞)上单调递减,∴-x 2-2x +3<3,∴f (x )在R 上单调递减,∴由f (x +a )>f (2a -x )得到x +a <2a -x ,即2x <a ,∴2x <a 在[a ,a +1]上恒成立,∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).15.已知函数f (x )=2020x +ln(x 2+1+x )-2020-x +1,则不等式f (2x -1)+f (2x )>2的解集为____________.答案解析由题意知,f (-x )+f (x )=2,∴f (2x -1)+f (2x )>2可化为f (2x -1)>f (-2x ),又由题意知函数f (x )在R 上单调递增,∴2x -1>-2x ,∴x >14,∴16.已知定义在区间(0,+∞)上的函数f (x )是增函数,f (1)=0,f (3)=1.(1)解不等式0<f (x 2-1)<1;(2)若f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立,求实数m 的取值范围.解(1)2-1>0,x 2-1<3,得2<x <2或-2<x <- 2.∴原不等式的解集为(-2,-2)∪(2,2).(2)∵函数f (x )在(0,3]上是增函数,∴f (x )在(0,3]上的最大值为f (3)=1,∴不等式f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立转化为1≤m 2-2am +1对所有a ∈[-1,1]恒成立,即m 2-2am ≥0对所有a ∈[-1,1]恒成立.设g (a )=-2ma +m 2,a ∈[-1,1],∴(-1)≥0,(1)≥0,m +m 2≥0,2m +m 2≥0,解该不等式组,得m ≤-2或m ≥2或m =0,即实数m 的取值范围为(-∞,-2]∪{0}∪[2,+∞).。

高考数学专题复习 函数的单调性(学生版)

高考数学专题复习  函数的单调性(学生版)

第二讲 函数的单调性【套路秘籍】1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2.函数的最值【套路修炼】考向一 单调区间求解【例1】(1)下列函数中,定义域是R 且为增函数的是( )A.y =2-xB.y =xC.y =log 2xD.y =-1x(2)函数f (x )=ln (x 2-2x -8) 的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞) (3)求函数f (x )=|x 2-4x +3|的单调区间. (4)求函数f (x )=x -ln x 的单调区间.(5)函数33y x x =-的单调增区间为__________.【举一反三】1.下列函数中,在(0,+∞)上单调递减的是( )A . f(x)=lnxB . f(x)=(x −1)2C . f(x)=2−xD . f(x)=x 3 2.函数f (x )=log 2(4+3x −x 2)的单调递减区间是( ) A . (−∞,32] B . [32,+∞) C . (−1,32] D . [32,4)3.函数()| g x x =的单调递增区间是 ( )A . [)0+∞,B . (]0-∞,C . (]2-∞-,D . [)2+-∞,考向二 单调性的运用一---比较大小【例2】定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25) B .f (log 25)<f (20.3)<f (0.32) C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3)【举一反三】1.已知f (x )=2x-2-x,117459279,,log 97a b c -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则f (a ),f (b ),f (c )的大小顺序为( ) A.f (b )<f (a )<f (c ) B.f (c )<f (b )<f (a ) C.f (c )<f (a )<f (b )D.f (b )<f (c )<f (a )2.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c 3.设a =ln22,b =ln33,c =1e ,则( )A . c <a <bB . c <b <aC . a <b <cD . b <a <c 4.已知x =1.10.1,y =0.91.1,z =log 2343,则x ,y ,z 的大小关系是( )A . x >y >zB . y >x >zC . y >z >xD . x >z >y考向三 单调性的运用二---解不等式【例3】(1)f(x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)(2)已知函数f (x )在(-∞,+∞)上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( ) A.[-2,2] B.[-1,1] C.[0,4] D.[1,3]【举一反三】1.若log a 23<1(a >0且a ≠1),则实数a 的取值范围是( )A . (0,23)B . (0,23)∪(1,+∞) C . (1,+∞) D . (0,1)2.设函数f (x )={2x , x ≥0x , x <0 ,则满足f (x +1)<f (2x )的x 的取值范围是( )A . (−∞ , −1]B . (1 , +∞)C . (−1 , 0)D . (−∞ , 0)3.定义在R 上的偶函数f(x)在[0,+∞)上单调递增,且f(1)=0,则满足f(log 12x)>0的x 的集合为______.4.设函数f(x)=x 3+1,若f(1−2a)<f(a),则实数a 的取值范围是 _______。

高考第一轮复习-函数的单调性

高考第一轮复习-函数的单调性

年级高三学科数学版本人教版(文)内容标题函数的单调性编稿老师孙力【本讲教育信息】一. 教学内容:函数的单调性1. 概念:设函数)(xf的定义域为I(1)增函数:如果对于属于定义域I内某个区间上的任意两个自变量的值21,xx,当21xx<时,都有)()(21xfxf<,那么称函数)(xf在这个区间上是增函数。

(2)减函数:如果对于属于定义域I内某个区间的任意两个自变量的值21,xx,当21xx<时,都有)()(21xfxf>,则称)(xf在这个区间上是减函数。

(3)单调区间:如果函数)(xfy=在某个区间是增函数或减函数,则称函数)(xfy=在这一区间上具有(严格的)单调性,该区间叫做)(xfy=的单调区间。

注:①中学单调性是指严格单调的,即不能是)()(21xfxf≤或)()(21xfxf≥②单调性刻画的是函数的“局部”性质。

如xy1=在)0,(-∞与),0(+∞上是减函数,不能说xy1=在),0()0,(+∞⋃-∞上是减函数。

③单调性反映函数值的变化趋势,反映图象的上升或下降2. 单调性的判定方法(定义法、复合函数单调性结论,函数单调性性质,导数,图象)(1)定义法[例1] 证明函数1)(31-=xxf在R上是增函数证:设21xx<,则3223123113212131231121)()(xxxxxxxxxfxf++-=-=-而分子021<-=xx分母043)21(3222312311322312311321>++=+⋅+=xxxxxxx故0)()(21<-xfxf得证补:讨论函数22)(x xaxf-=的单调性)10(≠<a解:设1>a时,对任Rx∈,022>-xxa,设121<<xx2112222212)()(x x x x a x f x f +--=,而)](2)[(221212211222x x x x x x x x +--=+--0> 即)()(12x f x f >故在)1,(-∞单增,同理在),1(+∞单减 当10<<a 时,同理在(1,∞-)单减,在(1,∞+)单增[例2] 讨论xx x f +=1)(的单调性解:设21x x <,则)11)((11)()(2112112212x x x x x x x x x f x f --=+-+=-21212112)()1)((x x x x x x x x +--=(1)当1021≤<<x x 时,1021<<x x ,0)()(12<-x f x f (2)当211x x <≤时,211x x <,0)()(12>-x f x f 故)(x f 在]1,0(上是减函数,在),1[+∞上是增函数[例3] 试求函数xpx x f +=)((p 0≠)的单调区间 分析:考虑到212112112212)()()()(x x p x x x x x px x p x x f x f --=+-+=-以下分类讨论 (1)当p 0>时① 若p x x -≤<21,则0)()(12>-x f x f ,)(x f 增 ② 若021<<≤-x x p ,则0)()(12<-x f x f ,)(x f 减③ 若p x x ≤<<210,则0)()(12<-x f x f ,)(x f 减④ 若21x x p <≤,则0)()(12>-x f x f ,)(x f 增(2)当0<p 时① 若021<<x x ,则0)()(12>-x f x f 增 ② 若210x x <<,则0)()(12>-x f x f 增综上所述,0>p 时,)(x f 在)0,[p -或],0(p 上是减函数)(x f 在],(p --∞或),[+∞p 上是增函数时,在或上是增函数在)0,[p-及],0(p上分别单调递减另法,利用导数21)(xpxf-=')(122pxx-=(1)若0>p则))((1)(2pxpxxxf-+='(2)若0<p,则0)(>'xf下证高考分式函数试题类型与解法研究[例4] 讨论分式函数xbaxxf+=)(的单调性(0≠ab)以下只研究0,0>>ba与0,0<>ba两种情形对于0,0><ba与0,0<<ba可利用对称性得到。

2023届高考数学一轮复习讲义:第7讲 函数的单调性与最值

2023届高考数学一轮复习讲义:第7讲 函数的单调性与最值

第7讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 当x1<x2时,都有,那么就称函数f(x)在区间D上是增函数当x1<x2时,都有,那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是或,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 (1)∀x ∈I ,都有 ; (2)∃x 0∈I ,使得(1)∀x ∈I ,都有 ; (2)∃x 0∈I ,使得结论M 为最大值M 为最小值➢考点1 函数的单调性[名师点睛]确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接. (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 1.(2022·全国·高三专题练习)函数2()23f x x x -- ) A .(,1]-∞B .[3,)+∞C .(,1]-∞-D .[1,)+∞2.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性.[举一反三]1.(2022·全国·高三专题练习)函数222x x y -++=的单调递增区间是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 2.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( )A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-3.(2022·全国·高三专题练习)已知函数()2f x x x x =-+,则下列结论正确的是( ) A .递增区间是(0,)+∞ B .递减区间是(,1)-∞- C .递增区间是(,1)-∞-D .递增区间是(1,1)-4.(2022·全国·高三专题练习)已知函数()f x 的图象如图所示,则函数()()12log g x f x =的单调递增区间为( )A .(],3-∞-,[]0,3B .[]3,0-,[)3,+∞C .(),5-∞-,[)0,1D .(]1,0-,()5,+∞5.(2022·广西柳州·三模)下列函数在(),0∞-上是单调递增函数的是( ) A .tan y x =B .()ln y x =-C .12xy =D .1y x=-6.(2022·全国·高三专题练习)函数y =|-x 2+2x +1|的单调递增区间是_________ ;单调递减区间是_________.7.(2022·全国·高三专题练习)函数216y x x =-+_____. 8.(2022·福建·三模)写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.9.(2022·全国·高三专题练习)已知函数f (x )1x=+lg 4xx -.判断并证明函数f (x )的单调性;10.(2022·全国·高三专题练习)已知定义域为实数集R 的函数()11222xx f x +-=+.判断函数f (x )在R 上的单调性,并用定义证明.➢考点2 函数单调性的应用1.(2022·重庆巴蜀中学高三阶段练习)已知函数()()e e 2x xx f x --=,则21log3a f ⎛⎫= ⎪⎝⎭,342b f -⎛⎫= ⎪⎝⎭,432c f ⎛⎫=- ⎪⎝⎭的大小关系为( )A .b ac << B .a b c << C .c a b << D .a c b <<2.(2022·广东深圳·高三期末)已知函数()1e ,111,1x x f x x x x-⎧≤⎪=⎨-+>⎪⎩,则()f x 的最大值为______.3.(2022·河北唐山·二模)已知函数()f x ()()21f x f x >-,则x 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭4.(2022·全国·高三专题练习)已知函数1()ax f x x a-=-在(2,)+∞上单调递减,则实数a 的取值范围是( ) A .(-∞,1)(1-⋃,)+∞ B .(1,1)-C .(-∞,1)(1-⋃,2]D .(-∞,1)(1-⋃,2)[举一反三]1.(2022·辽宁朝阳·高三开学考试)已知函数()f x 是定义在R 上的偶函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x ->-,记(2)(3)(1),,23f f a f b c -===,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a <<2.(2022·重庆·模拟预测)设函数()()()32200x xx f x x x -⎧-+>⎪=⎨-≤⎪⎩,若ln 2a =,0.23b =,0.3log 2c =,则( )A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f a f c f b >>D .()()()f c f a f b >>3.(2022·全国·高三专题练习)函数()41f x x x =++在1,22⎡⎤-⎢⎥⎣⎦上的值域为( ) A .153,2⎡⎤-⎢⎥⎣⎦B .[]3,4C .153,2⎡⎤⎢⎥⎣⎦D .154,2⎡⎤⎢⎥⎣⎦4.(2022·重庆八中模拟预测)已知函数()1y f x =-是定义在R 上的偶函数,且()f x 在(),1-∞-单调递减,()00f =,则()()210f x f x +<的解集为( )A .()(),20,-∞-⋃+∞B .()2,0-C .312,,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭D .31,22⎛⎫-- ⎪⎝⎭5.(2022·河北·模拟预测)设函数()()212,1,2,1,x x f x x x ⎧++<⎪=⎨-≥⎪⎩则不等式()()340f f x +->的解集为( ) A .()1,1- B .()(),11,-∞-⋃+∞ C .()7,7-D .()(),77,-∞-⋃+∞6.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( ) A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,17.(2022·全国·高三专题练习)函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,则m 的取值范围是( )A .[)3,-+∞B .[)3,+∞C .(],5-∞D .(],3-∞-8.(2022·全国·高三专题练习)已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( ) A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭ D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭9.(多选)(2022·全国·高三专题练习)函数()21x af x x -=+在区间()b +∞,上单调递增,则下列说法正确的是( ) A .2a >-B .1b >-C .1b ≥-D .2a <-10.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a 的范围是_______.11.(2022·全国·高三专题练习)已知函数f (x )m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________.12.(2022·全国·高三专题练习)已知函数()f x 满足:①(0)0f =;②在[13],上是减函数;③(1)(1)f x f x +=-.请写出一个满足以上条件的()f x =___________.13.(2022·全国·高三专题练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______.14.(2022·全国·高三专题练习)若函数2()4f x x ax =-+在[]1.3内不单调,则实数a 的取值范围是__________.15.(2022·全国·高三专题练习)已知函数()y f x =是定义在R 的递减函数,若对于任意(0x ∈,1]不等式2(31)(1)(2)f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.16.(2022·全国·高三专题练习)已知函数()f x x .(1)若1a ,求函数的定义域;(2)是否存在实数a,使得函数()f x在定义域内具有单调性?若存在,求出a的取值范围第7讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 (1)∀x ∈I ,都有f (x )≤M ; (2)∃x 0∈I ,使得f (x 0)=M(1)∀x ∈I ,都有f (x )≥M ; (2)∃x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值➢考点1 函数的单调性[名师点睛]确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接. (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 1.(2022·全国·高三专题练习)函数2()23f x x x -- ) A .(,1]-∞ B .[3,)+∞ C .(,1]-∞-D .[1,)+∞【答案】B 【解析】由题意,可得2230x x --≥,解得1x ≤-或3x ≥, 所以函数2()23f x x x =--(][),13,-∞-⋃+∞,二次函数223y x x =--的对称轴为1x =,且在(][),13,-∞-⋃+∞上的单调递增区间为[3,)+∞,根据复合函数的单调性,可知函数2()23f x x x =--[3,)+∞.故选:B.2.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性. 【解】任取1x 、2(11)x ∈-,,且12x x <,(11)1()(1)11a x f x a x x -+==+--,则:21121212()11()()(1)(1)11(1)(1)a x x f x f x a a x x x x --=+-+=----,当0a >时,12())0(f x f x ->,即12()()f x f x >,函数()f x 在(11)-,上单调递减; 当0a <时,12())0(f x f x -<,即12()()f x f x <,函数()f x 在(11)-,上单调递增. [举一反三]1.(2022·全国·高三专题练习)函数y = )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 【答案】C 【解析】令220x x -++≥,解得12x -≤≤, 令22t x x =-++,则y =∵函数22t x x =-++在区间112⎡⎤-⎢⎥⎣⎦,上单调递增,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,y =内递增,∴根据复合函数的单调性可知,函数y =112⎡⎤-⎢⎥⎣⎦,.故选:C2.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( ) A .(),2-∞ B .()2,+∞ C .()2,2- D .()2,6-【答案】C 【解析】 令13log y u=,2412u x x =-++.由24120u x x =-++>,得26x -<<.因为函数13log y u=是关于u 的递减函数,且()2,2x ∈-时,2412u x x =-++为增函数,所以()213log 412y x x =-++为减函数,所以函数()213log 412y x x =-++的单调减区间是()2,2-.故选:C.3.(2022·全国·高三专题练习)已知函数()2f x x x x =-+,则下列结论正确的是( ) A .递增区间是(0,)+∞ B .递减区间是(,1)-∞- C .递增区间是(,1)-∞- D .递增区间是(1,1)-【答案】D 【解析】因为函数222,0()22,0x x x f x x x x x x x ⎧-+≥=-+=⎨+<⎩,作出函数()f x 的图象,如图所示:由图可知,递增区间是(1,1)-,递减区间是(,1)-∞-和()1,+∞. 故选:D .4.(2022·全国·高三专题练习)已知函数()f x 的图象如图所示,则函数()()12log g x f x =的单调递增区间为( )A .(],3-∞-,[]0,3B .[]3,0-,[)3,+∞C .(),5-∞-,[)0,1D .(]1,0-,()5,+∞【答案】C 【解析】因为12log y x=在()0,∞+上为减函数,所以只要求()y f x =的单调递减区间,且()0f x >.由图可知,使得函数()y f x =单调递减且满足()0f x >的x 的取值范围是()[),50,1-∞-.因此,函数()()12log g x f x =的单调递增区间为(),5-∞-、[)0,1.故选:C.5.(2022·广西柳州·三模)下列函数在(),0∞-上是单调递增函数的是( ) A .tan y x = B .()ln y x =-C .12xy =D .1y x=-【答案】D 【解析】选项A. 函数tan y x =在(),0∞-上只有单调增区间,但不是一直单调递增,故不满足; 选项B. 由复合函数的单调性可知函数()ln y x =-在(),0∞-上单调递减,故不满足;选项C. 函数1122xx y ⎛⎫== ⎪⎝⎭在(),0∞-上单调递减,故不满足;选项D. 函数1y x=-在(),0∞-上单调递增,故满足,故选:D6.(2022·全国·高三专题练习)函数y =|-x 2+2x +1|的单调递增区间是_________ ;单调递减区间是_________.【答案】 (12,1)-,(12,)++∞ (,12)-∞-,(1,12)【解析】作出函数y =|-x 2+2x +1|的图像,如图所示,观察图像得,函数y =|-x 2+2x +1|在(12,1)-和(12,)++∞上单调递增,在(,12)-∞和(1,12)上单调递减,所以原函数的单调增区间是(1,(1)+∞,单调递减区间是(,1-∞,(1,12).故答案为:(1-,(1)++∞;(,1-∞,(1,12)7.(2022·全国·高三专题练习)函数1y =_____. 【答案】[3,6] 【解析】226060x x x x -+≥⇒-≤,解得06x ≤≤,令()()22639x x x x μ=-+=--+,对称轴为3x =,所以函数()x μ在(),3-∞为单调递增;在[)3,+∞上单调递减.所以函数1y =[3,6]. 故答案为:[3,6]8.(2022·福建·三模)写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.【答案】1()12xf x =-(答案不唯一) 【解析】 1()12x f x =-,定义域为R ;102x>,1()112x f x =-<,值域为(,1)-∞; 是增函数,满足对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.故答案为:1()12xf x =-(答案不唯一). 9.(2022·全国·高三专题练习)已知函数f (x )1x=+lg 4xx -.判断并证明函数f (x )的单调性;【解】由题意,040x x x ≠⎧⎪-⎨>⎪⎩,解得04x <<故f (x )的定义域为(0,4) 令441x u x x -==-,lg y u =,由于41u x=-在(0,4)单调递减,lg y u =在(0,)+∞单调递增,因此4lgxy x-=在(0,4)单调递减,又1y x =在(0,4)单调递减,故f (x )1x =+4lgx x -在(0,4)上单调递减,证明如下: 设0<x 1<x 2<4,则: ()()()()121221121122122144411lg lg lg 4x x x x x x f x f x x x x x x x x x -----=+--=+-, ∵0<x 1<x 2<4,∴x 2﹣x 1>0,x 1x 2>0,4﹣x 1>4﹣x 2>0,12214114x xx x -->,>, ∴()()()()1212211221214401lg 044x x x x x x x x x x x x ----->,>,>, ∴f (x 1)>f (x 2),∴f (x )在(0,4)上单调递减11.(2022·全国·高三专题练习)已知定义域为实数集R 的函数()11222xx f x +-=+.判断函数f (x )在R 上的单调性,并用定义证明.【解】由题意11211()22212x x x f x +-==-+++, 令1112,2xu y u =+=-+,由于12x u =+在R 上单调递增,112y u=-+在(0,)+∞单调递减,由复合函数单调性可知f (x )在R 上为减函数. 证明:设∀x 1,x 2∈R ,且x 1<x 2,所以f (x 1)﹣f (x 2)()()211212112212121212x x x x x x -=-=++++,由于x 1<x 2,y =2x 在R 上单增 所以21220x x ->,且2x >0 所以f (x 1)>f (x 2), 所以f (x )在R 上单调递减.➢考点2 函数单调性的应用1.(2022·重庆巴蜀中学高三阶段练习)已知函数()()e e 2x xx f x --=,则21log3a f ⎛⎫= ⎪⎝⎭,342b f -⎛⎫= ⎪⎝⎭,432c f ⎛⎫=- ⎪⎝⎭的大小关系为( )A .b a c <<B .a b c <<C .c a b <<D .a c b <<【答案】A【解析】()f x 的定义域为R , 因为()()()e e ee ()22x xxx x x f x f x ------===,所以()f x 为偶函数,所以()()2221log log 3log 33a f f f ⎛⎫==-= ⎪⎝⎭,443322c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,当0x >时,()()()ee e e 2xx x xx f x ---++'=,因为0x >,所以e1,0e 1xx -><<,所以e e 0x x -->,(e e )0x x x -+>,所以()0f x '>,所以()f x 在(0,)+∞上单调递增,因为2x y =在R 上单调递增,且340143-<<<,所以43013402222-<<<<,即433402122-<<<<,因为2log y x =在(0,)+∞上为增函数,且234<<,所以222log 2log 3log 4<<,即21log 32<<,所以4334202log 32-<<<,所以()433422log 32f f f -⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即b a c <<,故选:A2.(2022·广东深圳·高三期末)已知函数()1e ,111,1x x f x x x x-⎧≤⎪=⎨-+>⎪⎩,则()f x 的最大值为______.【答案】1 【解析】解:(],1x ∈-∞时,()1x f x e -=单调递增,()()1111f x f e -==≤;()1,x ∈+∞时,()1+1f x x x=-单调递减,()11+111f x <-=.所以()f x 的最大值为1. 故答案为:1.3.(2022·河北唐山·二模)已知函数()f x ()()21f x f x >-,则x 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】C 【解析】解:()f x 定义域为R , 又()()-=-f x f x ,所以()f x 是奇函数,当0x =时,()00f =,当0x >时,()=f x ()f x 在()0,∞+上递增, 所以()f x 在定义域R 上递增,又()()21f x f x >-,所以21x x >-,解得13x >,故选:C4.(2022·全国·高三专题练习)已知函数1()ax f x x a-=-在(2,)+∞上单调递减,则实数a 的取值范围是( ) A .(-∞,1)(1-⋃,)+∞ B .(1,1)-C .(-∞,1)(1-⋃,2]D .(-∞,1)(1-⋃,2)【答案】C 【解析】解:根据题意,函数221()11()ax a x a a a f x a x a x a x a--+--===+---, 若()f x 在区间(2,)+∞上单调递减,必有2102a a ⎧->⎨⎩,解可得:1a <-或12a <,即a 的取值范围为(-∞,1)(1-⋃,2], 故选:C . [举一反三]1.(2022·辽宁朝阳·高三开学考试)已知函数()f x 是定义在R 上的偶函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x ->-,记(2)(3)(1),,23f f a f b c -===,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a <<【答案】B 【解析】依题意,12,(0,)x x ∀∈+∞,12x x ≠,122112121212()()()()00f x f x x f x x f x x x x x x x -->⇔>--, 于是得函数()f x x 在(0,)+∞上单调递增,而函数()f x 是R 上的偶函数,即(2)(2)22f f b -==,显然有(1)(2)(3)123f f f <<,因此得:a b c <<, 所以a b c <<. 故选:B2.(2022·重庆·模拟预测)设函数()()()32200x xx f x x x -⎧-+>⎪=⎨-≤⎪⎩,若ln 2a =,0.23b =,0.3log 2c =,则( )A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f a f c f b >>D .()()()f c f a f b >>【答案】D 【解析】解:因为()()()32200x x x f x x x -⎧-+>⎪=⎨-≤⎪⎩,又2x y =在()0,∞+上单调递增,2x y -=在()0,∞+上单调递减,则()22xx g x -=-+在()0,∞+上单调递减且()002002g -+==,又()3h x x =-在(),0∞-上单调递减且()3000h =-=,所以()f x 在R 上单调递减,又因为0.20331>=,即1b >,0ln1ln 2lne 1=<<=,即01a <<,0.30.3log 2log 10<=,即0c <,所以b a c >>,所以()()()f b f a f c <<; 故选:D3.(2022·全国·高三专题练习)函数()41f x x x =++在1,22⎡⎤-⎢⎥⎣⎦上的值域为( ) A .153,2⎡⎤-⎢⎥⎣⎦B .[]3,4C .153,2⎡⎤⎢⎥⎣⎦D .154,2⎡⎤⎢⎥⎣⎦【答案】C 【解析】设1x t ,1x t =-,1,22x ⎡⎤∈-⎢⎥⎣⎦,则1,32t ⎡⎤∈⎢⎥⎣⎦,则()41g t t t =+-,根据双勾函数性质:函数在1,22⎡⎤⎢⎥⎣⎦上单调递减,在(]2,3上单调递增,()()max 1151015max ,3max ,2232g t g g ⎧⎫⎛⎫⎧⎫===⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,()()min 23g t g ==,故函数值域为153,2⎡⎤⎢⎥⎣⎦.故选:C.4.(2022·重庆八中模拟预测)已知函数()1y f x =-是定义在R 上的偶函数,且()f x 在(),1-∞-单调递减,()00f =,则()()210f x f x +<的解集为( )A .()(),20,-∞-⋃+∞B .()2,0-C .312,,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭D .31,22⎛⎫-- ⎪⎝⎭【答案】C【解析】因为函数()1y f x =-是定义在R 上的偶函数,所以()y f x =的图象关于直线1x =-对称.因为()f x 在(),1-∞-上单调递减,所以在()1,-+∞上单调递增. 因为()00f =,所以()()200f f -==.所以当()(),20,x ∈-∞-⋃+∞时,()0f x >;当()2,0x ∈-时,()0f x <.由()()210f x f x +<,得20,2210.x x x ⎧-⎨-<+<⎩或或20,212210.x x x -<<⎧⎨+-+⎩或解得312,,022x ⎛⎫⎛⎫∈--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:C5.(2022·河北·模拟预测)设函数()()212,1,2,1,x x f x x x ⎧++<⎪=⎨-≥⎪⎩则不等式()()340f f x +->的解集为( ) A .()1,1- B .()(),11,-∞-⋃+∞ C .()7,7- D .()(),77,-∞-⋃+∞【答案】A 【解析】解:因为()()212,12,1x x f x x x ⎧++<⎪=⎨-≥⎪⎩,所以()36f =-,()()233126f -=-++=,则()()340f f x +->,即()()()4363f x f f ->-==-,()f x 的函数图象如下所示:由函数图象可知当3x >-时()6f x <且()f x 在(),3∞--上单调递减,所以()()43f x f ->-等价于43x -<-,即1x <,解得11x -<<,即()1,1x ∈-; 故选:A6.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( ) A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1【答案】B 【解析】因为分段函数()f x 在R 上的单调函数,由于22y x ax =-开口向上,故在1≥x 上单调递增,故分段函数()f x 在在R 上的单调递增,所以要满足:0212112a aa a>⎧⎪-⎪-≤⎨⎪-≤-⎪⎩,解得:203a <≤ 故选:B7.(2022·全国·高三专题练习)函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,则m 的取值范围是( )A .[)3,-+∞B .[)3,+∞C .(],5-∞D .(],3-∞-【答案】D 【解析】解:函数2()2(1)3f x x m x =-+-+的图像的对称轴为2(1)12m x m -=-=--, 因为函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,所以14m -≥,解得3m ≤-, 所以m 的取值范围为(],3-∞-, 故选:D8.(2022·全国·高三专题练习)已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( ) A .11,63⎛⎫⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭【答案】B 【解析】由题意可知,()313y a x a =-+在(),1-∞上为减函数,则310a -<, 函数21y x =-+在[)1,+∞上为减函数,且有()3130a a -+≥,所以,310610a a -<⎧⎨-≥⎩,解得1163a ≤<.综上所述,实数a 的取值范围是11,63⎡⎫⎪⎢⎣⎭.故选:B.9.(多选)(2022·全国·高三专题练习)函数()21x af x x -=+在区间()b +∞,上单调递增,则下列说法正确的是( ) A .2a >- B .1b >- C .1b ≥- D .2a <-【答案】AC 【解析】 ()22211x a a f x x x -+==-++, ()f x 在区间()b +∞,上单调递增,20a ∴+>,2a >-∴,由()f x 在区间()1+∞-,上单调递增, 1b.故选:AC10.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a 的范围是_______. 【答案】(2,4]- 【解析】 函数5()3x f x x a +=-+,定义域为(,3)(3,)x a a ∈-∞-⋃-+∞,又322()133x a a a f x x a x a -++++==+-+-+,因为函数5()3x f x x a +=-+在(1,)+∞上是减函数,所以只需23a y x a +=-+在(1,)+∞上是减函数,因此2031a a +>⎧⎨-≤⎩,解得24a -<≤.故答案为:24a -<≤11.(2022·全国·高三专题练习)已知函数f (x )m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________. 【答案】(-∞,0)∪(1,4] 【解析】由题意可得4-mx ≥0,x ∈(0,1]恒成立,所以m ≤4()xmin =4.当0<m ≤4时,4-mx 单调递减,所以m -1>0,解得1<m ≤4; 当m <0时,4-mx 单调递增,所以m -1<0,解得m <1,所以m <0. 故实数m 的取值范围是(-∞,0)∪(1,4]. 故答案为: (-∞,0)∪(1,4].12.(2022·全国·高三专题练习)已知函数()f x 满足:①(0)0f =;②在[13],上是减函数;③(1)(1)f x f x +=-.请写出一个满足以上条件的()f x =___________. 【答案】22x x -+ 【解析】由(1)(1)f x f x +=-可得()f x 关于1x =对称,所以开口向下,对称轴为1x =,且过原点的二次函数满足题目中的三个条件, 故答案为:22x x -+13.(2022·全国·高三专题练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______.【答案】1223⎛⎫- ⎪⎝⎭,【解析】由题意得:-2-12-21-22-11-2m m m m <<⎧⎪<<⎨⎪<⎩,,,解得12-<m <23.故答案为:1223⎛⎫- ⎪⎝⎭,14.(2022·全国·高三专题练习)若函数2()4f x x ax =-+在[]1.3内不单调,则实数a 的取值范围是__________. 【答案】13(,)22【解析】解:由题意得2()4f x x ax =-+的对称轴为2x a =,因为函数()f x 在[]1.3内不单调,所以123a <<,得1322a <<.故答案为:13(,)22.15.(2022·全国·高三专题练习)已知函数()y f x =是定义在R 的递减函数,若对于任意(0x ∈,1]不等式2(31)(1)(2)f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.【解】因为函数()y f x =是定义在R 的递减函数,所以2(31)(1)(2)f mx f mx x f m ->+->+对(0x ∈,1]恒成立2231112mx mx x mx x m ⎧-<+-⇔⎨+-<+⎩在(0x ∈,1]恒成立.整理,当(0x ∈,1]时,2222(1)1mx x m x x ⎧<-⎨-<+⎩恒成立, (1)当1x =,2102m <⎧⎨<⎩,所以12m <;(2)当(0,1)x ∈时,222211x m xx m x ⎧-<⎪⎪⎨+⎪>⎪-⎩恒成立,1,2xy y x ==-都在(0,1)x ∈上为减函数22122x x y x x -∴==-在(0,1)x ∈上为减函数, ∴22122x x ->,222x m x-∴<恒成立⇔12m ≤. 结合当1x =时,12m <①又2222212(1)(1)21,01(1)(1)x x x x x x y y x x x +--+--'===<-++,当(0,1)x ∈ 故211x y x +=-在(0,1)x ∈上是减函数,∴2111x x +<--.211x m x +∴>-恒成立1m ⇔≥-② ∴①、②两式求交集1[1,)2m ∈-由(1)(2)可知当[1m ∈-,1)2时,对任意(0x ∈,1]时,2(31)(1)(2)f mx f mx x f m ->+->+恒成立.16.(2022·全国·高三专题练习)已知函数()f x x . (1)若1a =,求函数的定义域;(2)是否存在实数a ,使得函数()f x 在定义域内具有单调性?若存在,求出a 的取值范围. 【解】(1)()f x x ,∴|1|10x +-≥,解得(,2][0,)x ∈-∞-+∞; 所以函数的定义域为(,2][0,)x ∈-∞-+∞.(2)当x a ≥-,211()24f x x x ⎫===-+⎪⎭,在1[,)4+∞递减,此时需满足14a -≥,即14a -≤时,函数()f x 在[,)a -+∞上递减;当x a <-,()f x x x ,在(,2]a -∞-上递减, ∵104a ≤-<,∴20a a ->->,即当14a -≤时,函数()f x 在(,)a -∞-上递减;综上,当14a -≤时,函数()f x 在定义域R 上连续,且单调递减.所以a 的取值范围是1,4⎛⎤-∞- ⎥⎝⎦。

高考数学函数的单调性-

高考数学函数的单调性-
LPL夏季赛 KPL夏季赛 https:// LPL夏季赛 KPL夏季赛
例4、已知函数f(x)的定义为R,对任意的实数x1,x2 都满足f(x1+ x2)=f(x1)+f(x2),当x>0时,f(x)>0,且 f(2)=3.
(1)试判断f(x)的奇偶性和单调性;
(2)当
2.判断函数的单调性的方法有:(1) 用定义;(2)用已知函数的单调性; (3)利用函数的导数.
3.注意函数的单调性的应用; 4.注意分类讨论与数形结合的应用.
女员工Q.希霓妮婆婆淡蓝色槟榔造型的鼻子,此时正惨碎成台风样的水蓝色飞沫,狂速射向远方,女员工Q.希霓妮婆婆横颤着疯速地跳出界外,快速将淡蓝色槟榔 造型的鼻子复原,但元气和体力已经大伤……壮扭公主:“好刺激!你的业务怎么越来越差……”女员工Q.希霓妮婆婆:“不让你看看我的真功夫,你个小娃娃就不 知道什么是高科技……”壮扭公主:“牛屎插上再多的大蒜也变不了空间站!你的科技实在太垃圾了!”女员工Q.希霓妮婆婆:“我让你瞧瞧我的『灰霞蟒精摇杆耳 』,看你还竟敢小瞧我……”壮扭公主:“嘿嘿!那我让你知道知道什么是真正名牌的原野!欣赏欣赏什么才是顶级原版的肥妹!认真崇拜一下纯天然的壮扭公主!! ”女员工Q.希霓妮婆婆猛然像深青色的十肝孤山象一样怪啸了一声,突然整出一个侧卧变形的特技神功,身上突然生出了五十只酷似香蕉模样的墨黑悠了一个,扭体鳄舞侧空翻三百六十度外加陀螺转九周的朦胧招式……紧接着晃动威猛的 嘴唇一哼,露出一副神奇的神色,接着颤动细长的极似香肠造型的脚,像深蓝色的万喉戈壁鸟般的一晃,仙气的瘦小的牙齿顷刻伸长了四十倍,窜出的鹅黄色鼓锤般的 肉筋也骤然膨胀了五十倍。最后耍起瘦瘦的极似布条造型的肩膀一哼,狂傲地从里面抖出一道奇辉,她抓住奇辉惊人地一甩,一套森幽幽、紫溜溜的兵器『粉影甩鬼地 痞灯』便显露出来,只见这个这件神器儿,一边旋转,一边发出“呜嘟”的怪响!!猛然间女员工Q.希霓妮婆婆闪速地用自己天青色陀螺造型的五条尾巴克隆出米黄 色经典闪烁的核桃,只见她短小的脑袋中,快速窜出九组旋舞着『青烟扇仙扳手经文』的仙翅枕头棍状的轻纱,随着女员工Q.希霓妮婆婆的转动,仙翅枕头棍状的轻 纱像铜锣一样在脑后猛爆地耍出隐约光云……紧接着女员工Q.希霓妮婆婆又发出三声僵金色的完美猛哼,只见她古古怪怪的海蓝色金钩般的皮肤中,萧洒地涌出二十 串剑鞘状的海滩油泪兔,随着女员工Q.希霓妮婆婆的晃动,剑鞘状的海滩油泪兔像香肠一样,朝着壮扭公主有着无穷青春热情的胸部直晃过来!紧跟着女员工Q.希 霓妮婆婆也飞耍着兵器像教鞭般的怪影一样向壮扭公主直晃过去壮扭公主猛然像紫宝石色的银脚荒原狼一样大爽了一声,突然使了一套蹲身旋转的特技神功,身上顿时 生出了四十只活似野象形态的亮出一个,烟体驼飘踏云翻三百六十度外 加乱转一万周的

高考数学复习指导:第五讲 函数的单调性

高考数学复习指导:第五讲 函数的单调性

f ( x1 ) f ( x2 ) ,那么就说函
数 y = f ( x) 在区间 D 上是减 函数
图象 描述 自左向右图象是上升的 ⑵.单调区间的定义 若函数 y = f ( x) 在区间 D 上是增函数或减函数,则称函数 y = f ( x) 在这一区间上具有(严格的)单 调性,区间 D 叫做函数 y = f ( x) 的单调区间. 自左向右图象是下降的
f ( x1 ) − f ( x2 ) f ( x1 ) − f ( x2 ) 0 y = f ( x) 在 0 y = f ( x) 在 [ a , b ] 上是增函数; x1 − x2
②. ( x1 − x2 )[ f ( x1 ) − f ( x2 )] 0 y = f ( x) 在 [ a , b ] 上是增函数;
2.函数的最值
前提 设函数 y = f ( x) 的定义域为 I ,如果存在实数 M 满足 ①.对于任意 x I ,都有 条件 . ①.对于任意 x I ,都有
f ( x) M ;
②.存在 x0 I ,使得 f ( x0 ) = M
f ( x) M ;
②.存在 x0 I ,使得
2
第2页 共8页
2.已知 f ( x) =
(3a − 1) x + 4a, x 1 是 ( −, + ) 上的减函数,那么 a 的取值范围是__________. log a x, x 1
1 1 a 7 3
3 .已知函数 y = f ( x) 的定义域为 R ,并且对于任意的正数 d ,都有 f ( x + d ) f ( x ) ,求满足
双基自测
1.确定下列函数的单调区间: ①.y = x | x − 1| ; ②.y = − log 2 (

数学高一(上)沪教版(函数的性质--单调性(一))教师版

,(1,0-,()0,1,1,+∞⎡⎣b a ⎤⎥⎦,,0b a ⎛⎫- ⎪ ⎪⎝⎭,0,b a ⎛- ⎝,⎡-⎢⎣上单调递增(减),则数()f x 在区间[],b --上单调递增(减); 上单调递增(减),则数)在区间[]-上单调递减(增)。

【注意】书写函数的单调区间时,区间端点的开或闭没有严格规定,习惯上,若函数在区间端点处有定义,则写成闭【典型例题分析】例1、判断函数()21xf x x =-在区间()1,1-上的单调性。

【解析】利用函数的单调性的定义判读即可。

【答案】()21xf x x =-在区间()1,1-上单调递减。

变式练习1:已知()3f x x x =+,判断()f x 在(),-∞+∞上的单调性,并证明。

【解析】直接利用函数单调性的定义判断。

【答案】()f x 在(),-∞+∞是增函数【点拨】用定义研究函数的单调性时,所取12,x x 应是指定区间上的任意两值,对差()()12f x f x -的变形主要有因式分解或配方、通分、分子有理化等方法,确定差的符号时要注意12,x x 的所在范围,另外,有字母系数(即参数)的要注意字母对单调性的影响(如y kx b =+)变式练习2:证明:函数()1f x x x=+在()0,1上是减函数。

证明略例2、求下列函数的单调区间 (1)()210y x x x =+< (2)221x y x -=+ (3)223y x x =-++ 【解析】 利用常见函数的单调性及函数图像求解 【答案】(1)单调减区间(),0-∞ (2)单调增区间()()1,,,1-+∞-∞- (3)单调增区间为]([],1,0,1-∞- 单调减区间为[])1,0,1,-+∞⎡⎣例3、已知()f x 为偶函数,且当x ∈)0,+∞⎡⎣时单调递减,求()22f x x -()1x ≤的单调区间。

【解析】根据外层函数的单调区间,对内层函数的单调区间进行相应分段。

高考数学总复习之函数的单调性

高考数学总复习之函数的单调性一、知识梳理1.增函数、减函数的定义一般地,对于给定区间上的函数f (x ),如果对于属于这个区间的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f (x 1)<f (x 2)〔或都有f (x 1)>f (x 2)〕,那么就说f (x )在这个区间上是增函数(或减函数).如果函数y =f (x )在某个区间上是增函数(或减函数),就说f (x )在这一区间上具有(严格的)单调性,这一区间叫做f (x )的单调区间.如函数是增函数则称区间为增区间,如函数为减函数则称区间为减区间. 2.函数单调性可以从三个方面理解(1)图形刻画:对于给定区间上的函数f (x ),函数图象如从左向右连续上升,则称函数在该区间上单调递增,函数图象如从左向右连续下降,则称函数在该区间上单调递减.(2)定性刻画:对于给定区间上的函数f (x ),如函数值随自变量的增大而增大,则称函数在该区间上单调递增,如函数值随自变量的增大而减小,则称函数在该区间上单调递减.(3)定量刻画,即定义.上述三方面是我们研究函数单调性的基本途径. 3. 函数单调性的判定方法:(1)定义法;设元→作差→变形→判断符号→给出结论; (2)图象法;(3)利用已知函数的单调性;①增(或减)函数)(x f 的倒数)(1x f 是减(或增)函数; ②增(或减)函数)(x f 的相反数)(x f -是减(或增)函数;③增(或减)函数)(x f 、)(x g 的和是)()(x g x f +是增(或减)函数;④增(或减)函数)(x f 与减(或增)函数)(x g 的差)()(x g x f -是增(或减)函数; ⑤若0>c ,则增(或减)函数)(x f 与c 的积)(x cf 是增(或减)函数; 若0<c ,则增(或减)函数)(x f 与c 的积)(x cf 是减(或增)函数;; (4)复合函数的单调性:即“同增异减”法。

2021届高考数学(理)考点复习:函数的单调性与最值(含解析)

2021届高考数学(理)考点复习函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f (x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f (x1)<f (x2),那么就说函数f (x)在区间D上是增函数当x1<x2时,都有f (x1)>f (x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f (x)在区间D上是增函数或减函数,那么就说函数y=f (x)在这一区间具有(严格的)单调性,区间D叫做y=f (x)的单调区间.2.函数的最值前提设函数y=f (x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f (x)≤M;(2)存在x0∈I,使得f (x0)=M (1)对于任意的x∈I,都有f (x)≥M;(2)存在x0∈I,使得f (x0)=M结论M为最大值M为最小值概念方法微思考1.在判断函数的单调性时,你还知道哪些等价结论?提示对∀x1,x2∈D,x1≠x2,f(x1)-f (x2)x1-x2>0⇔f (x)在D上是增函数;对∀x1,x2∈D,x1≠x2,(x1-x 2)·[f (x 1)-f (x 2)]>0⇔f (x )在D 上是增函数.减函数类似. 2.写出函数y =x +ax (a >0)的增区间.提示 (-∞,-a ]和[a ,+∞).1.(2020·新课标Ⅱ)设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A. 是偶函数,且在1(,)2+∞单调递增B. 是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D. 是奇函数,且在1(,)2-∞-单调递减【答案】D 【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--, ()ln 21y x =+在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭, 2121x μ=+-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,D 正确. 2.(2018·北京卷)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________. 【答案】23()()2f x x =-- (答案不唯一)【解析】对于23()()2f x x =--,其图象的对称轴为32x =, 则f (x )>f (0)对任意的x ∈(0,2]都成立, 但f (x )在[0,2]上不是单调函数.1.(2019•平谷区一模)下列函数中,在区间(0,)+∞上为增函数的是( ) A .1y x=B .y lnx =C .sin y x =D .2x y -=【答案】B【解析】根据题意,依次分析选项: 对于A ,1y x=,为反比例函数,在(0,)+∞上为减函数,不符合题意; 对于B ,y lnx =,为指数函数,在区间(0,)+∞上为增函数,符合题意; 对于C ,sin y x =,为正弦函数,在(0,)+∞上不是单调函数,不符合题意; 对于D ,12()2x x y -==,是指数函数,在(0,)+∞上为减函数,不符合题意;故选B .2.(2019•西城区一模)下列函数中,值域为R 且在区间(0,)+∞上单调递增的是( ) A .22y x x =+ B .12x y += C .31y x =+D .(1)||y x x =-【答案】C【解析】根据题意,依次分析选项:对于A ,222(1)1y x x x =+=+-,其值域为[1-,)+∞,不符合题意; 对于B ,12x y +=,其值域为(0,)+∞,不符合题意;对于C ,31y x =+,值域为R 且在区间(0,)+∞上单调递增,符合题意; 对于D ,22,0(1)||,0x x x y x x x x x ⎧-=-=⎨-+<⎩,在区间1(0,)2上为减函数,不符合题意;故选C .3.(2016•安庆三模)若函数2()||2f x x a x =++,x R ∈在区间[3,)+∞和[2-,1]-上均为增函数,则实数a 的取值范围是( ) A .11[3-,3]- B .[6-,4]- C .[3-,22]- D .[4-,3]-【答案】B【解析】2()||2f x x a x =++,22()()||2||2()f x x a x x a x f x -=-+-+=++=,()f x ∴为实数集上的偶函数,由2()||2f x x a x =++在区间[3,)+∞和[2-,1]-上均为增函数,知()f x 在[3,)+∞上为增函数,在[1,2]上为减函数,∴函数22(0)y x ax x =++>的对称轴[2,3]2a x =-∈,得[6a ∈-,4]-.故选B .4.(2016•天津二模)若221,0()(1)(1),0axax x f x a a e x ⎧+=≠⎨-<⎩,在定义域(,)-∞+∞上是单调函数,则a 的取值范围是( ) A .2]B .[2,1)[2,)--+∞C .(,2]2]-∞⋃D .2(0,)[2,)3+∞【答案】C【解析】()f x 在定义域(,)-∞+∞上是单调函数时,①函数的单调性是增函数时,可得当0x =时,22(1)11ax a e ax -+=, 即211a -,解之得22a0x 时,21y ax =+是增函数,0a ∴>又0x <时,2(1)ax a e -是增函数,210a ∴->,得1a <-或1a >因此,实数a 的取值范围是:12a <②函数的单调性是减函数时,可得当0x =时,22(1)11ax a e ax -+=, 即211a -,解之得2a -或2a.0x 时,21y ax =+是减函数,0a ∴<又0x <时,2(1)ax a e -是减函数,210a ∴->,得1a <-或1a >因此,实数a 的取值范围是:2a - 综上所述,得(,2]2]a ∈-∞⋃故选C .5.(2020春•天津期末)下列函数中,在(0,)+∞上为增函数的是( ) A .()3f x x =- B .2()3f x x x =-C .1()f x x=-D .()||f x x =-【答案】C【解析】根据题意,依次分析选项:对于A ,()3f x x =-为一次函数,在(0,)+∞上为减函数,不符合题意; 对于B ,2()3f x x x =-为二次函数,在3(0,)2上为减函数,不符合题意;对于C ,1()f x x=-为反比例函数,在(0,)+∞上为增函数,符合题意; 对于D ,()||f x x =-,当0x >时,()f x x =-,则函数()f x 在(0,)+∞上为减函数,不符合题意; 故选C .6.(2019秋•武昌区期末)下列函数在(0,2)上是增函数的是( ) A .2y x =- B .12y x =-C .21()2x y -=D .12log (2)y x =-【答案】D【解析】对于A ,函数在(0,2)递减,不合题意; 对于B ,函数在(0,2)递减,不合题意; 对于C ,函数在(0,2)递减,不合题意; 对于D ,函数在(0,2)递增,符合题意; 故选D .7.(2020春•郑州期末)函数2()2f x x lnx =-的单调减区间是( ) A .(0,1) B .(1,)+∞ C .(,1)-∞ D .(1,1)-【答案】A【解析】函数2()2(0)f x x lnx x =->的导数为 2()2f x x x'=-, 令()0f x '<,解得01x <<. 即有单调减区间为(0,1). 故选A .8.(2020•北京模拟)下列函数中,在(0,)+∞内单调递增,并且是偶函数的是( ) A .2(1)y x =-- B .cos 1y x =+C .||2y lg x =+D .2x y =【答案】C【解析】A .2(1)y x =--的对称轴为1x =,为非奇非偶函数,不满足条件.B .cos 1y x =+是偶函数,但在(0,)+∞内不是单调函数,不满足条件.C .||2y lg x =+为偶函数,在(0,)+∞内单调递增,满足条件,D .2x y =,(0,)+∞内单调递增,为非奇非偶函数,不满足条件.故选C .9.(2019春•武邑县校级期中)函数()af x x x=+在区间(2,)+∞上单调递增,那么实数a 的取值范围是( ) A .02a < B .04a <C .4aD .4a【答案】D【解析】根据题意,函数()af x x x=+,其导数222()1a x a f x x x -'=-=, 若()af x x x=+在区间(2,)+∞上单调递增,则22()0x a f x x -'=在(2,)+∞上恒成立,则有2a x 在(2,)+∞上恒成立, 必有4a , 故选D .10.(2019秋•东海县期中)函数1()f x x=的单调减区间是( ) A .(0,)+∞B .(,0)-∞C .(-∞,0)(0⋃,)+∞D .(,0)-∞和(0,)+∞【答案】D【解析】根据题意,函数1()f x x =,其定义域为{|0}x x ≠其导数21()f x x'=-, 分析可得:当0x >时,()0f x '<,即函数()f x 在(0,)+∞上为减函数, 当0x <时,()0f x '<,即函数()f x 在(,0)-∞上为减函数; 综合可得:函数1()f x x=的单调减区间是(,0)-∞和(0,)+∞; 故选D .11.(2019秋•钟祥市校级期中)函数||1y x =-的单调递减区间为( ) A .(0,)+∞ B .(,0)-∞ C .(,1)-∞- D .(1,)-+∞【答案】B【解析】当0x 时,||11y x x =-=-,此时函数为增函数, 当0x <时,||11y x x =-=--,此时函数为减函数, 即函数的单调递减区间为(,0)-∞, 故选B .12.(2019秋•金凤区校级期中)下列函数在(0,)+∞上单调递增的是( ) A .2||y x = B .1y x =C .1()2x y =D .2y x x =-【答案】A【解析】根据题意,依次分析选项:对于A ,2,02||2,0x x y x x x ⎧==⎨-<⎩,在(0,)+∞上单调递增,符合题意;对于B ,1y x=,为反比例函数,在(0,)+∞上单调递减,不符合题意; 对于C ,1()2x y =,为指数函数,在(0,)+∞上单调递减,不符合题意;对于D ,2y x x =-,为二次函数,在1(0,)2上单调递减,不符合题意;故选A .13.(2019秋•赫章县期中)下列函数在[1-,)+∞上单调递减的是( ) A .2()3f x x x =-- B .()14x f x =+ C .()(2)f x lg x =+ D .()|21|f x x =-+【答案】A【解析】根据题意,依次分析选项:对于A ,2()3f x x x =--,为二次函数,其开口向下且对称轴为32x =-,在[1-,)+∞上单调递减,符合题意;对于B ,()14x f x =+,在R 上为增函数,不符合题意; 对于C ,()(2)f x lg x =+,在R 上为增函数,不符合题意;对于D ,121,2()|21|121,2x x f x x x x ⎧---⎪⎪=-+=⎨⎪+<-⎪⎩,在1(1,)2--上为增函数,不符合题意;故选A .14.(2019秋•香坊区校级月考)已知函数21()2x f x x +=+,则函数()y f x =的单调增区间是( ) A .(,)-∞+∞B .(,2)-∞-C .(-∞,2)(2-⋃,)+∞D .(,2)-∞-和(2-.)+∞【答案】D【解析】根据题意,函数213()222x f x x x +-==+++,其导数23()(2)f x x '=+, 易得在区间(,2)-∞-和(2,)-+∞上,()0f x '>, 即函数()f x 在区间(,2)-∞-和(2-.)+∞为增函数, 故选D .15.(2019春•温州期中)函数(21)y m x b =-+在R 上是减函数.则( ) A .12m >B .12m <C .12m >-D .12m <-【答案】B【解析】根据题意,函数(21)y m x b =-+在R 上是减函数, 则有210m -<,解可得12m <, 故选B .16.(2019•湖南模拟)定义在R 的函数3()f x x m =-+与函数32()()g x f x x x kx =++-在[1-,1]上具有相同的单调性,则k 的取值范围是( ) A .(-∞,2]- B .[2,)+∞C .[2-,2]D .(-∞,2][2-,)+∞【答案】B【解析】根据题意,函数3()f x x m =-+,其定义域为R ,则R 上()f x 为减函数,322()()g x f x x x kx x kx m =++-=-+在[1-,1]上为减函数, 必有12kx =,解可得2k , 即k 的取值范围为[2,)+∞; 故选B .17.(2019秋•金台区期中)函数221()2x x y -+=的单调递增区间是( )A .[1-,)+∞B .(-∞,1]-C .[1,)+∞D .(-∞,1]【答案】C【解析】令22t x x =-+, 则1()2t y =,由22t x x =-+的对称轴为1x =,可得函数t 在(,1)-∞递增,[1,)+∞递减, 而1()2t y =在R 上递减,由复合函数的单调性:同增异减,可得函数221()2x x y -+=的单调递增区间是[1,)+∞,故选C .18.(2019秋•天津期中)函数254y x x =-+( ) A .5[,)2+∞B .5[,4)2C .[4,)+∞D .5[1,),[4,)2+∞【答案】C【解析】令2540x x -+, 解得:4x 或1x ,而函数254y x x =-+的对称轴是:52x =, 由复合函数同增异减的原则,故函数254y x x =-+[4,)+∞, 故选C .19.(2019秋•项城市校级月考)下列函数中,在区间(0,1)上是递增函数的是( ) A .|1|y x =+ B .3y x =-C .1y x=D .24y x =-+【答案】A【解析】A .(0,1)x ∈时,|1|1y x x =+=+,∴该函数在(0,1)上是递增函数,;所以该选项正确B .3y x =-是一次函数,在(0,1)上是递减函数,所以该选项错误;C .1y x=是反比例函数,在(0,1)上是递减函数,所以该选项错误; D .24y x =-+是二次函数,在(0,1)上是递减函数,所以该选项错误.故选A .20.(2019•西湖区校级模拟)函数()2f x lnx x =-的定义域为___________;单调递减区间是___________.【答案】(0,)+∞;1(2,)+∞【解析】函数()f x 的定义域为(0,)+∞;112()2xf x x x-'=-=, 令()0f x '<,得12x >, ∴函数的单调递减区间为1(2,)+∞.故答案为:(0,)+∞;单调递减区间为1(2,)+∞.21.(2019•西湖区校级模拟)函数42y x x=+的单调递增区间为___________,值域为___________. 【答案】(,2)-∞和(2,)+∞,(-∞,42][42-,)+∞ 【解析】24()20f x x '=->,解得2x >或2x <-函数42y x x=+的单调递增区间为(,2)-∞和(2,)+∞,单调递减区间为[2-0),(02],即函数在2x =-(2)42f -=-,在2x =处有极小值(2)42f = 所以函数的值域为(-∞,42][42-,)+∞.故答案为:(,2)-∞和(2)+∞,(-∞,42][42-,)+∞.22.(2018•浙江模拟)已知函数已知函数222,2()1,2x x x f x log x x ⎧-+⎪=⎨->⎪⎩,则(f f (4))___________;函数()f x 的单调递减区间是___________.【答案】1,[1,2]【解析】f (4)2log 411=-=; (f f ∴(4))f =(1)21211=-+⨯=;2x 时,2()2f x x x =-+,对称轴为1x =;()f x ∴在[1,2]上单调递减; ()f x ∴的单调递减区间为[1,2].故答案为:1,[1,2].23.(2017•河东区一模)已知函数32()1f x x ax x =-+--在R 上是单调函数,则实数a 的取值范围是___________. 【答案】[3,3]-【解析】由题意知,32()1f x x ax x =-+--, 则2()321f x x ax '=-+-,32()1f x x ax x =-+--在R 上是单调函数, 2()3210f x x ax ∴'=-+-在R 上恒成立, 则△2(2)4(3)(1)0a =-⨯-⨯-,解得33a-,∴实数a 的取值范围是[3,3]-,故答案为:[3,3].24.(2016•永康市模拟)设函数21,1()2,1x x x f x ax x ⎧+=⎨+>⎩,若(f f (1))4a =,则实数a =___________,函数()f x 的单调增区间为___________. 【答案】2,(0,)+∞【解析】函数21,1()2,1x x x f x ax x ⎧+=⎨+>⎩,可得f (1)2=,(f f (1))f =(2)424a a =+=, 解得2a =;21,1()22,1x x x f x x x ⎧+=⎨+>⎩的增区间为(0,1)[1,)+∞(0,)=+∞.故答案为:2,(0,)+∞25.(2019秋•徐汇区校级期中)函数2()2f x x x =-+的单调递增区间为___________. 【答案】(-∞,1]【解析】根据题意,22()2(1)1f x x x x =-+=--+,是开口向下的二次函数,其对称轴为1x =, 故()f x 的单调递增区间为(-∞,1];故答案为:(-∞,1].26.(2019秋•香坊区校级月考)函数224y x x =--+的值域是___________,单调递增区间是___________.【答案】[0,2];[2,4]【解析】根据题意,函数224y x x =-+设24t x x =-+,必有240t x x =-+,解可得04x , 必有04t ,则2042x x -+,则有02y ,即函数的值域为[0,2];又由24t x x =-+,必在区间[0,2]上为增函数,则[2,4]上为减函数,则函数()f x 的递增区间为[2,4];故答案为:[0,2];[2,4].27.(2019春•江阴市期中)已知2()(2)2f x x m x =-++在[1,3]上是单调函数,则实数m 的取值范围为___________. 【答案】0m 或4m【解析】根据题意,2()(2)2f x x m x =-++为二次函数,其对称轴为22m x +=, 若()f x 在[1,3]上是单调函数,则有212m +或232m +, 解可得0m 或4m ,即m 的取值范围为0m 或4m ; 故答案为:0m 或4m .28.(2018秋•驻马店期末)已知()f x 是定义在[1-,)+∞上的单调递增函数,则不等式2()(2)2x xf e f --的解集是___________.【答案】[2,6]【解析】根据题意,()f x 是定义在[1-,)+∞上的单调递增函数, 则22()(2)2122x x x xf e f e ---⇒--,解可得:26x ,即不等式的解集为[2,6]; 故答案为:[2,6].29.(2019秋•秦州区校级月考)已知函数|1|1()()2x f x -=,则()f x 的单调递增区间是___________.【答案】(,1)-∞【解析】1|1|11()11()()2221x x x x f x x ---⎧⎪==⎨⎪<⎩;()f x ∴在(,1)-∞上单调递增;即()f x 的单调递增区间为(,1)-∞. 故答案为:(,1)-∞.30.(2019秋•思明区校级期中)函数()|2|f x x x =-的单调减区间为___________. 【答案】[1,2]【解析】当2x >时,2()2f x x x =-, 当2x 时,2()2f x x x =-+,这样就得到一个分段函数222,2()2,2x x x f x x x x ⎧->=⎨-+⎩.2()2f x x x =-的对称轴为:1x =,开口向上,2x >时是增函数; 2()2f x x x =-+,开口向下,对称轴为1x =, 则1x <时函数是增函数,12x <<时函数是减函数. 即有函数的单调减区间是[1,2]. 故答案为:[1,2].31.(2018秋•定远县期末)若函数()|2|(4)f x x x =--在区间(5,41)a a +上单调递减,则实数a 的取值范围是___________. 【答案】2152a【解析】函数(2)(4)(2)()|2|(4)(2)(4)(2)x x x f x x x x x x --⎧=--=⎨--<⎩ ∴函数的增区间为(,2)-∞和(3,)+∞,减区间是(2,3).在区间(5,41)a a +上单调递减,(5a ∴,41)(2a +⊆,3),得25413a a ⎧⎨+⎩,解之得2152a故答案为:2152a.32.(2019•西湖区校级模拟)已知函数22();[1,)x x af x x x++=∈+∞(1)若12a =,求函数()f x 的最小值.(2)求函数()f x 的单调区间. 【解析】(1)1()22f x x x=++,在区间2[)+∞上单调递增,所以()f x 在[1,)+∞上是增函数, 所以7[()](1)2min f x f ==(2)22()2,[1,)x x a af x x x x x++==++∈+∞当0a 时,()f x 在[1,)+∞上是增函数当0a >时,()f x 在)a 上递减,在(,)a +∞递增,所以 ①1,01a a <时,()f x 在[1,)+∞上是增函数;②当1a >时,()f x 在a 上是减函数,在(,)a +∞上是增函数; 综上所述,当1a 时,()f x 在[1,)+∞上是增函数当1a >时,()f x 在)a 上是减函数,在(,)a +∞上是增函数. 33.(2019秋•秦淮区校级期中)(1)求函数()1f x x x =-+ (2)求函数212log (21)y x x =-++的单调区间.【解析】(11(0)x t t +=,则21x t =-, 所以21(0)y t t t =--,因为抛物线21y t t =--开口向上,对称轴为直线12t =, 所以当12t =时,y 取得最小值为54-,无最大值,所以函数()f x 的值域为5[,)4-+∞.(2)设221t x x =-++.令2210x x -++>,解得1212x <+ 所以函数212log (21)y x x =-++的定义域为(12,12),2(1)2t x =--+,对称轴方程为1x =,221t x x ∴=-++在(12,1)上为单调增函数,而在(1,12)+上为单调减函数,因为12log y t =为单调减函数,∴函数212log (21)y x x =-++的单调增区间为(1,12)+,单调减区间为(12,1).34.(2018秋•合肥期末)已知函数1()22x x f x =-. (1)判断()f x 在其定义域上的单调性,并用单调性的定义证明你的结论; (2)解关于x 的不等式2(log )f x f <(1). 【解析】(1)1()22(2)()2x x x x f x f x --=-=--=-,则函数()f x 是奇函数, 则当0x 时,设120x x <,则2112121212121122()()22222222x x x x x x x x x x f x f x --=--+=-+121212221(22)22x x x x x x -=-,120x x <,12122x x ∴<,即12220x x -<,12221x x >,则12()()0f x f x -<,即12()()f x f x <, 则()f x 在[0,)+∞上是增函数, ()f x 是R 上的奇函数, ()f x ∴在R 上是增函数.(2)()f x 在R 上是增函数,∴不等式2(log )f x f <(1)等价为不等式2log 1x <,即02x <<.即不等式的解集为(0,2).。

高中数学 函数的单调性与最值

专题 函数的单调性与最值1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 2.函数的最值 (1)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).(×)(2)相同单调性函数的和、差、积、商函数还具有相同的单调性.(×)(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×) (4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.(×)(5)对于函数f(x),x∈D,若x1,x2∈D,且(x1-x2)[f(x1)-f(x2)]>0,则函数f(x)在D上是增函数.(√)(6)函数f(x)=log5(2x+1)的单调增区间是(0,+∞).(×)考点一求函数的单调性(区间)A.y=x+1B.y=(x-1)2C.y=2-x D.y=log0.5(x+1)答案:A(2)函数f(x)=lg x2的单调递减区间是________.答案:(-∞,0)(3)判断并证明函数f(x)=axx2-1(其中a>0)在x∈(-1,1)上的单调性.(二次除以一次的处理;拓展一次除以一次)[方法引航]判断函数单调性的方法(1)定义法:取值,作差,变形,定号,下结论.(2)利用复合函数关系:简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,单调增;图象逐渐下降,单调减.(4)性质法:增函数与减函数的加减问题。

1.下列函数中,定义域是R且为增函数的是()A.y=e-x B.y=x C.y=ln x D.y=|x|选B.2.函数y=|x|(1-x)在区间A上是增函数,那么区间A是()A .(-∞,0) B.⎣⎢⎡⎦⎥⎤0,12 C .[0,+∞) D.⎝ ⎛⎭⎪⎫12,+∞选B.3.已知a >0,函数f (x )=x +ax (x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.(掌握对勾函数;明确对勾函数的特征)考点二 利用函数的单调性求最值[例2] (1)函数f (x )=2x x +1在[1,2]上的最大值和最小值分别是________.答案:43,1(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =________. 答案:251.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6 D .12 f (x )的最大值为f (2)=23-2=6.考点三 函数单调性的应用[例3] (1)已知11122x y⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,则下列不等关系一定成立的是( )A .22x y <B .22log log x y <C .33x y > D .cos cos x y <(2)已知f (x )=⎩⎨⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________. 答案:⎣⎢⎡⎭⎪⎫32,2[方法引航] (1)利用单调性比较大小,首先把不在同一个单调区间上的变量转化为同一个单调区间,再结合单调性进行比较.(2)已知函数的单调性确定参数的值域范围要注意以下两点:①任意子区间上也是单调的;②注意衔接点的取值.1.在本例(2)中,若f (x )不变且a ∈⎣⎢⎡⎭⎪⎫32,2.解不等式f (4a 2-2a -5)<f (a +2).f (4a 2-2a -5)<f (a +2)的解集为⎣⎢⎡⎭⎪⎫32,74.2.定义在R 上的函数()f x =25,1,, 1.x ax x a x x---≤>⎧⎨⎩ 对任意12xx ≠都有,1212()[()()]0x x f x f x -->成立,则实数a 的取值范围是( )A. [-3,-2]B. [-3,0)C.(-∞,-2]D. (-∞,0)[易错警示]定义域的请求——求函数单调区间先求我1.函数的单调区间是定义域的子集,求函数的单调区间必须做到“定义域优先”的原则.[典例1] 函数f (x )=x 2+x -6的单调增区间为________.[答案] [2,+∞)[警示] 求函数的单调区间,应该先求定义域,在定义域内寻找减区间、增区间;若增区间或减区间是间断的,要分开写,不能用“并集符号”合并联结. 2.利用函数单调性解不等式时也要先求定义域.[典例2] 已知,定义在[-2,3]上的函数f (x )是减函数,则满足f (x )<f (2x -3)的x 的取值范围是________. [答案] ⎣⎢⎡⎭⎪⎫12,3[警示] 这类不等式应等价于:单调性和定义域构成的不等式组.[高考真题体验]1.下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x选项D 符合题意.2.设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B .奇函数,且在(0,1)上是减函数 C .偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数 故选A.3.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( ) A .f (x )=1x 2 B .f (x )=x 2+1 C .f (x )=x 3 D .f (x )=2-x故选A. 4.函数f (x )=xx -1(x ≥2)的最大值为________.答案:25.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________. 答案:⎝ ⎛⎭⎪⎫12,32课时规范训练 A 组 基础演练1.函数y =x 2-6x +10在区间(2,4)上是( ) A .递减函数 B .递增函数 C .先递减再递增 D .先递增再递减解析:选C.2.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫1x >f (1)的实数x 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(-∞,0)∪(0,1)D .(-∞,0)∪(1,+∞) x 的取值范围是x >1或x <0.3.函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( ) A .f (x )=1x B .f (x )=(x -1)2 C .f (x )=e xD .f (x )=ln(x +1) 4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( ) A .a >-14 B .a ≥-14 C .-14≤a <0 D .-14≤a ≤0综上所述得-14≤a ≤0.5.函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3选C.6.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是________.答案:(-1,0)∪(0,1)7.y =-x 2+2|x |+3的单调增区间为________.答案:(-∞,-1],[0,1]8.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是________. 答案:(-∞,1]9.函数f (x )=x 2-4x -4在闭区间[t ,t +1](t ∈R )上的最小值记为g (t ). (1)试写出g (t )的函数表达式; (2)求g (t )的最小值. g (t )=⎩⎪⎨⎪⎧t 2-2t -7 (t <1),-8 (1≤t ≤2),t 2-4t -4 (t >2).(2)画出g (t )的图象如图所示,由图象易知g (t )的最小值为-8. 10.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证(判断)f (x )在(-∞,-2)上单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.B 组 能力突破1.设函数f (x )=log a |x |在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( ) A .f (a +1)>f (2) B .f (a +1)<f (2) C .f (a +1)=f (2)D .不能确定选A.2.已知f (x )=⎩⎨⎧x 2-4x +3,x ≤0-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是( ) A .(-∞,-2) B .(-∞,0) C .(0,2) D .(-2,0)选A.3.函数f (x )=log 5(2x +1)的单调递增区间是________. 答案:⎝ ⎛⎭⎪⎫-12,+∞4.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(函数背景是什么?) (1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2), 所以f (x )在(0,+∞)上是单调递减函数. (3)∵[2,9]⊆(0,+∞),∴f (x )在[2,9]上为减函数f (x )min =f (9).由题意可知f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2+f (x 2),∴f (9)=f ⎝ ⎛⎭⎪⎫93+f (3)=2f (3)=-2.∴f (x )在[2,9]上的最小值为-2.专题 函数的奇偶性与周期性1.函数的奇偶性(1)周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0.(√) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×)(3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.(√) (4)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.(√)(5)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.(√)(6)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√) (7)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.(√) (8)若某函数的图象关于y 轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√)考点一判断函数的奇偶性命题点用函数奇偶性定义判断[例1](1)A.y=x B.y=e xC.y=cos x D.y=e x-e-x答案:D(2)下列函数中为偶函数的是()A.y=1x B.y=lg|x|C.y=(x-1)2D.y=2x答案:B(3)函数f(x)=3-x2+x2-3,则()A.不具有奇偶性B.只是奇函数C.只是偶函数D.既是奇函数又是偶函数答案:D[方法引航]判断函数的奇偶性的三种重要方法(1)定义法:(2)图象法:函数是奇(偶)函数的充要条件是它的图象关于原点(y轴)对称.(3)性质法:①“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;②“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;③“奇·偶”是奇,“奇÷偶”是奇.判断下列函数的奇偶性(1)f(x)=(x+1) 1-x 1+x;(2)f(x)=lg 1-x1+x.(其它底数)(其它变形形式)原函数是奇函数.考点二函数的周期性及应用[例2](1)下列函数不是周期函数的是()A.y=sin x B.y=|sin x| C.y=sin|x| D.y=sin(x+1) 答案:C(2)已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=-1f(x),且当x∈[0,2)时,f(x)=log2(x+1),则求f(-2 017)+f(2 019)的值为________.答案:0[方法引航](1)利用周期f(x+T)=f(x)将不在解析式范围之内的x通过周期变换转化到解析式范围之内,以方便代入解析式求值.(2)判断函数周期性的几个常用结论.①f(x+a)=-f(x),则f(x)为周期函数,周期T=2|a|.②f(x+a)=1f(x)(a≠0),则函数f(x)必为周期函数,2|a|是它的一个周期;③f(x+a)=-1f(x),则函数f(x)必为周期函数,2|a|是它的一个周期.1.若将本例(2)中“f(x+2)=-1f(x)”变为“f(x+2)=-f(x)”,则f(-2 017)+f(2019)=________.答案:02.若本例(2)条件变为f(x)对于x∈R,都有f(x+2)=f(x)且当x∈[0,2)时,f(x)=log 2(x +1),求f (-2 017)+f (2 019)的值.f (-2 017)+f (2 019)=2.拓展延伸:已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=( )A .0B .mC .2mD .4m 解析:选B.考点三 函数奇偶性的综合应用[例3] (1)若函数f (x )=2x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)答案:C (注重多种解法) (2)函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f⎝ ⎛⎭⎪⎫12=25. ①确定函数f (x )的解析式;②用定义证明f (x )在(-1,1)上是增函数; ③解不等式f (t -1)+f (t )<0. 解:①a =1.∴f (x )=x 1+x2,经检验适合题意.②证明:(略)f (x )在(-1,1)上为增函数. ③0<t <12.3.设奇函数()f x 在(0,+∞)上为增函数,且)1(f =0,则不等式()()0f x f x x--<的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)(4)已知f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ),则当x <0时,f (x )=( )A .-x 3-ln(1-x )B .x 3+ln(1-x )C .x 3-ln(1-x )D .-x 3+ln(1-x )答案:C[方法引航] (1)根据奇偶性求解析式中的参数,是利用f (-x )=-f (x )或f (-x )=f (x )在定义域内恒成立,建立参数关系.(2)根据奇偶性求解析式或解不等式,是利用奇偶性定义进行转化.1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 答案:132.定义在R 上的偶函数y =f (x )在[0,+∞)上递减,且f ⎝ ⎛⎭⎪⎫12=0,则满足f (x )<0的x 的集合为( ) A.⎝ ⎛⎭⎪⎫-∞,12∪(2,+∞) B.⎝ ⎛⎭⎪⎫12,1∪(1,2) C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎭⎪⎫12,1∪(2,+∞) 满足不等式f<0的x 的集合为⎝ ⎛⎭⎪⎫0,12∪(2,+∞). 3.已知函数f (x )=-x +log 21-x 1+x +1,则f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫-12的值为( )A .2B .-2C .0D .2log 213f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫-12=2.[方法探究]“多法并举”解决抽象函数性质问题[典例] 定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),f (x +2)=-f (x )且f (x )在[-1,0]上是增函数,给出下列四个命题:①f (x )是周期函数;②f (x )的图象关于x =1对称;③f (x )在[1,2]上是减函数;④f (2)=f (0),其中正确命题的序号是________(请把正确命题的序号全部写出来).[分析关系] ①f (x +y )=f (x )+f (y )隐含了用什么结论?什么方法探究? ②f (x +2)=-f (x ),隐含了什么结论?用什么方法探究.③若f (x )的图象关于x =1对称,其解析式具备什么等式关系?从何处理探究? ④f (x )在[-1,0]上的图象与[1,2]上的图象有什么关系?依据什么指导? ⑤f (2),f (0)从何处计算.[解析] 第一步:f (x +y )=f (x )+f (y )对任意x ,y ∈R 恒成立. (赋值法):令x =y =0,∴f (0)=0.令x +y =0,∴y =-x ,∴f (0)=f (x )+f (-x ). ∴f (-x )=-f (x ),∴f (x )为奇函数.第二步:∵f (x )在x ∈[-1,0]上为增函数,又f (x )为奇函数,∴f (x )在[0,1]上为增函数. 第三步:由f (x +2)=-f (x )⇒f (x +4)=-f (x +2) ⇒f (x +4)=f (x ),(代换法)∴周期T =4,即f (x )为周期函数.第四步:f (x +2)=-f (x )⇒f (-x +2)=-f (-x ).(代换法) 又∵f (x )为奇函数,∴f (2-x )=f (x ),∴关于x =1对称.第五步:由f (x )在[0,1]上为增函数,又关于x =1对称, ∴[1,2]上为减函数.(对称法)第六步:由f (x +2)=-f (x ),令x =0得f (2)=-f (0)=f (0).(赋值法) [答案] ①②③④[回顾反思] 此题用图象法更直观.[高考真题体验]1.(2014·高考课标全国卷Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( ) A .f (x )g (x )是偶函数 B .|f (x )|g (x )是奇函数 C .f (x )|g (x )|是奇函数 D .|f (x )g (x )|是奇函数选C.2.已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12.则f (6)=( )A .-2B .-1C .0D .2解析:选D3.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________.答案:-24.(2015·高考课标全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 答案:15.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎨⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.答案:1课时规范训练 A 组 基础演练1.下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x | D .y =2-x解析:选B.2.下列函数中既不是奇函数也不是偶函数的是( ) A .y =2|x | B .y =lg(x +x 2+1) C .y =2x +2-xD .y =lg1x +1解析:选D.3.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)等于( )A .-1B .1C .-2D .2 解析:选A.4.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=( )A .-2B .0C .1D .2 解析:选A.5.设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎨⎧4x 2-2,-2≤x ≤0x ,0<x <1,则f ⎝ ⎛⎭⎪⎫52=( )A .0B .1 C.12 D .-1解析:选D.6.函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f (f (5))=________. 答案:-157.已知f (x )是定义在R 上的偶函数,f (2)=1,且对任意的x ∈R ,都有f (x +3)=f (x ),则f (2 017)=________. 答案:18.函数f (x )=e x +x (x ∈R )可表示为奇函数h (x )与偶函数g (x )的和,则g (0)=________. 答案:19.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式.∴f (x )=⎩⎪⎨⎪⎧-x lg (2+x ) x ∈[0,+∞)-x lg (2-x ) x ∈(-∞,0)B 组 能力突破1.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( ) A .2 B.154 C.174 D .a 2解析:选B.3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)解析:选D.4.定义在R上的函数f(x),对任意x均有f(x)=f(x+2)+f(x-2)且f(2 016)=2 016,则f(2 028)=________.解析:∵x∈R,f(x)=f(x+2)+f(x-2),∴f(x+4)=f(x+2)-f(x)=-f(x-2),∴f(x+6)=-f(x),∴f(x+12)=f(x),则函数f(x)是以12为周期的函数.又∵f(2 016)=2 016,∴f(2 028)=f(2 028-12)=f(2 016)=2 016.答案:2 0165.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解:(1)∵对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2),∴令x1=x2=1,得f(1)=2f(1),∴f(1)=0.(2)令x1=x2=-1,有f(1)=f(-1)+f(-1),∴f(-1)=12f(1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x),∴f(x)为偶函数.(3)依题设有f(4×4)=f(4)+f(4)=2,由(2)知,f(x)是偶函数,∴f(x-1)<2⇔f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数.∴0<|x-1|<16,解得-15<x<17且x≠1.∴x的取值范围是{x|-15<x<17且x≠1}.专题二次函数与幂函数1.幂函数(1)幂函数的定义形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α为常数.(2)五种幂函数的图象(3)五种幂函数的性质y=(1)二次函数的图象和性质R ①一般式:y=ax2+bx+c(a≠0).②顶点式:y=a(x+h)2+k(其中a≠0,顶点坐标为(-h,k)).③两根式:y=a(x-x1)(x-x2)(其中a≠0,x1、x2是二次函数的图象与x轴的两个交点的横坐标).3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)当α<0时,幂函数y=xα是定义域上的减函数.(×)(2)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是4ac-b24a.(×)(3)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.(×)(4)当n>0时,幂函数y=x n是定义域上的增函数.(×)(5)若函数f(x)=(k2-1)x2+2x-3在(-∞,2)上单调递增,则k=±22.(×)考点一二次函数解析式________.答案:x2+2x[方法引航]根据已知条件确定二次函数解析式,一般用待定系数法,规律如下:1.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.答案:-2x2+4考点二 二次函数图象和性质[例2] (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;解:(1) f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35. (2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.[方法引航] (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解; (3)对于二次函数的综合应用,要综合应用二次函数与二次方程和二次不等式之间的关系进行转化.1.若本例已知条件不变,求f (x )的最小值. 当a ≥4时,f (x )min =19-8a . 当-6≤a ≤4时,f (x )min =3-a 2. 当a <-6时,f (x )min =39+12a .2.若本例已知条件不变,f(x )=0在[-4,6]上有两个不相等实根,求a 的取值范围.解:要使f (x )=0,在[-4,6]上有两个不等实根,需⎩⎪⎨⎪⎧ f (-a )<0-4≤-a ≤6f (-4)≥0f (6)≥0即⎩⎪⎨⎪⎧3-a 2<0,-6≤a ≤4,19-8a ≥0,36+12a ≥0.解得,-134≤a <-3或3<a ≤198.3.若本例中f (x )>0在x ∈(0,6]上恒成立,求a 的取值范围. 解:x 2+2ax +3>0,在x ∈(0,6]上恒成立, 即2a >-⎝ ⎛⎭⎪⎫x +3x 在x ∈(0,6]上恒成立,只需求u =-⎝ ⎛⎭⎪⎫x +3x ,x ∈(0,6]的最大值.∵x +3x ≥23,当且仅当x =3时,取等号. ∴u max =-23, ∴2a >-23,∴a >- 3.综合运用:已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) 注重巧解 A .{1,3} B .{-3,-1,1,3} C .{2-7,1,3} D .{-2-7,1,3}解析:选D.考点三 幂函数图象与性质[例3] (1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )答案:C(2)已知函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且x ∈(0,+∞)时,f (x )是增函数,则m 的值为( ) A .-1 B .2 C .-1或2 D .3答案:B (3)已知f (x )=,若0<a <b <1,则下列各式正确的是( )A .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1bB .f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1b <f (b )<f (a )C .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1b <f ⎝ ⎛⎭⎪⎫1aD .f ⎝ ⎛⎭⎪⎫1a <f (a )<f ⎝ ⎛⎭⎪⎫1b <f (b )答案:C[方法引航] (1)若幂函数y =x α(α∈R )是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断.(2)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.,(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.1.若四个幂函数y =x a ,y =x b ,y =x c ,y =x d 在同一坐标系中的图 象如图所示,则a ,b ,c ,d 的大小关系是( )A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c解析:选B.2.若,则实数a 的取值范围是________.(陷阱) 解析:不等式等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a . 解得a <-1或23<a <32. 答案:(-∞,-1)∪⎝ ⎛⎭⎪⎫23,32[规范答题] “三个二次”间的转化二次函数与一元二次方程、一元二次不等式统称为“三个二次”,它们常有机结合在一起,而二次函数是“三个二次”的核心,通过二次函数的图象将其贯穿为一体.因此,有关二次函数的问题,常利用数形结合法、分类讨论法转化为方程与不等式来解决.[典例] (本题满分12分)已知f (x )=ax 2-2x (0≤x ≤1) (1)求f (x )的最小值;(2)若f (x )≥-1恒成立,求a 的范围; (3)若f (x )=0的两根都在[0,1]内,求a 的范围.[规范解答] (1)①当a =0时,f (x )=-2x 在[0,1]上递减, ∴f (x )min =f (1)=-2.②当a >0时,f (x )=ax 2-2x 的图象的开口方向向上,且对称轴为x =1a .2分 ⅰ.当0<1a ≤1,即a ≥1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]内,∴f (x )在⎣⎢⎡⎦⎥⎤0,1a 上递减,在⎣⎢⎡⎦⎥⎤1a ,1上递增.∴f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a =-1a .4分ⅱ.当1a >1,即0<a <1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减.∴f (x )min =f (1)=a -2. 6分③当a <0时,f (x )=ax 2-2x 的图象的开口方向向下, 且对称轴x =1a <0,在y 轴的左侧, ∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎨⎧a -2,a <1,-1a ,a ≥1.8分(2)只需f (x )min ≥-1,即可.由(1)知,当a <1时,a -2≥-1,∴a ≥1(舍去); 当a ≥1时,-1a ≥-1恒成立,∴a ≥1.10分 (3)由题意知f (x )=0时,x =0,x =2a (a ≠0), 0∈[0,1],∴0<2a ≤1,∴a ≥2.12分 [规范建议] (1)分清本题讨论的层次 第一层:函数类型a =0和a ≠0.第二层:开口方向a>0和a<0.第三层:对称轴x=1a与区间[0,1]的位置关系,左、内、右.(2)讨论后要有总结答案.[高考真题体验]1.(2016·高考全国丙卷)已知则()A.b<a<c B.a<b<cC.b<c<a D.c<a<b解析:选A.2.(2015·高考山东卷)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<bC.b<a<c D.b<c<a解析:选C.3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=1x B.y=e-xC.y=-x2+1 D.y=lg|x|解析:选C.4.设函数则使得f(x)≤2成立的x的取值范围是________.答案:(-∞,8]5.已知a>0,b>0,ab=8,则当a的值为________时,log2a·log2(2b)取得最大值.答案:4课时规范训练 A 组 基础演练1.若函数f (x )是幂函数,且满足f (4)=3f (2),则f ⎝ ⎛⎭⎪⎫12的值为( )A.13B.12C.23D.43解析:选A.2.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )解析:选C.4.如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f (1+x )=f (-x ),那么( ) A .f (-2)<f (0)<f (2) B .f (0)<f (-2)<f (2) C .f (2)<f (0)<f (-2) D .f (0)<f (2)<f (-2) 解析:选D.5.若f (x )=x 2-ax +1有负值,则实数a 的取值范围是( ) A .a ≤-2 B .-2<a <2 C .a >2或a <-2 D .1<a <3解析:选C.6.若方程x 2-11x +30+a =0的两根均大于5,则实数a 的取值范围是________. 解析:令f (x )=x 2-11x +30+a . 结合图象有⎩⎪⎨⎪⎧Δ≥0f (5)>0,∴0<a ≤14.答案:0<a ≤147.若二次函数f (x )=ax 2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________. 解析:由已知得⎩⎪⎨⎪⎧a >0,4ac -164a =0,⇒⎩⎪⎨⎪⎧a >0,ac -4=0.答案:a >0,ac =48.已知f (x )=4x 2-mx +5在[2,+∞)上是增函数,则实数m 的取值范围是________.解析:因为函数f (x )=4x 2-mx +5的单调递增区间为⎣⎢⎡⎭⎪⎫m 8,+∞,所以m 8≤2,即m ≤16.答案:(-∞,16]9.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值. 解:函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1, 对称轴方程为x =a .(1)当a <0时,f (x )max =f (0)=1-a , ∴1-a =2,∴a =-1.(2)当0≤a ≤1时,f (x )max =a 2-a +1, ∴a 2-a +1=2,∴a 2-a -1=0, ∴a =1±52(舍).(3)当a >1时,f (x )max =f (1)=a ,∴a =2. 综上可知,a =-1或a =2.10.已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ).(1)若函数f (x )的图象过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式;(2)在(1)的条件下,当x ∈[-1,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解:(1)因为f (-2)=1,即4a -2b +1=1,所以b =2a . 因为方程f (x )=0有且只有一个根,所以Δ=b 2-4a =0. 所以4a 2-4a =0,所以a =1,所以b =2. 所以f (x )=(x +1)2.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1=⎝ ⎛⎭⎪⎫x -k -222+1-(k -2)24.由g (x )的图象知:要满足题意,则k -22≥2或k -22≤-1,即k ≥6或k ≤0,∴所求实数k 的取值范围为(-∞,0]∪[6,+∞).B 组 能力突破1.若幂函数y =(m 2-3m +3)·x m 2-m -2的图象不过原点,则m 的取值是( ) A .-1≤m ≤2 B .m =1或m =2 C .m =2D .m =1解析:选B.由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.2.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b . 其中正确的是( ) A .②④ B .①④ C .②③D .①③解析:选B.由函数图象知,a <0,与x 轴有两个交点,∴b 2-4ac >0,即b 2>4ac .对称轴x =-b2a =-1,∴2a -b =0.当x =-1时,对应最大值,f (-1)=a -b +c >0. ∵b =2a ,a <0,∴5a <2a ,即5a <b . 3.已知幂函数f (x )=,若f (a +1)<f (10-2a ),则a 的取值范围是________. 解析:∵f (x )==1x(x >0),易知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ),∴⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎪⎨⎪⎧a >-1,a <5,a >3,∴3<a <5. 答案:(3,5)5.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0,且-b2a =-1, 解得a =1,b =2.∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又1x -x 的最小值为0,-1x -x 的最大值为-2. ∴-2≤b ≤0.故b 的取值范围是[-2,0].指数与指数函数1.根式 (1)根式的概念若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *,式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数. (2)a 的n 次方根的表示x n =a ⇒⎩⎪⎨⎪⎧x =n a (当n 为奇数且n ∈N *时),x =±n a (当n 为偶数且n ∈N *时).2.有理数指数幂 (1)幂的有关概念 ①正分数指数幂:=na m (a >0,m ,n ∈N *,且n >1);②负分数指数幂: (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的性质 ①a r a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q ); ③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质R4.(1)na n与(na)n都等于a(n∈N*).(×)(2)函数y=a-x是R上的增函数.(×)(3)函数y=a x2+1(a>1)的值域是(0,+∞).(×)(4)当x>0时,y=a x>1.(×)(5)函数y=2x-1+1,过定点(0,1).(×)考点一指数幂的运算解:[方法引航]指数幂的化简方法(1)有括号的先算括号里的,无括号的先做指数运算.(2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.1.化简-(-1)0的结果为()(易错)A.-9B.7C.-10 D.9解析:选B.-(-1)0=-1=8-1=7.考点二指数函数图象及应用命题点1.指数函数图象的变换2.指数函数图象的应用[例2](1)函数x b的是()A.a>1,b<0 B.a>1,b>0C.0<a<1,b>0 D.0<a<1,b<0答案:D(2)k为何值时,方程|3x-1|=k无解?有一解?有两解?[方法引航](1)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(2)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.1.函数f (x )=2|x -1|的图象是( )解析:选B.f (x )=2|x -1|的图象是由y =2|x |的图象向右平移一个单位得到,故选B. 2.(2017·河北衡水模拟)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________.解析:曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].答案:[-1,1]考点三 指数函数的性质 [例3] (1)(2017·天津模拟)设y 1=40.9,y 2=80.48,y 3=⎝ ⎛⎭⎪⎫12-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2答案:D (2)不等式2-x2+2x>⎝ ⎛⎭⎪⎫12x +4的解集为________. 答案:{x |-1<x <4} (3)已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3①若f (x )有最大值3,求a 的值; ②若f (x )的值域是(0,+∞),求a 的值. 解:①令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1, 因此必有⎩⎪⎨⎪⎧a >0,3a -4a =-1,解得a =1,即当f (x )有最大值3时,a 的值等于1.②由指数函数的性质知,要使y =⎝ ⎛⎭⎪⎫13g (x )的值域为(0,+∞).应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ).故a 的值为0.[方法引航] (1)比较两个指数幂大小时,尽量化同底或同指,当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小.(2)解决简单的指数方程或不等式问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性的求解方法,与前面所讲一般函数的求解方法一致,只需根据条件灵活选择即可.1.若本例(1)中的三个数变为y 1=,y 2=,y 3=,则大小关系如何.解析:构造指数函数y =⎝ ⎛⎭⎪⎫25x(x ∈R ),由该函数在定义域内单调递减可得y 2<y 3,又y =⎝ ⎛⎭⎪⎫25x (x ∈R )与y =⎝ ⎛⎭⎪⎫35x (x ∈R )之间有如下结论:当x >0时,有⎝ ⎛⎭⎪⎫35x >⎝ ⎛⎭⎪⎫25x ,故,即y 1>y 3,∴y 1>y 3>y 2.答案:D2.在本例(3)中,若a =-1,求f (x )的单调区间. 解:当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2). 3.在本例(3)中,若a =1,求使f (x )=1的x 的解. 解析:当a =1时,f (x )=⎝ ⎛⎭⎪⎫13x 2-4x +3=1∴x 2-4x +3=0,∴x =1或x =3. 答案:1或3[方法探究]整体换元法,巧化指数式指数式的运算化简除了定义和法则外,根据不同的题目结构,可采用整体换元等方法.一、根据整体化为同指数[典例1] 计算(3-2)2 018·(3+2)2 019的值为________. [答案]3+ 2二、根据整体化为同底数[典例2] 若67x =27,603y =81,则3x -4y =________.期末考试第一题 [解析] ∵67x =27,603y =81,[答案] -2三、根据整体构造代数式 [典例3] 已知a 2-3a +1=0,则=________.[解析] ∵a 2-3a +1=0,∵a ≠0,∴a +1a =3.[答案]5四、根据整体构造常数a x ·a -x =1 [典例4] 化简4x4x +2+41-x 41-x +2=________.[答案] 1 五、根据整体换元[典例5] 函数y =⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在区间[-3,2]上的值域是________.[解析] 因为x ∈[-3,2], 所以若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8,故y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57. 故所求函数值域为⎣⎢⎡⎦⎥⎤34,57.[答案] ⎣⎢⎡⎦⎥⎤34,57[高考真题体验]1.已知则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b解析:选A.2.已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数.记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a 解析:选B.3.下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A .f (x )=x 3 B .f (x )=3x C .f (x )=D .f (x )=⎝ ⎛⎭⎪⎫12x解析:选B.5.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________. 答案:-326.(2015·高考福建卷)若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________. 答案:1课时规范训练 A 组 基础演练1.函数y =a x -a (a >0,且a ≠1)的图象可能是( )解析:选C.2.在同一坐标系中,函数y =2x 与y =⎝ ⎛⎭⎪⎫12x 的图象之间的关系是( )A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y =x 对称解析:选A4.函数y =2x -2-x 是( )A .奇函数,在区间(0,+∞)上单调递增B .奇函数,在区间(0,+∞)上单调递减C .偶函数,在区间(-∞,0)上单调递增D .偶函数,在区间(-∞,0)上单调递减 解析:选A.5.设函数f (x )=⎩⎪⎨⎪⎧1x(x >0),e x (x ≤0),若F (x )=f (x )+x ,x ∈R ,则F (x )的值域为( )A .(-∞,1]B .[2,+∞)C .(-∞,1]∪[2,+∞)D .(-∞,1)∪(2,+∞)解析:选C.6.指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. 解析:由题意知0<2-a <1,解得1<a <2. 答案:(1,2)7.计算:=________.答案:28.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________. 答案:(1,+∞)9.设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值. 解:令t =a x (a >0且a ≠1), 则原函数化为y =(t +1)2-2(t >0). ①当0<a <1时,x ∈[-1,1],t =a x∈⎣⎢⎡⎦⎥⎤a ,1a , 此时f (t )在⎣⎢⎡⎦⎥⎤a ,1a 上为增函数.所以f (t )max =f ⎝ ⎛⎭⎪⎫1a =⎝ ⎛⎭⎪⎫1a +12-2=14.所以⎝ ⎛⎭⎪⎫1a +12=16,所以a =-15或a =13.又因为a >0,所以a =13.②当a >1时,x ∈[-1,1],t =a x ∈⎣⎢⎡⎦⎥⎤1a ,a ,此时f (t )在⎣⎢⎡⎦⎥⎤1a ,a 上为增函数.所以f (t )max =f (a )=(a +1)2-2=14, 解得a =3(a =-5舍去).综上得a =13或3.10.已知函数f (x )=b ·a x (其中a ,b 为常量且a >0,a ≠1)的图象经过点A (1,6),B (3,24). (1)试确定f (x );(2)若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x -m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.解:(1)∵f (x )=b ·a x 的图象过点A (1,6),B (3,24), ∴⎩⎪⎨⎪⎧b ·a =6, ①b ·a 3=24, ②②÷①得a 2=4,又a >0且a ≠1,∴a =2,b =3,∴f (x )=3·2x .(2)由(1)知⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x -m ≥0在(-∞,1]上恒成立化为m ≤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上恒成立. 令g (x )=⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x ,则g (x )在(-∞,1]上单调递减, ∴m ≤g (x )min =g (1)=12+13=56,故所求实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,56.B 组 能力突破1.偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x ,则关于x 的方程f (x )=⎝ ⎛⎭⎪⎫110x 在x ∈[0,4]上解的个数是( )A .1B .2C .3D .4解析:选D.2.已知函数f (x )=⎩⎨⎧(1-3a )x +10a ,x ≤7,a x -7,x >7是定义域上的递减函数,则实数a的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,12 B.⎝ ⎛⎦⎥⎤13,611 C.⎣⎢⎡⎭⎪⎫12,23 D.⎝ ⎛⎦⎥⎤12,611 解析:选B.3.已知f (x )=9x -13x +1,且f (a )=3,则f (-a )的值为________.结论: 答案:-1 4.设函数f (x )=aa 2-1(a x -a -x )(a >0,a ≠1)(1)讨论f(x)的单调性;(2)若m∈R满足f(m)>f(m2+2m-2),求m的范围.解:(1)当a>1时,a2-1>0,y=a x为增函数,y=a-x为减函数,从而y=a x-a -x为增函数.所以f(x)为增函数.当0<a<1时,a2-1<0,y=a x为减函数,y=a-x为增函数,从而y=a x-a-x 为减函数.所以f(x)为增函数.故当a>0且a≠1时,f(x)在定义域内单调递增.(2)由(1)知函数f(x)在R上单调递增.∴由f(m)>f(m2+2m-2)得m>m2+2m-2,即m2+m-2<0,(m+2)(m-1)<0,∴-2<m<1.故m的范围为(-2,1).对数与对数函数1.对数的概念如果a x=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质与运算法则(1)对数的运算法则:如果a>0且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M(n∈R);④log m a M n=nm log a M.(2)对数的性质:①a log a N=N;②log a a N=N(a>0且a≠1).(3)对数的重要公式:①换底公式:log b N=log a Nlog a b(a,b均大于零且不等于1);②log a b=1log b a,推广log a b·log b c·log c d=log a d.3.对数函数的图象与性质(1)定义域:(0,+∞)指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x对称.5.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)若MN>0,则log a(MN)=log a M+log a N.(×)(2)函数y=ln 1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.(√)其它底数呢?(3)对数函数y=log a x(a>0且a≠1)的图象过定点(1,0).(√)(4)log2x2=2log2x.(×)(5)当x>1时,log a x>0.(×)(6)当x>1时,若log a x>log b x,则a<b.(×)考点一 对数式的运算[例1] (1)若x =log 43,则(2x -2-x )2等于( ) A.94 B.54 C.103 D.43答案:D(2) 2lg 2-lg 125的值为( ) (略) A .1 B .2 C .3 D .4 答案:B[方法引航] (1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.1.已知4a =2,lg x =a ,则x =________. 答案:102.已知函数f (x )=⎩⎨⎧log 2x ,x >0,3-x +1,x ≤0,则f (f (1))+f ⎝ ⎛⎭⎪⎫log 312的值是( )A .5B .3C .-1 D.72 解析:选A.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章函数
第五节:函数的单调性
教学目的:1.理解函数单调性的概念,会利用定义证明函数的单调性.
2.掌握简单复合函数单调性的判断,会用函数的单调性处理问题.
教学重点:函数的单调性及其运用。

教学难点:复合函数的单调性讨论。

教学方法:讲练结合。

学法指导:注意体会例题中所讲的方法,并加以应用。

教学过程:
一、知识点复习:
1.单调函数及单调区间
(1)增函数:对任意x1,x2∈[a,b]
,则为[a,b]的增函数.在[a,b上的图象从左向右看,曲
线逐渐上升,如图
(2)减函数:对任意x 1,x2∈[a,b],x1<x2,则为[a,b]的减函数.从图象上看,从左向右曲线逐渐下降.如图
2.函数单调性的证明方法
一定要用定义,其步骤为:
(1)任取x1,x2∈M,且x1<x2;
(2)论证或(一般用作差法或作商法)
(3)根据定义,得出结论
[例如]判断函数,(a≠0)在区间(-1,1)上的单调性.
[解] 设-1<x
1<x2<1,则
∵,∴a>0时,函数在(-1,1)上递减;a<0时,函数在(-1,1)上递增.
3.复合函数的单调性
如果和单调性相同,那么是增函数;如果和
单调性相反,那么是减函数.即的单调规律是“同则增,异则减”,即与g(x)若具有相同的单调性。

则必为增函数,若具有不同的单调性,则
必为减函数.讨论复合函数单调性的步骤是:
①求出复合函数的定义域;
②把复合函数分解成若干个常见的基本函数,并判定其单调性;
③把中间变量的变化范围转化成自变量的变化范围;
④根据上述复合函数的单调性规律判定其单调性.(如下表)
4.函数的单调性在比较大小,解不等式及求参数范围中的运用.
[例如] 设是定义在上的增函数,且,若,
,求x的取值范围.
[解] ∵,令x=9,y=3,∴,
又∵,∴,
又∵,
由,
由在上为增函数,得
故x的取值范围是
5.函数的单调性在函数的诸多性质当中,占有最重要的地位,而函数在每年高考中,是占有较大比重的,所以说,函数的单调性是高考的重中之重.一点不为过.前些年考察用定义来证明函数的单调性.近些年,题型在不断翻新.题目是“恒成立”的题,考察的都是函数的单调性.考得较“隐蔽”,如下面的例子就是典型一例。

有的题目明摆的是考查单调性,却与“探索”连在一起,虽然熟悉单调性的证明,如果平时不加强多题型的训练,也不一定能在高考中处于不败之地.
[例如]设,其中n∈R,n是任意给定的自然数.且n≥2,如果在x∈(-∞,1]上有意义,求a的取值范围.
思路:不难得到,关键在于如何求
的最大值,注意到函数,(m=1,2,…,n-1)在(-∞,1]上为减函数,问题就迎刃而解了.
[解]∵,
∴,
∵函数 (m=1,2,…,n-1)在(-∞,1]上是减函数.
∴函数在(-∞,1]上是增函数.当x=1时,

∴a的取值范围是
6.判断函数单调性的常用方法:
(1)定义法;
(2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;
(3)奇函数在对称的两个区间上有相同的单调性;偶函数在对称的两个区间上有相反的单调性;
(4)互为反函数的两个函数有相同的单调性;
(5)如果在区间D上是增(减)函数,那么在D的任一子区间上也是增(减)函数;
(6)利用已知函数的单调性
(7)利用函数的图象
(8)导数法
二、例题分析:
(一)基础知识扫描
1.若函数在(-∞,2]上是增函数,则实数a的取值范围是.
2.函数的递增区间是,递减区间是.
3.下列函数中,既是奇函数,又在其定义域上是增函数的是( )
A. B. y = tanx C. y = lgx D. y =
4.下列命题:
①若为增函数,则为减函数;
②若为减函数,则为增函数;
③若为增函数,则为增函数;
④若为增函数,g(x)是减函数,且有意义,则为减函数.
其中正确命题的个数为( )
A.1 B.2 C.3 D.4
5.如果奇函数在(0,+∞)上是增函数,那么在(-∞,0)上( )
A.必定是减函数 B.必定是增函数
C.既可能是减函数又可能是增函数 D.不一定具有单调性
6.(2001年高考试题)设f(x),g(x)都是单调函数,有如下四个命题:
①若是单调递增,g(x)单调递增,则g(x)单调递增;
②若是单调递增,g(x)单调递减,则g(x)单调递增;
③若是单调递减,g(x)单调递增,则g(x)单调递减;
④若f(x)是单调递减,g(x)单调递减,则g(x)单调递减.
其中,正确的命题是( )
A.①③ B.①④ C.②③ D.②④
(二)题型分析:
题型1:判断或证明函数的单调性.
例1 1.讨论函数 (a>0)的单词性.
分析可考虑从单调函数的定义入手,是否需要对参数a进行讨论?从何处分开讨论?
又为奇函数,所以先讨论函数在(0,+∞)上的单调性.抓住定义,确定x1,x2同属于哪一个区间时恒大于(小于)0。

(本题的结论很重要,在以后的解题中有着广泛的应用.应予重视.)
题型2:求复合函数的单调区间.
例2已知在[0,1]上是x的减函数,则a的取值范围是( )
A.(0,1) B.(1,2) C.(0,2) D.(2,+∞)
分析根据对数函数的性质及复合函数的单调性进行判断。

例3求下列函数的单调区间,并指出其增减性:
(1)(a>0,且a≠1);
(2)
分析利用复合函数的判别方法判断该类题目.
(1)的复合关系为y=a t,t=1-x2;
(2)的复合关系为
题型3:函数单调性的应用.
例4
定义在[-2,2]上的偶函数g(x),当x≥0时,g(x)单调递减,若g(1-m)<g(m)成立,求m的取值范围。

分析因为g(x)为偶函数,所以g(x)=.这样可以把两个式子统一在同一个单调区间[0,2]内.
例5 (2001年成都市检测题)
是定义在(0,+∞)上的增函数,且
(1)求的值;
(2)若=1,解不等式
分析:第一问用赋值法,这是处理此类问题的一般思维方法;第二问关键整理成
形式,在单调区间内利用单调性得出m(x)与n(x)大小关系,进一步解不等式,可得原不等式的解.
例6
(2003·合肥市抽样考试)设函数是定义在[-1,0)∪(0,1]上的奇函数,当x∈[-1,0)时 (a为实数).
(1)当x∈(0,1]时,求的解析式;
(2)若a>-1,试判断在(0,1]上的单调性,并证明你的结论;
(3)是否存在a,使得当x∈(0,1]时,有最大值-6.
三、本节所涉及的思想·规律·方法
1.研究函数的单调性,首先要考虑定义域,否则会出错.
2.比较法是证明函数单调性的基本方法.
3.复合函数单调性的确定方法是:当内外函数同增(减)时,复合函数为增函数,当内外函数增减性相反时,复合函数为减函数.
4.运用函数的单调性可比较大小、解不等式或求最值.
四、作业:《纸上练兵》P46—47
五、课后记:。

相关文档
最新文档