2018年高考数学二轮复习练习(江苏) 预测试题(三)Word版 含答案

合集下载

2018年高考数学江苏专版三维二轮专题复习训练3个附加题综合仿真练及答案(6份)

2018年高考数学江苏专版三维二轮专题复习训练3个附加题综合仿真练及答案(6份)

3个附加题综合仿真练(一)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,A ,B ,C 是圆O 上不共线的三点,OD ⊥AB 于D ,BC 和AC 分别交DO 的延长线于P 和Q ,求证:∠OBP =∠CQP .证明:连结OA ,因为OD ⊥AB ,OA =OB , 所以∠BOD =∠AOD =12∠AOB ,又∠ACB =12∠AOB ,所以∠ACB =∠DOB ,又因为∠BOP =180°-∠DOB ,∠QCP =180°-∠ACB , 所以∠BOP =∠QCP , 所以B ,O ,C ,Q 四点共圆, 所以∠OBP =∠CQP . B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤211 3,B =⎣⎢⎡⎦⎥⎤1 10 -1.求矩阵C ,使得AC =B . 解:因为⎪⎪⎪⎪⎪⎪2113=2×3-1×1=5,所以A-1=⎣⎢⎢⎡⎦⎥⎥⎤35 -15-15 25, 又AC =B ,所以C =A-1B =⎣⎢⎢⎡⎦⎥⎥⎤ 35 -15-15 25⎣⎢⎡⎦⎥⎤1 10 -1=⎣⎢⎢⎡⎦⎥⎥⎤3545-15-35. C .[选修4-4:坐标系与参数方程]在极坐标系中,已知圆C 的圆心在极轴上,且过极点和点⎝⎛⎭⎪⎫32,π4,求圆C 的极坐标方程. 解:法一:因为圆心C 在极轴上且过极点, 所以设圆C 的极坐标方程为ρ=a cos θ,又因为点⎝⎛⎭⎪⎫32,π4在圆C 上, 所以32=a cos π4,解得a =6.所以圆C 的极坐标方程为ρ=6cos θ.法二:点⎝⎛⎭⎪⎫32,π4的直角坐标为(3,3), 因为圆C 过点(0,0),(3,3), 所以圆心C 在直线为x +y -3=0上. 又圆心C 在极轴上,所以圆C 的直角坐标方程为(x -3)2+y 2=9. 所以圆C 的极坐标方程为ρ=6cos θ. D .[选修4-5:不等式选讲]已知x ,y ,z 为不全相等的正数.求证:x yz +y zx +z xy >1x +1y +1z.证明:因为x ,y ,z 都是正数, 所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z. 同理可得y zx +z xy ≥2x ,z xy +x yz ≥2y,将上述三个不等式两边分别相加,并除以2, 得x yz +y zx +z xy ≥1x +1y +1z. 由于x ,y ,z 不全相等,因此上述三个不等式中等号至少有一个取不到, 所以x yz +y zx +z xy >1x +1y +1z. 2.口袋中装有大小相同的卡片八张,其中三张标有数字1,三张标有数字2,两张标有数字3.第一次从口袋中任意抽取一张,放回口袋后第二次再任意抽取一张,记第一次与第二次取到卡片上数字之和为ξ.(1)ξ为何值时,其发生的概率最大?说明理由; (2)求随机变量ξ的数学期望E (ξ).解:(1)依题意,随机变量ξ的取值是2,3,4,5,6. 因为P (ξ=2)=3×382=964; P (ξ=3)=2×3×382=932; P (ξ=4)=3×3+2×3×282=2164;P (ξ=5)=2×3×282=316; P (ξ=6)=2×28=116. 所以当ξ=4时,其发生的概率最大,最大值为P (ξ=4)=2164.(2)由(1)知E (ξ)=2×964+3×932+4×2164+5×316+6×116=154,所以随机变量ξ的数学期望E (ξ)=154. 3.在平面直角坐标系xOy 中,直线l :x =-1,点T (3,0).动点P 满足PS ⊥l ,垂足为S ,且OP ―→·ST ―→=0.设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设Q 是曲线C 上异于点P 的另一点,且直线PQ 过点(1,0),线段PQ 的中点为M ,直线l 与x 轴的交点为N .求证:向量SM ―→与NQ ―→共线.解:(1)设P (x ,y )为曲线C 上任意一点 .因为PS ⊥l ,垂足为S ,又直线l :x =-1,所以S (-1,y ). 因为T (3,0),所以OP ―→=(x ,y ),ST ―→=(4,-y ). 因为OP ―→·ST ―→=0,所以4x -y 2=0,即y 2=4x . 所以曲线C 的方程为y 2=4x . (2)证明:因为直线PQ 过点(1,0),故设直线PQ 的方程为x =my +1,P (x 1,y 1),Q (x 2,y 2).联立方程⎩⎪⎨⎪⎧y 2=4x ,x =my +1,消去x ,得y 2-4my -4=0.所以y 1+y 2=4m ,y 1y 2=-4.因为M 为线段PQ 的中点,所以M 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,即M (2m 2+1,2m ).又因为S (-1,y 1),N (-1,0),所以SM ―→=(2m 2+2,2m -y 1),NQ ―→=(x 2+1,y 2)=(my 2+2,y 2).因为(2m 2+2)y 2-(2m -y 1)(my 2+2)=(2m 2+2)y 2-2m 2y 2+my 1y 2-4m +2y 1=2(y 1+y 2)+my 1y 2-4m =8m -4m -4m =0.所以向量SM ―→与NQ ―→共线.3个附加题综合仿真练(二)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,四边形ABCD 是圆的内接四边形,BC =BD ,BA 的延长线交CD 的延长线于点E .求证:AE 是四边形ABCD 的外角∠DAF 的平分线. 证明:因为四边形ABCD 是圆的内接四边形, 所以∠DAE =∠BCD ,∠FAE =∠BAC =∠BDC . 因为BC =BD ,所以∠BCD =∠BDC , 所以∠DAE =∠FAE ,所以AE 是四边形ABCD 的外角∠DAF 的平分线. B .[选修4-2:矩阵与变换]已知变换T 将平面上的点⎝ ⎛⎭⎪⎫1,12,(0,1)分别变换为点⎝ ⎛⎭⎪⎫94,-2,⎝ ⎛⎭⎪⎫-32,4.设变换T 对应的矩阵为M .(1)求矩阵M ;(2)求矩阵M 的特征值. 解:(1)设M =⎣⎢⎡⎦⎥⎤a b c d , 则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤112=⎣⎢⎢⎡⎦⎥⎥⎤94-2,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤01=⎣⎢⎢⎡⎦⎥⎥⎤-324, 即⎩⎪⎨⎪⎧a +12b =94,c +12d =-2,b =-32,d =4,解得⎩⎪⎨⎪⎧a =3,b =-32,c =-4,d =4,则M =⎣⎢⎢⎡⎦⎥⎥⎤3 -32-44. (2)设矩阵M 的特征多项式为f (λ),可得f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-3 324 λ-4=(λ-3)(λ-4)-6=λ2-7λ+6, 令f (λ)=0,可得λ=1或λ=6. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.直线l :2ρsin ⎝ ⎛⎭⎪⎫θ-π4=m (m ∈R),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+3cos t ,y =-2+3sin t (t 为参数).当圆心C 到直线l 的距离为2时,求m 的值. 解:由2ρsin ⎝⎛⎭⎪⎫θ-π4=m , 得2ρsin θcos π4-2ρcos θsin π4=m ,即x -y +m =0,即直线l 的直角坐标方程为x -y +m =0, 圆C 的普通方程为(x -1)2+(y +2)2=9, 圆心C 到直线l 的距离d =|1--+m |2=2,解得m =-1或m =-5. D .[选修4-5:不等式选讲]已知x ,y ,z 都是正数且xyz =8,求证:(2+x )(2+y )·(2+z )≥64. 证明:因为x 为正数,所以2+x ≥22x . 同理2+y ≥22y ,2+z ≥22z .所以(2+x )( 2+y )( 2+z )≥22x ·22y ·22z =88xyz . 因为xyz =8,所以(2+x )( 2+y )( 2+z )≥64.2.在平面直角坐标系xOy 中,点F (1,0),直线x =-1与动直线y =n 的交点为M ,线段MF 的中垂线与动直线y =n 的交点为P .(1)求动点P 的轨迹E 的方程;(2)过动点M 作曲线E 的两条切线,切点分别为A ,B ,求证:∠AMB 的大小为定值.解:(1)因为直线y =n 与x =-1垂直,所以MP 为点P 到直线x =-1的距离. 连结PF (图略),因为P 为线段MF 的中垂线与直线y =n 的交点,所以MP =PF . 所以点P 的轨迹是抛物线. 焦点为F (1,0),准线为x =-1. 所以曲线E 的方程为y 2=4x .(2)证明:由题意,过点M (-1,n )的切线斜率存在,设切线方程为y -n =k (x +1), 联立方程⎩⎪⎨⎪⎧y =kx +k +n ,y 2=4x ,得ky 2-4y +4k +4n =0,所以Δ1=16-4k (4k +4n )=0,即k 2+kn -1=0 (*),因为Δ2=n 2+4>0,所以方程(*)存在两个不等实根,设为k 1,k 2, 因为k 1·k 2=-1,所以∠AMB =90°,为定值.3.对于给定的大于1的正整数n ,设x =a 0+a 1n +a 2n 2+…+a n n n,其中a i ∈{0,1,2,…,n -1},i =0,1,2,…,n -1,n ,且a n ≠0,记满足条件的所有x 的和为A n .(1)求A 2; (2)设A n =n n n -f n2,求f (n ).解:(1)当n =2时,x =a 0+2a 1+4a 2,a 0∈{0,1},a 1∈{0,1},a 2=1, 故满足条件的x 共有4个,分别为x =0+0+4,x =0+2+4,x =1+0+4,x =1+2+4,它们的和是22,所以A 2=22. (2)由题意得,a 0,a 1,a 2,…,a n -1各有n 种取法;a n 有n -1种取法,由分步计数原理可得a 0,a 1,a 2…,a n -1,a n 的不同取法共有n ·n ·…·n ·(n -1)=n n(n -1), 即满足条件的x 共有n n(n -1)个,当a 0分别取0,1,2,…,n -1时,a 1,a 2,…,a n -1各有n 种取法,a n 有n -1种取法, 故A n 中所有含a 0项的和为(0+1+2+…+n -1)·nn -1(n -1)=n n n -22;同理,A n 中所有含a 1项的和为(0+1+2+…+n -1)nn -1(n -1)·n =n n n -22·n ; A n 中所有含a 2项的和为(0+1+2+…+n -1)·n n -1(n -1)·n 2=n n n -22·n 2;A n 中所有含a n -1项的和为(0+1+2+…+n -1)·n n -1(n -1)·n n -1=n n n -22·nn -1;当a n 分别取i =1,2,…,n -1时,a 0,a 1,a 2,…,a n -1各有n 种取法, 故A n 中所有含a n 项的和为(1+2+…+n -1)n n·n n=n n +1n -2·n n.所以A n =n n n -22(1+n +n 2+…+nn -1)+n n +1n -2·n n=n n n -22·n n -1n -1+n n +1n -2·n n=n n n -2(nn +1+n n-1),故f (n )=nn +1+n n-1.3个附加题综合仿真练(三)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 为圆O 的切线,A 为切点,C 为线段AB 的中点,过C 作圆O 的割线CED (E 在C ,D 之间).求证:∠CBE =∠BDE .证明:因为CA 为圆O 的切线, 所以CA 2=CE ·CD ,又CA =CB , 所以CB 2=CE ·CD , 即CB CE =CD CB, 又∠BCD =∠BCD , 所以△BCE ∽△DCB , 所以∠CBE =∠BDE .B .[选修4-2:矩阵与变换]设a ,b ∈R.若直线l :ax +y -7=0在矩阵A =⎣⎢⎡⎦⎥⎤3 0-1 b 对应的变换作用下,得到的直线为l ′:9x+y -91=0.求实数a ,b 的值.解:法一:在直线l :ax +y -7=0上取点M (0,7),N (1,7-a ),由⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤ 07b ,⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤17-a =⎣⎢⎡⎦⎥⎤ 3 b -a -1,可知点M (0,7),N (1,7-a )在矩阵A 对应的变换作用下分别得到点M ′(0,7b ),N ′(3,b (7-a )-1),由题意可知:M ′,N ′在直线9x +y -91=0上,∴⎩⎪⎨⎪⎧7b -91=0,27+b -a -1-91=0,解得⎩⎪⎨⎪⎧a =2,b =13,∴实数a ,b 的值分别为2,13.法二:设直线l 上任意一点P (x ,y ),点P 在矩阵A 对应的变换作用下得到Q (x ′,y ′),则⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, ∴⎩⎪⎨⎪⎧x ′=3x ,y ′=-x +by ,由Q (x ′,y ′)在直线l ′:9x +y -91=0上, ∴27x +(-x +by )-91=0, 即26x +by -91=0, ∵点P 在ax +y -7=0上, ∴26a =b 1=-91-7, 解得a =2,b =13.∴实数a ,b 的值分别为2,13. C .[选修4-4:坐标系与参数方程]在极坐标系中,直线l 和圆C 的极坐标方程分别为ρcos ⎝ ⎛⎭⎪⎫θ+π6=a (a ∈R)和ρ=4sin θ.若直线l 与圆C 有且只有一个公共点,求a 的值.解:由ρcos ⎝⎛⎭⎪⎫θ+π6=a ,得32ρcos θ-12ρsin θ=a , 故化为直角坐标方程为3x -y -2a =0,由圆C 的极坐标方程ρ=4sin θ,得ρ2=4ρsin θ, 化为直角坐标方程为x 2+(y -2)2=4,若直线l 与圆C 只有一个公共点,则圆心C 到直线l 的距离等于半径,故d =|-2-2a |2=2,解得a =1或a =-3. D .[选修4-5:不等式选讲]已知a ,b ∈R ,a >b >e(其中e 是自然对数的底数),求证:b a>a b. 证明:∵b a>0,a b>0,∴要证b a>a b, 只要证a ln b >b ln a, 只要证ln b b >ln a a,构造函数f (x )=ln xx,x ∈(e ,+∞).则f ′(x )=1-ln xx 2,x ∈(e ,+∞),f ′(x )<0在区间(e ,+∞)上恒成立,所以函数f (x )在x ∈(e ,+∞)上是单调递减的, 所以当a >b >e 时,有f (b )>f (a ), 即ln b b >ln a a,故b a >a b得证.2.从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X 为所组成三位数的各位数字之和.(1)求X 是奇数的概率;(2)求X 的概率分布及数学期望. 解:(1)记“X 是奇数”为事件A , 能组成的三位数的个数是4×4×3=48.X 是奇数的个数是C 12C 23A 33-C 12C 12A 22=28,所以P (A )=2848=712.故X 是奇数的概率为712.(2)X 的可能取值为3,4,5,6,7,8,9.当X =3时,组成的三位数是由0,1,2三个数字组成, 所以P (X =3)=448=112; 当X =4时,组成的三位数是由0,1,3三个数字组成, 所以P (X =4)=448=112; 当X =5时,组成的三位数是由0,1,4或0,2,3组成, 所以P (X =5)=848=16; 当X =6时,组成的三位数是由0,2,4或1,2,3组成, 所以P (X =6)=1048=524;当X =7时,组成的三位数是由0,3,4或1,2,4组成, 所以P (X =7)=1048=524;当X =8时,组成的三位数是由1,3,4三个数字组成, 所以P (X =8)=648=18; 当X =9时,组成的三位数是由2,3,4三个数字组成, 所以P (X =9)=648=18. 所以X 的概率分布为:故E (X )=3×112+4×12+5×6+6×24+7×24+8×8+9×8=4.3.设P (n ,m )=∑k =0n(-1)k C knmm +k,Q (n ,m )=C n n +m ,其中m ,n ∈N *.(1)当m =1时,求P (n,1)·Q (n,1)的值;(2)对∀m ∈N *,证明:P (n ,m )·Q (n ,m )恒为定值.解:(1)当m =1时,P (n,1)=∑k =0n(-1)k C kn11+k =1n +1∑k =0n (-1)k C k +1n +1=1n +1, 又Q (n,1)=C 1n +1=n +1,显然P (n,1)·Q (n,1)=1.(2)证明:P (n ,m )=∑k =0n(-1)k C knm m +k=1+∑k =1n -1(-1)k(C kn -1+C k -1n -1)m m +k+(-1)nmm +n=1+∑k =1n -1(-1)k Ck n -1m m +k+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )+∑k =1n(-1)k C k -1n -1m m +k=P (n -1,m )-m n ∑k =0n (-1)k C k n m m +k=P (n -1,m )-m nP (n ,m ) 即P (n ,m )=nm +nP (n -1,m ), 由累乘,易求得P (n ,m )=n !m !n +m !P (0,m )=1C n n +m,又Q (n ,m )=C nn +m ,所以P (n ,m )·Q (n ,m )=1.3个附加题综合仿真练(四)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是圆O 的直径,C 为圆O 外一点,且AB =AC ,BC 交圆O于点D ,过D 作圆O 的切线交AC 于点E .求证:DE ⊥AC . 解:如图,连结OD .因为AB =AC ,所以∠B =∠C . 由圆O 知OB =OD , 所以∠B =∠BDO .从而∠BDO =∠C ,所以OD ∥AC . 又DE 为圆O 的切线,所以DE ⊥OD , 所以DE ⊥AC .B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤2x y2,X =⎣⎢⎡⎦⎥⎤-1 1,且AX =⎣⎢⎡⎦⎥⎤12 ,其中x ,y ∈R. (1)求x ,y 的值;(2)若B =⎣⎢⎡⎦⎥⎤1 -10 2,求(AB )-1.解:(1)AX =⎣⎢⎡⎦⎥⎤2 x y 2 ⎣⎢⎡⎦⎥⎤-1 1 = ⎣⎢⎡⎦⎥⎤x -22-y .因为AX =⎣⎢⎡⎦⎥⎤12,所以⎩⎪⎨⎪⎧x -2=1,2-y =2,解得x =3,y =0.(2)由(1)知A =⎣⎢⎡⎦⎥⎤2302 ,又B =⎣⎢⎡⎦⎥⎤1 -102 , 所以AB =⎣⎢⎡⎦⎥⎤2 30 2⎣⎢⎡⎦⎥⎤1 -10 2=⎣⎢⎡⎦⎥⎤2 40 4 .设(AB )-1= ⎣⎢⎡⎦⎥⎤a b cd ,则⎣⎢⎡⎦⎥⎤2 40 4⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤2a +4c 2b +4d 4c 4d =⎣⎢⎡⎦⎥⎤1 001.所以⎩⎪⎨⎪⎧2a +4c =1,4c =0,2b +4d =0,4d =1,解得a =12,b =-12,c =0,d =14,即 (AB )-1= ⎣⎢⎢⎡⎦⎥⎥⎤12 -12 0 14 .C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),以坐标原点O为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,已知直线l 与曲线C 相交于A ,B 两点,求线段AB 的长.解:因为曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,所以ρ2sin 2θ=4ρcos θ,即曲线C 的直角坐标方程为y 2=4x .将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t , 即t 2+82t =0,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2. D .[选修4-5:不等式选讲] 设函数f (x )=|2x +1|-|x -2|. (1)求不等式f (x )>2的解集; (2)若∀x ∈R ,f (x )≥t 2-112t 恒成立,求实数t 的取值范围. 解:(1)不等式f (x )>2可化为⎩⎪⎨⎪⎧x >2,2x +1-x +2>2或⎩⎪⎨⎪⎧-12≤x ≤2,2x +1+x -2>2或⎩⎪⎨⎪⎧x <-12,-2x -1+x -2>2,解得x <-5或x >1,所以所求不等式的解集为{x |x <-5或x >1}.(2)由f (x )=|2x +1|-|x -2|=⎩⎪⎨⎪⎧x +3,x >2,3x -1,-12≤x ≤2,-x -3,x <-12,可得f (x )≥-52,若∀x ∈R ,f (x )≥t 2-112t 恒成立,则t 2-112t ≤-52,即2t 2-11t +5≤0,解得12≤t ≤5. 故实数t 的取值范围为⎣⎢⎡⎦⎥⎤12,5. 2.如图,在直三棱柱ABC ­A 1B 1C 1中,已知AB ⊥AC ,AB =2,AC =4,AA 1=3.D 是线段BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1­A 1D ­C 1的余弦值.解:因为在直三棱柱ABC ­A 1B 1C 1中,AB ⊥AC ,所以分别以AB ,AC,AA1所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,4,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3), 因为D 是BC 的中点,所以D (1,2,0), (1)因为A 1C 1――→=(0,4,0),A 1D ―→=(1,2,-3), 设平面A 1C 1D 的法向量n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1C 1――→=0,n 1·A 1D ―→=0,即⎩⎪⎨⎪⎧4y 1=0,x 1+2y 1-3z 1=0,取⎩⎪⎨⎪⎧x 1=3,y 1=0,z 1=1,所以平面A 1C 1D 的法向量n 1=(3,0,1),而DB 1―→=(1,-2,3),设直线DB 1与平面A 1C 1D 所成角为θ,所以sin θ=|cos 〈n 1,DB 1―→〉|=|n 1·DB 1―→||n 1|·|DB 1―→|=|3+3|10×14=33535,所以直线DB 1与平面A 1C 1D 所成角的正弦值为33535.(2) A 1B 1――→=(2,0,0),DB 1―→=(1,-2,3), 设平面B 1A 1D 的法向量n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·A 1B 1――→=0,n 2·DB 1―→=0,即⎩⎪⎨⎪⎧2x 2=0,x 2-2y 2+3z 2=0,取⎩⎪⎨⎪⎧x 2=0,y 2=3,z 2=2,所以平面B 1A 1D 的法向量n 2=(0,3,2),所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=210×13=13065,故结合图象知二面角B 1­A 1D ­C 1的余弦值13065. 3.已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n },令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明. 解:(1)Y 6={1,2,3,4,5,6},S 6中的元素(a ,b )满足:若a =1,则b =1,2,3,4,5,6;若a =2,则b =1,2,4,6;若a =3,则b =1,3,6.所以f (6)=13. (2)当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧n +2+⎝ ⎛⎭⎪⎫n 2+n 3,n =6t ,n +2+⎝ ⎛⎭⎪⎫n -12+n -13,n =6t +1,n +2+⎝ ⎛⎭⎪⎫n 2+n -23,n =6t +2,n +2+⎝ ⎛⎭⎪⎫n -12+n 3,n =6t +3,n +2+⎝ ⎛⎭⎪⎫n 2+n -13,n =6t +4,n +2+⎝ ⎛⎭⎪⎫n -12+n -23,n =6t +5(t ∈N *).下面用数学归纳法证明:①当n =6时,f (6)=6+2+62+63=13,结论成立.②假设n =k (k ≥6)时结论成立,那么n =k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:a .若k +1=6t ,则k =6(t -1)+5,此时有f (k +1)=f (k )+3=k +2+k -12+k -23+3=(k +1)+2+k +12+k +13,结论成立;b .若k +1=6t +1,则k =6t ,此时有f (k +1)=f (k )+1=k +2+k 2+k3+1=(k +1)+2+k +-12+k +-13,结论成立;c .若k +1=6t +2,则k =6t +1,此时有f (k +1)=f (k )+2=k +2+k -12+k -13+2=(k +1)+2+k +12+k +-23,结论成立;d .若k +1=6t +3,则k =6t +2,此时有f (k +1)=f (k )+2=k +2+k 2+k -23+2=(k +1)+2+k +-12+k +13,结论成立;e .若k +1=6t +4,则k =6t +3,此时有f (k +1)=f (k )+2=k +2+k -12+k3+2 =(k +1)+2+k +12+k +-13,结论成立;f .若k +1=6t +5,则k =6t +4,此时有f (k +1)=f (k )+1=k +2+k 2+k -13+1=(k +1)+2+k +-12+k +-23,结论成立.综上所述,结论对满足n ≥6的自然数n 均成立.3个附加题综合仿真练(五)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是半圆的直径,C 是半圆上一点,D 是弧AC 的中点,DE ⊥AB 于E ,AC 与DE 交于点M ,求证:AM =DM .证明:连结AD ,因为AB 为直径,所以AD ⊥BD , 又DE ⊥AB ,所以∠ABD =∠ADE .因为D 是弧AC 的中点, 所以∠DAC =∠ABD , 所以∠ADE =∠DAC . 所以AM =DM .B .[选修4-2:矩阵与变换]已知向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量.在平面直角坐标系xOy 中,点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),求矩阵A .解:设A =⎣⎢⎡⎦⎥⎤ab c d ,因为向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量, 所以⎣⎢⎡⎦⎥⎤a b cd ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤a -b c -d =(-1)⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-11. 所以⎩⎪⎨⎪⎧a -b =-1,c -d =1.①因为点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),所以⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤a +b c +d =⎣⎢⎡⎦⎥⎤33.所以⎩⎪⎨⎪⎧a +b =3,c +d =3.②由①②解得a =1,b =2,c =2,d =1,所以A =⎣⎢⎡⎦⎥⎤1 22 1.C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线⎩⎪⎨⎪⎧x =-32+22n ,y =22n (n 为参数)与曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t为参数)相交于A ,B 两点,求线段AB 的长.解:法一:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t (t 为参数)化为普通方程为y 2=8x .将直线⎩⎪⎨⎪⎧x =-32+22n ,y =22n(n 为参数)代入y 2=8x 得,n 2-82n +24=0,解得n 1=22,n 2=6 2. 则|n 1-n 2|=42, 所以线段AB 的长为4 2. 法二:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)化为普通方程为y 2=8x,将直线⎩⎪⎨⎪⎧x =-32+22n ,y =22n(n 为参数)化为普通方程为x -y +32=0,由⎩⎪⎨⎪⎧y 2=8x ,x -y +32=0,得⎩⎪⎨⎪⎧x =12,y =2或⎩⎪⎨⎪⎧x =92,y =6.所以AB 的长为⎝ ⎛⎭⎪⎫92-122+-2=4 2.D .[选修4-5:不等式选讲]已知函数f (x )=3x +6,g (x )=14-x ,若存在实数x 使f (x )+g (x )>a 成立,求实数a 的取值范围.解:存在实数x 使f (x )+g (x )>a 成立, 等价于f (x )+g (x )的最大值大于a , 因为f (x )+g (x ) =3x +6+14-x=3×x +2+1×14-x , 由柯西不等式得,(3×x +2+1×14-x )2≤(3+1)(x +2+14-x )=64,所以f (x )+g (x )=3x +6+14-x ≤8,当且仅当x =10时取“=”,故实数a 的取值范围是(-∞,8).2.如图,在四棱锥O ­ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =45°,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求异面直线AB 与MD 所成角的大小;(2)求平面OAB 与平面OCD 所成锐二面角的余弦值. 解:作AP ⊥CD 于点P ,分别以AB ,AP ,AO 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),P ⎝ ⎛⎭⎪⎫0,22,0,D ⎝ ⎛⎭⎪⎫-22,22,0, O (0,0,2),M (0,0,1).(1)设直线AB 与MD 所成角为θ,由AB ―→=(1,0,0),BD ―→=⎝ ⎛⎭⎪⎫-22,22,-1,则cos θ=|cos 〈AB ―→,BD ―→〉|=222=12,故AB 与MD 所成角为60°.(2)OP ―→=⎝ ⎛⎭⎪⎫0,22,-2,OD ―→=⎝ ⎛⎭⎪⎫-22,22,-2,设平面OCD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·OP ―→=0,n ·OD ―→=0,即⎩⎪⎨⎪⎧22y -2z =0,-22x +22y -2z =0,取z =2,则n =(0,4,2).易得平面OAB 的一个法向量为m =(0,1,0),cos 〈n ,m 〉=432×1=223,故平面OAB 与平面OCD 所成锐二面角的余弦值为223.3.设a >b >0,n 是正整数,A n =1n +1(a n +a n -1b +a n -2b 2+…+a 2b n -2 +ab n -1+b n) ,B n =⎝ ⎛⎭⎪⎫a +b 2n . (1)证明:A 2>B 2;(2)比较A n 与B n (n ∈N *)的大小,并给出证明.解:(1)证明:A 2-B 2=13(a 2+ab +b 2)-⎝ ⎛⎭⎪⎫a +b 22=112(a -b )2>0. (2)A n ≥B n ,证明如下: 当n =1时,A 1=B 1; 当n ≥3时,A n =1n +1·a n +1-b n +1a -b,B n =⎝⎛⎭⎪⎫a +b 2n ,令a +b =x ,a -b =y ,且x >0,y >0,于是A n =1n +1·⎝ ⎛⎭⎪⎫x +y 2n +1-⎝ ⎛⎭⎪⎫x -y 2n +1y=12n +1n +y[(x +y )n +1-(x -y )n +1],B n =⎝ ⎛⎭⎪⎫x 2n,因为[(x +y )n +1-(x -y )n +1]=(2C 1n +1x ny +2C 3n +1·xn -2y 3+…)≥2C 1n +1x ny ,所以A n ≥12n +1n +y·2C 1n +1x ny =x n 2n =⎝ ⎛⎭⎪⎫x 2n=B n .3个附加题综合仿真练(六)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足.求证:(1)∠PAC =∠CAB ; (2)AC 2=AP ·AB .证明:(1)因为PC 切半圆O 于点C ,所以∠PCA =∠CBA . 因为AB 为半圆O 的直径,所以∠ACB =90°. 因为AP ⊥PC ,所以∠APC =90°. 因此∠PAC =∠CAB .(2)由(1)知,△APC ∽△ACB ,故AP AC =AC AB, 即AC 2=AP ·AB .B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤110,B =⎣⎢⎡⎦⎥⎤1 002.(1)求AB ;(2)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程. 解:(1)因为A =⎣⎢⎡⎦⎥⎤11 0,B =⎣⎢⎡⎦⎥⎤1 002,所以AB =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤1 00 2=⎣⎢⎡⎦⎥⎤0 210.(2)设Q (x 0,y 0)为曲线C 1上的任意一点, 它在矩阵AB 对应的变换作用下变为P (x ,y ),则⎣⎢⎡⎦⎥⎤0 21 0⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧2y 0=x ,x 0=y ,所以⎩⎪⎨⎪⎧x 0=y ,y 0=x2.因为点Q (x 0,y 0)在曲线C 1上,则x 208+y 202=1,从而y 28+x 28=1,即x 2+y 2=8.因此曲线C 1在矩阵AB 对应的变换作用下得到曲线C 2:x 2+y 2=8. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =sin α-2(α为参数).以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=β,若圆C 与直线l 相切,求直线l 的极坐标方程.解:圆的直角坐标方程为x 2+(y -2)2=1, 设直线l 对应的直角坐标方程为y =kx , 因为圆C 与直线l 相切, 所以d =|2|1+k2=1,得到k =±3,故直线l 的极坐标方程θ=π3或θ=2π3. D .[选修4-5:不等式选讲]已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明:ac +bd ≤8. 证明:由柯西不等式可得:(ac +bd )2≤(a 2+b 2)(c 2+d 2). 因为a 2+b 2=4,c 2+d 2=16, 所以(ac +bd )2≤64,因此ac +bd ≤8.2.已知正六棱锥S ­ABCDEF 的底面边长为2,高为1.现从该棱锥的7个顶点中随机选取3个点构成三角形,设随机变量X 表示所得三角形的面积.(1)求概率P (X =3)的值;(2)求X 的概率分布,并求其数学期望E (X ). 解:(1)从7个顶点中随机选取3个点构成三角形, 共有C 37=35种取法.其中X =3的三角形如△ABF , 这类三角形共有6个. 因此P (X =3)=635.(2)由题意,X 的可能取值为3,2,6,23,3 3. 其中X =3的三角形如△ABF ,这类三角形共有6个;其中X =2的三角形有两类,如△SAD (3个),△SAB (6个),共有9个; 其中X =6的三角形如△SBD ,这类三角形共有6个; 其中X =23的三角形如△CDF ,这类三角形共有12个; 其中X =33的三角形如△BDF ,这类三角形共有2个. 因此P (X =3)=635,P (X =2)=935,P (X =6)=635,P (X =23)=1235,P (X =33)=235.所以随机变量X 的概率分布为:所求数学期望E (X )=3×635+2×935+6×635+23×1235+33×235=363+66+1835.3.已知数列{a n }满足:a 1=1,对任意的n ∈N *,都有a n +1=⎝⎛⎭⎪⎫1+1n 2+n a n +12n . (1)求证:当n ≥2时,a n ≥2;(2)利用“∀x >0,ln(1+x )<x ”,证明:a n <2e 34(其中e 是自然对数的底数).证明:(1)①由题意,a 2=⎝ ⎛⎭⎪⎫1+12×1+12=2,故当n =2时,a 2=2,不等式成立.21 ②假设当n =k (k ≥2,k ∈N *)时不等式成立,即a k ≥2,则当n =k +1时,a k +1=⎝ ⎛⎭⎪⎫1+1k k +a k +12>2. 所以,当n =k +1时,不等式也成立.根据①②可知,对所有n ≥2,a n ≥2成立. (2)当n ≥2时,由递推公式及(1)的结论有a n +1=⎝⎛⎭⎪⎫1+1n 2+n a n +12n ≤⎝ ⎛⎭⎪⎫1+1n 2+n +12n +1a n (n ≥2). 两边取对数,并利用已知不等式ln(1+x )<x ,得 ln a n +1≤ln ⎝ ⎛⎭⎪⎫1+1n 2+n +12n +1+ln a n <ln a n +1n 2+n +12n +1, 故ln a n +1-ln a n <1n 2+n +12n +1(n ≥2), 求和可得ln a n -ln a 2<12×3+1 3×4+…+1n -n +123+124+…+12n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +123·1-12n -21-12=12-1n +122-12n <34. 由(1)知,a 2=2,故有ln a n 2<34,即a n <2e 34(n ≥2), 而a 1=1<2e 34,所以对任意正整数n ,有a n <2e 34.。

2018届江苏六市高三数学二模试卷.docx

2018届江苏六市高三数学二模试卷.docx

2018 届高三第二次调研测试(扬州、徐州、泰州、南通、淮安、宿迁)数学学科一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.1. 已知集合 U1,0 ,1,2 ,3 ,A1,0 ,2,则 e U A ▲ .2. 已知复数 z 1a i ,z 2 3 4 i ,其中 i 为虚数单位.若z 1为纯虚数,则实数 a 的值为 ▲ .z 23. 某班 40 名学生参加普法知识竞赛,成绩都在区间40 ,100 上,其频率分布直方图如图所示,则成绩不低于 60 分的人数为▲ .开始频率S ←1组距i ← 1i ← i???1S ←S × 5i?< 4Y405060 70 80 90100 成绩 /分N输出 S(第 3 题)4. 如图是一个算法流程图,则输出的 S 的值为 ▲ .结 束(第 4 题)5. 在长为 12 cm 的线段 AB 上任取一点 C ,以线段 AC , BC 为邻边作矩形,则该矩形的面积大于 32 cm 2 的概率为▲ .6. 在 △ ABC 中,已知 AB1,AC2 ,B 45 ,则 BC 的长为 ▲ .7. 在平面直角坐标系 xOy 中,已知双曲线 C 与双曲线 2y 2 x 1 有公共的渐近线,且经过3点 P 2 , 3 ,则双曲线 C 的焦距为 ▲ . 8. 在平面直角坐标系 xOy 中,已知角, 的始边均为 x 轴的非负半轴,终边分别经过点 A (1 ,2 ) , B ( 5 ,1) ,则 tan() 的值为 ▲ .9. 设等比数列a n 的前 n 项和为 S n .若 S 3 ,S 9 ,S 6 成等差数列,且 a 8 3 ,则 a 5 的值为▲ .10. 已知 a ,b ,c 均为正数,且 abc 4( ab ) ,则 a bc 的最小值为▲ .x ≤ 3 , 11. 在平面直角坐标系 xOy 中,若动圆 C 上的点都在不等式组x 3y 3 ≥ 0 , 表示的平面x3 y 3 ≥ 0区域内,则面积最大的为▲ .e x1 , x0 ,3 个不同的零点,12. 设函数 f (x)2(其中 e 为自然对数的底数)有 x 3 3mx2 ,x ≤ 0则实数 m 的取值范围是▲ .13. 在平面四边形 ABCD 中,已知 AB1 ,BC4 ,CD 2,DAuuur uuur3 ,则 AC BD 的值为 ▲ . 14. 已知 a 为常数,函数 f ( x)x的最小值为223 ,则 a 的所有值为 ▲ .a x 1 x2二、解答题:本大题共 6 小题,共计 90 分.15.(本小题满分 14 分)在平面直角坐标系 xOy 中,设向量 acos ,sin , b sin , cos ,c1, 3.22(1)若 a b c ,求 sin () 的值;(2)设5πa //b c6 , 0π,且 ,求 的值.16.(本小题满分 14 分)如图,在三棱柱ABC ?A 1B 1C 1 中, AB ??AC ,点 E , F 分别在棱 BB 1?, CC 1 上(均异 于端点) ,且∠ ABE ?∠ ACF , AE ⊥ BB 1 1 .A C, AF ⊥ CC求证:( 1)平面 AEF ⊥平面 BB 1C 1C ;B F(2) BCBl 1 yA EB 1A 1l 2C C 1QB 1 Ox(第 18 题)P(第 16 题)22B 2x 2 y 2 1( a b 0 ) y x 3 4 2 QB 1PB 1 , QB 2PB 2 l 1 l 1 l 1 l 2 l 1 x xa b(第 17 题)q 1 ,d 0 c i a i b ic 1 ,c 2 ,c 3 a 1 1 q2 c 1 ,c 2 ,c3 c 1 ,c 2 ,c 3 ,c4 f ( x ) x a sin x( a 0 ) yf ( x ) a1,g ( x )f ( x ) b ln x1 ( b R ,b0 )24b 2g ( x ) g ( x ) x 0 ,g ( x )0 x 0 , g ( x 0 ) 0 g( x 1 ) g( x 2 ) ( x 1x 2 ) x 1 x 2开始B频率S←1A 组距i ←E 1OD(第 22 题)←i???1i C(第 21— A 题)S←S× 5i?< 4Y40 50 60 70 80 90 100 成绩 /分N(第 3 题)输出 S结束(第 4 题)DB DC OD 2OA212 M 1 0N 2 01A( 0,0 ) ,B( 3 ,0 ) ,C( 2 ,2 ) T T0201TT2P2,3l sin32P X600X E Xn(1 x ) 2n 1a0a1 x a2 x2a2 n 1 x2 n 1n N * T n( 2k 1) a n k T2 T n n N* T nk04n 2U 1 ,0,1,2 ,3 ,A1,0 ,2 e U A 1 ,3z1a i ,z2 3 4 i i z1440 ,100S z23△ ABC AB 1 ,AC 2 ,B45BC26 xOy C x y21P 2 , 3C2234 3, A (1 ,2 ) B (5 ,1)tan()9a n S n S3,S9,S6 a83a567x ≤ 3 ,a ,b ,c abc4( a b )a b c C x3y 3 ≥ 0 ,(x224 1)y1 ,x3y 3 ≥ 0e x0 ,xf ( x)x32 e m1,ABCD AB1,BC4,CD 2 ,DA3uuur uuur3mx 2 ,x ≤ 0a f ( x)x2a 4,12+3C m1m m 1xOyAC BDa x 2234 1xa cos,sinb sin, cosc 1 ,3a b c sin ()225π0π a // b c a cos,sin b sin, cos 6c 1 ,3a b c1 a b cos sin sin cos sin ()22a bca 2 c 21 2sin () 11 sin ()15πb26a3 ,1 b csin1,cos3 a // bc22223 cos3 1 sin 11 sin 3 cos 1 sinπ 1222 2222 32ππ π 2ππ ππ 3 3 33 62a b cos sin sin cos sin ( ) a 2 ??2 a b ??b 2 ??1, 每个 2 分,没有先后 序。

2018年江苏省高考数学预测试题(二)有答案

2018年江苏省高考数学预测试题(二)有答案

2018年江苏高考预测试题(二)(对应学生用书第133页)(限时:120分钟)参考公式样本数据x 1,x 2,…,x n 的方差s 2=1n ni =1 (x i -x )2,其中x =1n ni =1x i . 棱柱的体积V =Sh ,其中S 是棱柱的底面积,h 是高. 棱锥的体积V =13Sh ,其中S 是棱锥的底面积,h 是高.数学Ⅰ试题一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上) 1.已知集合A ={x |x 2-x -2≤0},集合B ={x |1<x ≤3},则A ∪B =________.{x |-1≤x ≤3} [由x 2-x -2≤0,解得-1≤x ≤2. ∴A ={x |-1≤x ≤2},又集合B ={x |1<x ≤3}, ∴A ∪B ={x |-1≤x ≤3}.]2.设复数z 满足(z +i)i =-3+4i(i 为虚数单位),则z 的模为________.25 [z =-3+4ii-i =3i +4-i =4+2i ,则|z |=|4+2i|=42+22=2 5.]3.表中是一个容量为10的样本数据分组后的频率分布,若利用组中值近似计算本组数据的平均数x ,则x 的值为________.数据 [12.5,15.5)[15.5,18.5)[18.5,21.5)[21.5,24.5]频数213419.7 [根据题意,样本容量为10,利用组中值近似计算本组数据的平均数x , 则x =110×(14×2+17×1+20×3+23×4)=19.7.]4.若双曲线x 2+my 2=1过点(-2,2),则该双曲线的虚轴长为________.【导学号:56394121】4 [∵双曲线x 2+my 2=1过点(-2,2), ∴2+4m =1,即4m =-1,m =-14,则双曲线的标准方程为x 2-y 24=1,则b =2,即双曲线的虚轴长2b =4.]5.根据如下所示的伪代码,可知输出的结果S 是________.17 [执行程序,有i =1; 满足条件i <6,i =3,S =9; 满足条件i <6,i =5,S =13; 满足条件i <6,i =7,S =17, 不满足条件i <6,输出S 的值为17.]6.在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为________.13[设一、二等奖各用A ,B 表示,另1张无奖用C 表示,甲、乙两人各抽取1张的基本事件有AB ,AC ,BA ,BC ,CA ,CB 共6个,其中两人都中奖的有AB ,BA ,共2个,故所求的概率P =26=13.]7.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的图象如图1所示,则该函数的解析式是________.图1y =2sin ⎝ ⎛⎭⎪⎫27x +π6 [由图知A =2,y =2sin(ωx +φ),∵点(0,1)在函数的图象上,∴2sin φ=1,解得sin φ=12, ∴利用五点作图法可得φ=π6.∵点⎝ ⎛⎭⎪⎫-7π12,0在函数的图象上,∴2sin ⎝⎛⎭⎪⎫-7π12ω+π6=0,∴-7π12ω+π6=k π,k ∈Z ,解得ω=27-12k 7,k ∈Z .∵ω>0,∴当k =0时,ω=27, ∴y =2sin ⎝ ⎛⎭⎪⎫27x +π6.]8.如图2,在正三棱柱ABC -A 1B 1C 1中,D 为棱AA 1的中点.若AA 1=4,AB =2,则四棱锥B -ACC 1D 的体积为________.图223 [取AC 的中点O ,连接BO ,则BO ⊥AC , ∴BO ⊥平面ACC 1D ,∵AB =2,∴BO =3, ∵D 为棱AA 1的中点,AA 1=4, ∴SACC 1D =12(2+4)×2=6, ∴四棱锥B -ACC 1D 的体积为2 3.]9.已知实数x ,y 满足⎩⎨⎧x +2y -4≤0,x -y -1≤0,x ≥1,则y +1x 的取值范围是________.⎣⎢⎡⎦⎥⎤1,52 [作出不等式组对应的平面区域,y +1x 的几何意义是区域内的点到定点D (0,-1)的斜率,由图象知,AD 的斜率最大, BD 的斜率最小,此时最小值为1, 由⎩⎨⎧x =1,x +2y -4=0,得⎩⎪⎨⎪⎧x =1,y =32,即A ⎝ ⎛⎭⎪⎫1,32, 此时AD 的斜率k =32+11=52,即1≤y +1x ≤52,故y +1x 的取值范围是⎣⎢⎡⎦⎥⎤1,52.]10.已知{a n },{b n }均为等比数列,其前n 项和分别为S n ,T n ,若对任意的n ∈N *,总有S n T n=3n+14,则a 3b 3=________.9 [设{a n },{b n }的公比分别为q ,q ′,∵S n T n=3n+14,∴n =1时,a 1=b 1.n =2时,a 1+a 1q b 1+b 1q ′=52.n =3时,a 1+a 1q +a 1q 2b 1+b 1q ′+b 1(q ′)2=7.∴2q -5q ′=3,7q ′2+7q ′-q 2-q +6=0,解得q =9,q ′=3, ∴a 3b 3=a 1q 2b 1(q ′)2=9.] 11.已知平行四边形ABCD 中,∠BAD =120°,AB =1,AD =2,点P 是线段BC 上的一个动点,则AP →·DP →的取值范围是________.⎣⎢⎡⎦⎥⎤-14,2 [以B 为坐标原点,以BC 所在的直线为x 轴,建立如图所示的直角坐标系,作AE ⊥BC ,垂足为E ,∵∠BAD =120°,AB =1,AD =2,∴∠ABC =60°,∴AE =32,BE =12,∴A ⎝ ⎛⎭⎪⎫12,32,D ⎝ ⎛⎭⎪⎫52,32.∵点P 是线段BC 上的一个动点,设点P (x,0),0≤x ≤2,∴AP →=⎝ ⎛⎭⎪⎫x -12,-32,DP →=⎝ ⎛⎭⎪⎫x -52,-32,∴AP →·DP →=⎝ ⎛⎭⎪⎫x -12⎝ ⎛⎭⎪⎫x -52+34=⎝ ⎛⎭⎪⎫x -322-14,∴当x =32时,有最小值,最小值为-14. 当x =0时,有最大值,最大值为2, 则AP →·DP →的取值范围为⎣⎢⎡⎦⎥⎤-14,2.]12.如图3,已知椭圆x 2a 2+y 2b 2=1(a >b >0)上有一个点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且满足AF ⊥BF ,当∠ABF =π12时,椭圆的离心率为________.图363[设椭圆的左焦点为F 1,连接AF 1,BF 1,由对称性及AF ⊥BF 可知,四边形AFBF 1是矩形,所以|AB |=|F 1F |=2c ,所以在Rt △ABF 中,|AF |=2c sin π12,|BF |=2c cos π12,由椭圆定义得 2c ⎝ ⎛⎭⎪⎫cos π12+sin π12=2a ,即e =c a =1cos π12+sin π12=12sin ⎝ ⎛⎭⎪⎫π4+π12=63.]13.已知△ABC 三个内角A ,B ,C 的对应边分别为a ,b ,c ,且C =π3,c =2.当AC →·AB →取得最大值时,ba 的值为________.【导学号:56394122】2+3 [∵C =π3,∴B =2π3-A , 由正弦定理得b sin B =c sin C =232=43,∴b =43sin ⎝ ⎛⎭⎪⎫2π3-A =2cos A +23sin A ,∴AC →·AB →=bc cos A =2b cos A =4cos 2A +23sin 2A=2+2cos 2A +23sin 2A =43⎝ ⎛⎭⎪⎫12sin 2A +32cos 2A +2=43sin ⎝⎛⎭⎪⎫2A +π3+2,∵A +B =2π3,∴0<A <2π3,∴当2A +π3=π2即A =π12时,AC →·AB →取得最大值, 此时,B =2π3-π12=7π12,∴sin A =sin π12=sin ⎝ ⎛⎭⎪⎫π3-π4=32×22-12×22=6-24,sin B =sin ⎝ ⎛⎭⎪⎫π3+π4=32×22+12×22=6+24.∴b a =sin Bsin A =6+26-2=2+ 3.]14.对于实数a ,b ,定义运算“ ”:a b =⎩⎨⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(x -4) ⎝ ⎛⎭⎪⎫74x -4,若关于x 的方程|f (x )-m |=1(m ∈R )恰有四个互不相等的实数根,则实数m 的取值范围是________.(-1,1)∪(2,4) [由题意得,f (x )=(x -4) ⎝ ⎛⎭⎪⎫74x -4=⎩⎪⎨⎪⎧-34x 2+3x ,x ≥0,2116x 2-3x ,x <0,画出函数f (x )的大致图象如图所示.因为关于x 的方程|f (x )-m |=1(m ∈R ),即f (x )=m ±1(m ∈R )恰有四个互不相等的实数根,所以两直线y =m ±1(m ∈R )与曲线y =f (x )共有四个不同的交点,则⎩⎨⎧m +1>3,0<m -1<3或⎩⎨⎧ 0<m +1<3,m -1<0或⎩⎨⎧m +1=3,m -1=0,得2<m <4或-1<m <1.] 二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)如图4,在平面直角坐标系xOy 中,以x 轴正半轴为始边作锐角α,其终边与单位圆交于点A .以OA 为始边作锐角β,其终边与单位圆交于点B ,AB =255.图4(1)求cos β的值;(2)若点A 的横坐标为513,求点B 的坐标.[解] (1)在△AOB 中,由余弦定理得:AB 2=OA 2+OB 2-2OA ·OB cos ∠AOB , 所以,cos ∠AOB =OA 2+OB 2-AB 22OA ·OB =12+12-⎝⎛⎭⎪⎫25522×1×1=35,即cos β=35.6分(2)因为cos β=35,β∈⎝ ⎛⎭⎪⎫0,π2,∴sin β=1-cos 2β=1-⎝ ⎛⎭⎪⎫352=45. 因为点A 的横坐标为513,由三角函数定义可得,cos α=513, 因为α为锐角,所以sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫5132=1213.所以cos(α+β)=cos αcos β-sin αsin β=513×35-1213×45=-3365,sin(α+β)=sin αcos β+cos αsin β=1213×35+513×45=5665,即点B ⎝ ⎛⎭⎪⎫-3365,5665.14分16.(本小题满分14分)在平面四边形ABCD (图5①)中,△ABC 与△ABD 均为直角三角形且有公共斜边AB ,设AB =2,∠BAD =30°,∠BAC =45°,将△ABC 沿AB 折起,构成如图5②所示的三棱锥C ′-ABD .① ②图5(1)当C ′D =2时,求证:平面C ′AB ⊥平面DAB ; (2)当AC ′⊥BD 时,求三棱锥C ′-ABD 的高.[解] (1)证明:当C ′D =2时,取AB 的中点O ,连接C ′O ,DO , 在Rt △ABC ′,Rt △ADB 中,AB =2,则C ′O =DO =1,∵C ′D =2,∴C ′O 2+DO 2=C ′D 2,即C ′O ⊥OD , 由∠BAC =45°得△ABC ′为等腰直角三角形, ∴C ′O ⊥AB ,又AB ∩OD =O ,AB ,OD ⊂平面ABD , ∴C ′O ⊥平面ABD ,∵C ′O ⊂平面ABC ′, ∴平面C ′AB ⊥平面DAB .6分(2)由已知可求得AD =3,AC ′=BC ′=2,BD =1,当AC ′⊥BD 时,由已知AC ′⊥BC ′,得AC ′⊥平面BDC ′,∵C ′D ⊂平面BDC ′,∴AC ′⊥C ′D ,由勾股定理,得C ′D =AD 2-AC ′2=3-2=1, 而△BDC ′中,BD =1,BC ′=2, ∴C ′D 2+BD 2=BC ′2,∴C ′D ⊥BD . ∴S △BDC ′=12×1×1=12.三棱锥C ′-ABD 的体积V =13·S △BDC ′·AC ′=13×12×2=26. S △ABD =12×1×3=32,设三棱锥C ′-ABD 的高为h ,则由13×32×h =26,解得h =63.14分17.(本小题满分14分)如图6,半圆AOB 是某爱国主义教育基地一景点的平面示意图7,半径OA 的长为1百米.为了保护景点,基地管理部门从道路l 上选取一点C ,修建参观线路C -D -E -F ,且CD ,DE ,EF 均与半圆相切,四边形CDEF 是等腰梯形,设DE =t 百米,记修建每1百米参观线路的费用为f (t )万元,经测算f (t )=⎩⎪⎨⎪⎧5,0<t ≤13,8-1t ,13<t <2.图6 图7(1)用t 表示线段EF 的长; (2)求修建参观线路的最低费用.[解] (1)设DQ 与半圆相切于点Q ,则由四边形CDEF 是等腰梯形知,OQ ⊥DE , 以CF 所在直线为x 轴,OQ 所在直线为y 轴, 建立平面直角坐标系xOy .设EF 与圆切于G 点,连接OG ,过点E 作EH ⊥OF ,垂足为H .∵EH =OG ,∠OFG =∠EFH ,∠GOF =∠HEF , ∴Rt △EHF ≌Rt △OGF ,∴HF =FG =EF -12t . ∴EF 2=1+HF 2=1+⎝ ⎛⎭⎪⎫EF -12t 2, 解得EF =t 4+1t(0<t <2).6分(2)设修建该参观线路的费用为y 万元. ①当0<t ≤13,由y =5⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫t 4+1t +t =5⎝ ⎛⎭⎪⎫32t +2t .y ′=5⎝ ⎛⎭⎪⎫32-2t 2<0, 可得y 在⎝ ⎛⎦⎥⎤0,13上单调递减,∴t =13时,y 取得最小值为32.5.②当13<t <2时,y =⎝ ⎛⎭⎪⎫8-1t ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫t 4+1t +t =12t +16t -32-2t 2.y ′=12-16t 2+4t 3=4(t -1)(3t 2+3t -1)t 3.∵13<t <2,∴3t 2+3t -1>0.∴t ∈⎝ ⎛⎭⎪⎫13,1时,y ′<0,函数y 此时单调递减;t ∈(1,2)时,y ′>0,函数y 此时单调递增.∴t =1时,函数y 取得最小值24.5.由①②知,t =1时,函数y 取得最小值为24.5. 即修建该参观线路的最低费用为24.5万元.14分18.(本小题满分16分)在平面直角坐标系xOy 中,设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是e ,定义直线y =±be 为椭圆的“类准线”,已知椭圆C 的“类准线”方程为y =±23,长轴长为4.(1)求椭圆C 的方程;(2)点P 在椭圆C 的“类准线”上(但不在y 轴上),过点P 作圆O :x 2+y 2=3的切线l ,过点O 且垂直于OP 的直线与l 交于点A ,问点A 是否在椭圆C 上?证明你的结论.【导学号:56394123】[解] (1)由题意知⎩⎪⎨⎪⎧ab c=23,a =2,又a 2=b 2+c 2,解得b =3,c =1,所以椭圆C 的方程为x 24+y 23=1. 4分(2)点A 在椭圆C 上.证明如下:设切点为Q (x 0,y 0),x 0≠0,则x 20+y 20=3,切线l 的方程为x 0x +y 0y -3=0,当y P =23时,x P =3-23y 0x 0, 即P ⎝ ⎛⎭⎪⎫3-23y 0x 0,23, 即k OP =233-23y 0x 0=2x 03-2y 0,所以k OA =2y 0-32x 0,直线OA 的方程为y =2y 0-32x 0x .联立⎩⎨⎧y =2y 0-32x 0x ,x 0x +y 0y -3=0,解得⎩⎪⎨⎪⎧x =6x 06-3y 0,y =3(2y 0-3)6-3y 0,即A ⎝⎛⎭⎪⎫6x 06-3y 0,3(2y 0-3)6-3y 0. 10分因为⎝ ⎛⎭⎪⎫6x 06-3y 024+⎝⎛⎭⎪⎫3(2y 0-3)6-3y 023=9(3-y 20)+3(4y 20-43y 0+3)3y 20-123y 0+36=3y 20-123y 0+363y 20-123y 0+36=1, 所以点A 的坐标满足椭圆C 的方程.当y P =-23时,同理可得点A 的坐标满足椭圆C 的方程,所以点A 在椭圆C 上. 19.(本小题满分16分)已知数列{a n }满足2a n +1=a n +a n +2+k (n ∈N *,k ∈R ),且a 1=2,a 3+a 5=-4.(1)若k =0,求数列{a n }的前n 项和S n ; (2)若a 4=-1,求数列{a n }的通项公式a n .[解] (1)当k =0时,2a n +1=a n +a n +2,即a n +2-a n +1=a n +1-a n , 所以数列{a n }是等差数列. 设数列{a n }的公差为d ,则⎩⎨⎧a 1=2,2a 1+6d =-4,解得⎩⎪⎨⎪⎧a 1=2,d =-43, 所以S n =na 1+n (n -1)2d =2n +n (n -1)2×⎝ ⎛⎭⎪⎫-43=-23n 2+83n .6分(2)由题意,2a 4=a 3+a 5+k ,即-2=-4+k ,所以k =2. 又a 4=2a 3-a 2-2=3a 2-2a 1-6,所以a 2=3. 由2a n +1=a n +a n +2+2,得(a n +2-a n +1)-(a n +1-a n )=-2,所以,数列{a n +1-a n }是以a 2-a 1=1为首项,-2为公差的等差数列, 所以a n +1-a n =-2n +3,当n ≥2时,有a n -a n -1=-2(n -1)+3. 于是,a n -1-a n -2=-2(n -2)+3, a n -2-a n -3=-2(n -3)+3, …a 3-a 2=-2×2+3, a 2-a 1=-2×1+3,叠加得,a n -a 1=-2(1+2+…+(n -1))+3(n -1)(n ≥2), 所以a n =-2×n (n -1)2+3(n -1)+2=-n 2+4n -1(n ≥2).又当n =1时,a 1=2也适合.所以数列{a n }的通项公式为a n =-n 2+4n -1,n ∈N *.16分20.(本小题满分16分)已知函数f (x )=e x ⎣⎢⎡⎦⎥⎤13x 3-2x 2+(a +4)x -2a -4,其中a ∈R ,e 为自然对数的底数.(1)关于x 的不等式f (x )<-43e x在(-∞,2)上恒成立,求a 的取值范围; (2)讨论函数f (x )极值点的个数. [解] (1)由f (x )<-43e x ,得e x ⎣⎢⎡⎦⎥⎤13x 3-2x 2+(a +4)x -2a -4<-43e x ,即x 3-6x 2+(3a +12)x -6a -8<0对任意x ∈(-∞,2)恒成立, 即(6-3x )a >x 3-6x 2+12x -8对任意x ∈(-∞,2)恒成立, 因为x <2,所以a >x 3-6x 2+12x -8-3(x -2)=-13(x -2)2,记g (x )=-13(x -2)2,因为g (x )在(-∞,2)上单调递增,且g (2)=0, 所以a ≥0,即a 的取值范围为[0,+∞).6分(2)由题意,可得f ′(x )=e x ⎝ ⎛⎭⎪⎫13x 3-x 2+ax -a ,可知f (x )只有一个极值点或有三个极值点.令g (x )=13x 3-x 2+ax -a ,①若f (x )有且仅有一个极值点,则函数g (x )的图象必穿过x 轴且只穿过一次, 即g (x )为单调递增函数或者g (x )极值同号.10分(ⅰ)当g (x )为单调递增函数时,g ′(x )=x 2-2x +a ≥0在R 上恒成立,得a ≥1. (ⅱ)当g (x )极值同号时,设x 1,x 2为极值点,则g (x 1)·g (x 2)≥0,由g ′(x )=x 2-2x +a =0有解,得a <1,且x 21-2x 1+a =0,x 22-2x 2+a =0,所以x 1+x 2=2,x 1x 2=a ,所以g (x 1)=13x 31-x 21+ax 1-a =13x 1(2x 1-a )-x 21+ax 1-a =-13(2x 1-a )-13ax 1+ax 1-a =23[(a -1)x 1-a ],同理,g (x 2)=23[(a -1)x 2-a ],所以g (x 1)g (x 2)=23[(a -1)x 1-a ]·23[(a -1)x 2-a ]≥0, 化简得(a -1)2x 1x 2-a (a -1)(x 1+x 2)+a 2≥0, 所以(a -1)2a -2a (a -1)+a 2≥0,即a ≥0, 所以0≤a <1.所以,当a ≥0时,f (x )有且仅有一个极值点;②若f (x )有三个极值点,则函数g (x )的图象必穿过x 轴且穿过三次,同理可得a <0.综上,当a ≥0时,f (x )有且仅有一个极值点, 当a <0时,f (x )有三个极值点.16分数学Ⅱ(附加题)21.[选做题](本题包括A 、B 、C 、D 四小题,请选定其中两小题........,并在相应的答题区域内作答..............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤)图8A .[选修4-1:几何证明选讲](本小题满分10分)如图8,AB 是圆O 的直径,D 为圆O 上一点,过D 作圆O 的切线交AB 的延长线于点C .若DA =DC ,求证:AB =2BC . [证明] 连接OD ,BD .因为AB 是圆O 的直径,所以∠ADB =90°,AB =2OB .因为DC 是圆O 的切线,所以∠CDO =90°. 又因为DA =DC ,所以∠A =∠C , 于是△ADB ≌△CDO ,从而AB =CO , 即2OB =OB +BC ,得OB =BC . 故AB =2BC .10分B .[选修4-2:矩阵与变换](本小题满分10分)已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4). (1)求矩阵M ;(2)求矩阵M 的另一个特征值. [解] (1)设矩阵A =⎣⎢⎡⎦⎥⎤ab cd ,这里a ,b ,c ,d ∈R , 则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤88,故⎩⎨⎧a +b =8,c +d =8,由于矩阵M 对应的变换将点(-1,2)换成(-2,4). 则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-24,故⎩⎨⎧-a +2b =-2,-c +2d =4,联立以上两方程组解得a =6,b =2,c =4,d =4,故M =⎣⎢⎡⎦⎥⎤6 24 4. (2)由(1)知,矩阵M 的特征多项式为f (λ)=(λ-6)(λ-4)-8=λ2-10λ+16,故矩阵M 的另一个特征值为2.10分C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,曲线C :⎩⎨⎧x =6cos α,y =2sin α(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为ρ(cos θ+3sin θ)+4=0,求曲线C 上的点到直线l 的最大距离. [解] 将l 转化为直角坐标方程为x +3y +4=0.在C 上任取一点A (6cos α,2sin α) ,α∈[0,2π),则点A 到直线l 的距离为d =6cos α+6sin α+42=⎪⎪⎪⎪⎪⎪23sin ⎝ ⎛⎭⎪⎫α+π4+42=23sin ⎝ ⎛⎭⎪⎫α+π4+42.当α=π4时,d 取得最大值,最大值为2+ 3.10分D .[选修4-5:不等式选讲](本小题满分10分)已知实数a ,b 是非负实数,求证:a 3+b 3≥ab (a 2+b 2).[证明] 由a ,b 是非负实数,作差得a 3+b 3-ab (a 2+b 2)=a 2a (a -b )+b 2b (b -a ) =(a -b )[(a )5-(b )5].当a ≥b 时,a ≥b ,从而(a )5≥(b )5,得 (a -b )[(a )5-(b )5]≥0;当a <b 时,a <b ,从而(a )5<(b )5,得 (a -b )[(a )5-(b )5]>0. 所以a 3+b 3≥ab (a 2+b 2).10分[必做题](第22题、第23题,每题10分,共20分,解答时应写出文字说明、证明过程或演算步骤)22.(本小题满分10分)如图9,在四棱锥P -ABCD 中,底面ABCD 是矩形,面P AD ⊥底面ABCD ,且△P AD 是边长为2的等边三角形,PC =13,M 在PC 上,且P A ∥平面BDM .图9(1)求直线PC 与平面BDM 所成角的正弦值; (2)求平面BDM 与平面P AD 所成锐二面角的大小.[解] ∵平面P AD ⊥平面ABCD ,△P AD 为正三角形,作AD 边上的高PO , ∵平面P AD ∩平面ABCD =AD ,由面面垂直的性质定理,得PO ⊥平面ABCD , 又ABCD 是矩形,同理可得CD ⊥平面P AD ,知CD ⊥PD , ∵PC =13,PD =2,∴CD =3.以AD 中点O 为坐标原点,OA 所在直线为x 轴,OP 所在直线为z 轴,AD 的垂直平分线为y 轴,建立如图所示的坐标系,则P (0,0,3),A (1,0,0),B (1,3,0),C (-1,3,0), D (-1,0,0),PC →=(-1,3,-3),连接AC 交BD 于点N ,由P A ∥平面MBD ,平面APC ∩平面MBD =MN , ∴MN ∥P A ,又N 是AC 的中点,∴M 是PC 的中点,则M ⎝ ⎛⎭⎪⎫-12,32,32,5分设平面BDM 的法向量为n =(x ,y ,z ), BD →=(-2,-3,0),DM →=⎝ ⎛⎭⎪⎫12,32,32,则⎩⎨⎧-2x -3y =0x 2+3y 2+32z =0,令x =1,解得y =-23,z =13,得n =⎝⎛⎭⎪⎫1,-23,33.(1)设PC 与平面BDM 所成的角为θ,则sin θ=⎪⎪⎪⎪⎪⎪PC →·n |PC →|·|n |=31313, ∴直线PC 与平面BDM 所成角的正弦值为31313.(2)平面P AD 的法向量为向量CD →=(0,-3,0),设平面BDM 与平面P AD 所成的锐二面角为φ,则cos φ=⎪⎪⎪⎪⎪⎪CD →·n |CD →|·|n |=12, 故平面BDM 与平面P AD 所成锐二面角的大小为π3.10分23.(本小题满分10分)已知F n (x )=nk =0[(-1)k C k n f k (x )](n ∈N *).(1)若f k (x )=x k ,求F 2 015(2)的值; (2)若f k (x )=xx +k (x ∉{0,-1,…,-n }),求证:F n (x )=n !(x +1)(x +2)…(x +n ). 【导学号:56394124】[解] (1)F n (x )=nk =0[(-1)k C k n f k (x )]=nk =0[(-x )k C kn ]=(1-x )n ,∴F 2 015(2)=-1. 2分(2)证明:①n =1时,左边=1-x x +1=1x +1=右边. ②假设n =m 时,对一切实数x (x ≠0,-1,…,-m ), 有mk =0 (-1)k C k mxx +k =m !(x +1)(x +2)…(x +m ), 那么,当n =m +1时,对一切实数x (x ≠0,-1,…,-(m +1)),有m +1k =0 (-1)k C k m +1x x +k =1+mk =1 (-1)k [C k m +C k -1m ]x x +k +(-1)m +1x x +m +1=mk=0(-1)k C k mxx+k+m+1k=1(-1)k C k-1mxx+k=mk=0(-1)k C k m·xx+k-⎝⎛⎭⎪⎫mk=0(-1)k C k mx+1x+1+k·xx+1=m!(x+1)(x+2)…(x+m)-m!(x+2)(x+3)…(x+1+m)·xx+1=m![(x+m+1)-x](x+1)(x+2)…(x+m)(x+m+1)=(m+1)!(x+1)(x+2)…(x+m+1).即n=m+1时,等式成立.故对一切正整数n及一切实数x(x≠0,-1,…,-n),有nk=0(-1)k C k nxx+k=n!(x+1)(x+2)…(x+n). 10分。

江苏2018六市高三二模联考数学参考答案

江苏2018六市高三二模联考数学参考答案

江苏六市2018届高三第二次调研测试数学I 参考答案及评分建议一、填空题:1.{}13, 2.43 3.30 4.125 5.13 6 7. 8.97 9.6- 10.811.22(1)4x y -+= 12.()1+∞, 13.10 14.14,二、解答题:15.(1)因为()cos sin αα=,a ,()sin cos ββ=-,b ,()1=-c ,所以1===a b c ,且cos sin sin cos sin ()αβαβαβ⋅=-+=-a b . …… 3分 因为+=a b c ,所以22+=a bc ,即a 2 + 2 a ⋅b + b 2= 1,所以12sin ()11αβ+-+=,即1sin ()2αβ-=-. …… 6分(2)因为5π6α=,所以()12=,a .故()1sin cos 2ββ+=--,b c . … 8分因为()//+a b c ,所以)()11cos sin 0ββ---=.化简得,11sin 22ββ=,所以()π1sin 32β-=. … 12分因为0πβ<<,所以ππ2π333β-<-<.所以ππ36β-=,即π2β=. …… 14分16.(1)在三棱柱ABC -A 1B 1C 1中,BB 1 // CC 1. 因为AF ⊥CC 1,所以AF ⊥BB 1.… 2分 又AE ⊥BB 1,AEAF A =,AE ,AF ⊂平面AEF ,所以BB 1⊥平面AEF .…… 5分又因为BB 1⊂平面BB 1C 1C ,所以平面AEF ⊥平面BB 1C 1C . … 7分 (2)因为AE ⊥BB 1,AF ⊥CC 1,∠ABE =∠ACF ,AB = AC ,所以Rt △AEB ≌Rt △AFC .所以BE = CF . … 9分 又由(1)知,BE // CF . 所以四边形BEFC 是平行四边形.故BC // EF . … 11分 又BC ⊄平面AEF ,EF ⊂平面AEF ,所以BC // 平面AEF . … 14分17.设()00P x y ,,()11Q x y ,.(1)在3y x =+中,令0x =,得3y =,从而b = 3. …… 2分由222193y x a y x ⎧+=⎪⎨⎪=+⎩, 得()222319x x a ++=. 所以20269a x a =-+. …… 4分 因为10PB x =,所以2269a a=+,解得218a =.所以椭圆的标准方程为221189y x +=. …… 6分 (2)方法一:直线PB 1的斜率为1003PB y k -=,由11QB PB ⊥,所以直线QB 1的斜率为1003QB x k y =--. 于是直线QB 1的方程为:0033xy x y =-+-. 同理,QB 2的方程为:0033x y x y =--+. …… 8分 联立两直线方程,消去y ,得20109y x x -=. … 10分因为()00P x y ,在椭圆221189y x +=上,所以22001189x y +=,从而220092x y -=-.所以012x x =-. …… 12分 所以1212012PB B QB B S xS x ∆∆==. …… 14分 方法二:设直线PB 1,PB 2的斜率为k ,k ',则直线PB 1的方程为3y kx =+. 由11QB PB ⊥,直线QB 1的方程为13y x k=-+.将3y kx =+代入221y x +=,得()2221120k x kx ++=, 因为P 是椭圆上异于点B 1,B 2的点,所以00x ≠,从而0x =21221k k -+.… 8分因为()00P x y ,在椭圆221189y x +=上,所以22001189x y +=,从而220092x y -=-.所以2000200033912y y y k k x x x -+-'⋅=⋅==-,得12k k '=-. …… 10分 由22QB PB ⊥,所以直线2QB 的方程为23y kx =-.联立1323y x y kx ⎧=-+⎪⎨⎪=-⎩,则2621k x k =+,即12621k x k =+. …… 12分 所以1212201212212621PB B QB B k S x k S x kk ∆∆-+===+. …… 14分 18.(1)设所得圆柱的半径为r dm , 则()2π24100r r r +⨯=, …… 4分解得r …… 6分(2)设所得正四棱柱的底面边长为a dm ,则21004x a a a x ⎧⎪⎨⎪-⎩≤≤,,即220.x a a x ⎧⎪⎨⎪⎩≤≤,…… 9分方法一:所得正四棱柱的体积3204400x x V a x x x⎧<⎪=⎨⎪>⎩≤≤,, ……11分记函数3004()400x x p x x x⎧<⎪=⎨⎪>⎩≤,,则()p x 在(0,上单调递增,在)⎡+∞⎣上单调递减, 所以当x =max ()p x =所以当x =a=max V = dm 3. … 14分 方法二: 202ax a≤≤,从而a ……11分所得正四棱柱的体积()222020V a x a a a==≤≤.所以当a =x =max V = dm 3. … 14分答:(1dm ;(2)当x 为 …… 16分 【评分说明】①直接“由()21002x x x ⋅+=得,x =2分;②方法一中的求解过程要体现()p x V ≤≤()p x V =≤的最多得5分,其它类似解答参照给分.19.(1)假设数列123c c c ,,是等差数列, 则2132c c c =+,即()()()2211332a b a b a b +=+++.因为12b b ,,3b 是等差数列,所以2132b b b =+.从而2132a a a =+. … 2分 又因为12a a ,,3a 是等比数列,所以2213a a a =. 所以123a a a ==,这与1q ≠矛盾,从而假设不成立.所以数列123c c c ,,不是等差数列. …… 4分 (2)因为11a =,2q =,所以12n n a -=.因为2213c c c =,所以()()()2222214b b d b d +=+-++,即223b d d =+,… 6分 由2220c b =+≠,得2320d d ++≠,所以1d ≠-且2d ≠-.又0d ≠,所以223b d d =+,定义域为{}120d d d d ∈≠-≠-≠R ,,.… 8分(3)方法一:设c 1,c 2,c 3,c 4成等比数列,其公比为q 1, 则1111111221111331111=2=3=.a b c a q b d c q a q b d c q a q b d c q +=⎧⎪++⎪⎨++⎪⎪++⎩①②③④,,, …… 10分将①+③-2×②得,()()2211111a q c q -=-,⑤将②+④-2×③得,()()22111111a q q c q q -=-,⑥ …… 12分 因为10a ≠,1q ≠,由⑤得10c ≠,11q ≠.由⑤⑥得1q q =,从而11a c =. … 14分 代入①得10b =. 再代入②,得0d =,与0d ≠矛盾.所以c 1,c 2,c 3,c 4不成等比数列. …… 16分方法二:假设数列1234c c c c ,,,是等比数列,则324123c c c ==. …… 10分 所以32432132c c c c c c c c --=--,即32432132a ad a a da a d a a d -+-+=-+-+. 两边同时减1得,321432213222a a a a a a a a d a a d-+-+=-+-+. …… 12分 因为等比数列a 1,a 2,a 3,a 4的公比为q ()1q ≠,所以()321321213222q a a a a a a a a d a a d-+-+=-+-+.又()23211210a a a a q -+=-≠,所以()2132q a a d a a d -+=-+,即()10q d -=. …… 14分 这与1q ≠,且0d ≠矛盾,所以假设不成立.所以数列1234c c c c ,,,不能为等比数列. …… 16分 20.(1)由题意,()1cos 0f x a x '=-≥对x ∈R 恒成立,因为0a >,所以1cos x a≥对x ∈R 恒成立,因为()max cos 1x =,所以11a ≥,从而01a <≤. … 3分(2)①()1sin ln 12g x x x b x =-++,所以()11cos 2b g x x x'=-+.若0b <,则存在02b ->,使()()11cos 0b b g '-=---<,不合题意,所以0b >. … 5分 取30ebx -=,则001x <<.此时()30000111sin ln 11ln 10222b g x x x b x b e -=-++<+++=-<.所以存在00x >,使()00g x <. …… 8分 ②依题意,不妨设120x x <<,令21x t x =,则1t >. 由(1)知函数sin y x x =-单调递增,所以2211sin sin x x x x ->-. 从而2121sin sin x x x x ->-. … 10分 因为()()12g x g x =,所以11122211sin ln 1sin ln 122x x b x x x b x -++=-++,所以()()()2121212111ln ln sin sin 22b x x x x x x x x --=--->-. 所以212120ln ln x x b x x -->>-. ……12分下面证明2121ln ln x x x x --1ln t t ->()ln 0t <*.设()()ln 1h t t t =>,所以()210h t -'=<在()1+∞,恒成立.所以()h t 在()1+∞,单调递减,故()()10h t h <=,从而()*得证.所以2b - 即2124x x b <. ……16分学II 参考答案及评分建议21.A .延长AO 交⊙O 于点E , 则()()DB DC DE DA OD OE OA OD ⋅=⋅=+⋅-.…… 5分 因为OE OA =, 所以()()22DB DC OA OD OA OD OA OD ⋅=+⋅-=-. 所以22DB DC OD OA ⋅+=. …… 10分B .依题意,依次实施变换1T ,2T 所对应的矩阵=NM 201020010202⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. …… 5分 则20000200⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,20360200⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,20240224⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 所以(00)(30)(22)A B C ,,,,,分别变为点(00)(60)(44)A B C ''',,,,,. 从而所得图形的面积为164122⨯⨯=. …… 10分C .以极点为原点,极轴为x 轴的非负半轴,建立平面直角坐标系xOy .则点P 的直角坐标为()1. …… 2分将直线l :()sin 23ρθπ-=的方程变形为:sin cos cos sin 233ρθρθππ-=,40y -+=. …… 5分所以()1P 到直线l 40y -+=2=.故所求圆的普通方程为()(2214x y -+=. …… 8分化为极坐标方程得,()π4sin 6ρθ=+. …… 10分D .因为a ,b ,c 为正实数,=2a c b c +++=2=(当且仅当a b c ==取“=”). …… 10分22.(1)从3⨯3表格中随机不重复地点击3格,共有39C 种不同情形.则事件:“600X =”包含两类情形: 第一类是3格各得奖200元;第二类是1格得奖300元,一格得奖200元,一格得奖100元,其中第一类包含34C 种情形,第二类包含111144C C C ⋅⋅种情形.所以()3111414439C C C C 560021C P X +⋅⋅===. …… 3分 (2)X 的所有可能值为300,400,500,600,700.则()3439C 413008421C P X ====,()121439C C 242400847C P X ⋅====, ()1212144439C C C C 3055008414C P X ⋅+⋅====,()121439C C 637008442C P X ⋅====. 所以X 的概率分布列为:…… 8分所以()12553300400500600700500217142142E X=⨯+⨯+⨯+⨯+⨯=(元). …… 10分23.由二项式定理,得21C i i n a +=(i =0,1,2,…,2n +1).(1)210221055535C 3C 5C 30T a a a =++=++=; …… 2分(2)因为()()()()()12121!1C 11!!n kn n n k n k n k n k ++++++=++⋅++-()()()()212!!!n n n k n k +⋅=+- ()221C n kn n +=+, …… 4分所以()021n n n k k T k a -==+∑ ()2121Cnn k n k k -+==+∑ ()121021C nn kn k k +++==+∑()()12102121C nn kn k n k n +++==++-+⎡⎤⎣⎦∑ ()()112121021C21C nnn kn kn n k k n k n ++++++===++-+∑∑()()12210221C21C nnn kn knn k k n n ++++===+-+∑∑()()()2212112212C 212n n n n n n +=+⋅⋅+-+⋅⋅ ()221C n n n =+. …… 8分()()()()1221212121C 21C C 221C n n n nn n n n n T n n n ----=+=++=+.因为21C n n *-∈N ,所以n T 能被42n +整除. …… 10分。

2018高考数学江苏专版三维二轮专题复习训练:3个附加题综合仿真练(三) Word版含解析

2018高考数学江苏专版三维二轮专题复习训练:3个附加题综合仿真练(三) Word版含解析

3个附加题综合仿真练(三)1、本题包括A 、B 、C 、D 四个小题,请任选二个作答 A 、[选修4-1:几何证明选讲]如图,AB 为圆O 的切线,A 为切点,C 为线段AB 的中点,过C 作圆O的割线CED (E 在C ,D 之间)、求证:∠CBE =∠BDE 、 证明:因为CA 为圆O 的切线, 所以CA 2=CE ·CD ,又CA =CB , 所以CB 2=CE ·CD , 即CB CE =CD CB , 又∠BCD =∠BCD , 所以△BCE ∽△DCB , 所以∠CBE =∠BDE 、 B 、[选修4-2:矩阵与变换]设a ,b ∈R 、若直线l :ax +y -7=0在矩阵A =⎣⎢⎡⎦⎥⎤3 0-1 b 对应的变换作用下,得到的直线为l ′:9x +y -91=0、求实数a ,b 的值、解:法一:在直线l :ax +y -7=0上取点M (0,7),N (1,7-a ),由⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤ 07b ,⎣⎢⎡⎦⎥⎤3 0-1b ⎣⎢⎡⎦⎥⎤17-a =⎣⎢⎡⎦⎥⎤ 3 b (7-a )-1,可知点M (0,7),N (1,7-a )在矩阵A 对应的变换作用下分别得到点M ′(0,7b ),N ′(3,b (7-a )-1),由题意可知:M ′,N ′在直线9x +y -91=0上,∴⎩⎪⎨⎪⎧ 7b -91=0,27+b (7-a )-1-91=0,解得⎩⎪⎨⎪⎧a =2,b =13,∴实数a ,b 的值分别为2,13、法二:设直线l 上任意一点P (x ,y ),点P 在矩阵A 对应的变换作用下得到Q (x ′,y ′),则⎣⎢⎡⎦⎥⎤3 0-1b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,∴⎩⎪⎨⎪⎧x ′=3x ,y ′=-x +by , 由Q (x ′,y ′)在直线l ′:9x +y -91=0上, ∴27x +(-x +by )-91=0, 即26x +by -91=0, ∵点P 在ax +y -7=0上, ∴26a =b 1=-91-7,解得a =2,b =13、∴实数a ,b 的值分别为2,13、 C 、[选修4-4:坐标系与参数方程]在极坐标系中,直线l 和圆C 的极坐标方程分别为ρcos ⎝⎛⎭⎫θ+π6=a (a ∈R)和ρ=4sin θ、若直线l 与圆C 有且只有一个公共点,求a 的值、解:由ρcos ⎝⎛⎭⎫θ+π6=a ,得32ρcos θ-12ρsin θ=a , 故化为直角坐标方程为3x -y -2a =0, 由圆C 的极坐标方程ρ=4sin θ,得ρ2=4ρsin θ, 化为直角坐标方程为x 2+(y -2)2=4,若直线l 与圆C 只有一个公共点,则圆心C 到直线l 的距离等于半径,故d =|-2-2a |2=2,解得a =1或a =-3、 D 、[选修4-5:不等式选讲]已知a ,b ∈R,a >b >e(其中e 是自然对数的底数),求证:b a >a b 、 证明:∵b a >0,a b >0,∴要证b a >a b , 只要证a ln b >b ln a, 只要证ln b b >ln a a ,构造函数f (x )=ln xx ,x ∈(e,+∞)、则f ′(x )=1-ln xx 2,x ∈(e,+∞),f ′(x )<0在区间(e,+∞)上恒成立,所以函数f (x )在x ∈(e,+∞)上是单调递减的, 所以当a >b >e 时,有f (b )>f (a ), 即ln b b >ln aa ,故b a >a b 得证、2、从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X 为所组成三位数的各位数字之和、(1)求X 是奇数的概率;(2)求X 的概率分布及数学期望、 解:(1)记“X 是奇数”为事件A , 能组成的三位数的个数是4×4×3=48、X 是奇数的个数是C 12C 23A 33-C 12C 12A 22=28,所以P (A )=2848=712、故X 是奇数的概率为712、(2)X 的可能取值为3,4,5,6,7,8,9、当X =3时,组成的三位数是由0,1,2三个数字组成, 所以P (X =3)=448=112;当X =4时,组成的三位数是由0,1,3三个数字组成, 所以P (X =4)=448=112;当X =5时,组成的三位数是由0,1,4或0,2,3组成, 所以P (X =5)=848=16;当X =6时,组成的三位数是由0,2,4或1,2,3组成, 所以P (X =6)=1048=524;当X =7时,组成的三位数是由0,3,4或1,2,4组成, 所以P (X =7)=1048=524;当X =8时,组成的三位数是由1,3,4三个数字组成, 所以P (X =8)=648=18;当X =9时,组成的三位数是由2,3,4三个数字组成, 所以P (X =9)=648=18、所以X 的概率分布为:故E (X )=3×112+4×112+5×16+6×524+7×524+8×18+9×18=254、 3、设P (n ,m )=∑k =0n(-1)k C knm m +k,Q (n ,m )=C n n +m ,其中m ,n ∈N *、 (1)当m =1时,求P (n,1)·Q (n,1)的值;(2)对∀m ∈N *,证明:P (n ,m )·Q (n ,m )恒为定值、 解:(1)当m =1时,P (n,1)=∑k =0n(-1)kC k n11+k =1n +1∑k =0n (-1)k C k +1n +1=1n +1, 又Q (n,1)=C 1n +1=n +1,显然P (n,1)·Q (n,1)=1、 (2)证明:P (n ,m )=∑k =0n(-1)k C k nmm +k =1+∑k =1n -1(-1)k (C k n -1+C k -1n -1)m m +k +(-1)n m m +n =1+∑k =1n -1 (-1)kC k n -1m m +k +∑k =1n (-1)k C k -1n -1m m +k=P (n -1,m )+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )-m n ∑k =0n (-1)k C k nmm +k=P(n-1,m)-mn P(n,m)即P(n,m)=nm+nP(n-1,m),由累乘,易求得P(n,m)=n!m!(n+m)!P(0,m)=1C n n+m,又Q(n,m)=C n n+m,所以P(n,m)·Q(n,m)=1、。

江苏省2018届高三数学二模试卷 含解析

江苏省2018届高三数学二模试卷 含解析

2018年江苏省高考数学二模试卷一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知集合A={x||x|<2},B={﹣1,0,1,2,3},则集合A∩B中元素的个数为.2.已知复数z满足(2﹣3i)z=3+2i(i是虚数单位),则z的模为.3.已知一组数据8,10,9,12,11,那么这组数据的方差为.4.运行如图所示的伪代码,其输出的结果S为.5.袋中有形状、大小都相同的四只球,其中有1只红球,3只白球,若从中随机一次摸出2只球,则这2只球颜色不同的概率为.6.已知,那么tanβ的值为.7.已知正六棱锥的底面边长为2,侧棱长为,则该正六棱锥的表面积为.8.在三角形ABC中,,则的最小值为.9.已知数列{a n}的首项为1,等比数列{b n}满足,且b1018=1,则a2018的值为.10.已知正数a,b满足2ab+b2=b+1,则a+5b的最小值为.11.已知函数,若方程f(x)=﹣x有且仅有一解,则实数a的取值范围为.12.在平面直角坐标系xOy中,点A(3,0),动点P满足PA=2PO,动点Q(3a,4a+5)(a ∈R),则线段PQ长度的最小值为.13.已知椭圆的离心率为,长轴AB上2018个等分点从左到右依次为点M1,M2,…,M2018,过M1点作斜率为k(k≠0)的直线,交椭圆C于P1,P2两点,P1点在x轴上方;过M2点作斜率为k(k≠0)的直线,交椭圆C于P3,P4两点,P3点在x 轴上方;以此类推,过M2018点作斜率为k(k≠0)的直线,交椭圆C于P4189,P4180两点,P4189点在x轴上方,则4180条直线AP1,AP2,…,AP4180的斜率乘积为.14.已知函数f(x)=x|x﹣a|,若对任意x1∈[2,3],x2∈[2,3],x1≠x2恒有,则实数a的取值范围为.二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.在△ABC中,角A、B、C分别是边a、b、c的对角,且3a=2b.(Ⅰ)若B=60°,求sinC的值;(Ⅱ)若,求sin(A﹣B)的值.16.如图,平行四边形ABCD⊥平面CDE,AD⊥DE.(I)求证:DE⊥平面ABCD;(Ⅱ)若M为线段BE中点,N为线段CE的一个三等分点,求证:MN不可能与平面ABCD 平行.17.已知椭圆的离心率为e,直线l:y=ex+a与x,y轴分别交于A、B点.(Ⅰ)求证:直线l与椭圆C有且仅有一个交点;(Ⅱ)设T为直线l与椭圆C的交点,若AT=eAB,求椭圆C的离心率;(Ⅲ)求证:直线l:y=ex+a上的点到椭圆C两焦点距离和的最小值为2a.18.如图,,点O处为一雷达站,测控范围为一个圆形区域(含边界),雷达开机时测控半径r随时间t变化函数为r=3t km,且半径增大到81km 时不再变化.一架无人侦察机从C点处开始沿CD方向飞行,其飞行速度为15km/min.(Ⅰ)当无人侦察机在CD上飞行t分钟至点E时,试用t和θ表示无人侦察机到O点的距离OE;(Ⅱ)若无人侦察机在C点处雷达就开始开机,且θ=,则雷达是否能测控到无人侦察机?请说明理由.19.已知数列{a n }满足.数列{a n }前n 项和为S n .(Ⅰ) 求数列{a n }的通项公式;(Ⅱ)若a m a m +1=a m +2,求正整数m 的值; (Ⅲ)是否存在正整数m ,使得恰好为数列{a n }中的一项?若存在,求出所有满足条件的m 值,若不存在,说明理由.20.已知函数f (x )=xlnx ﹣ax 2+a (a ∈R ),其导函数为f ′(x ). (Ⅰ)求函数g (x )=f ′(x )+(2a ﹣1)x 的极值;(Ⅱ)当x >1时,关于x 的不等式f (x )<0恒成立,求a 的取值范围.三.附加题部分【选做题】(本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.)A .[选修4-1几何证明选讲](本小题满分10分) 21.若AB 为定圆O 一条弦(非直径),AB=4,点N 在线段AB 上移动,∠ONF=90°,NF 与圆O 相交于点F ,求NF 的最大值.B .[选修4-2:矩阵与变换](本小题满分10分) 22.已知矩阵,若矩阵A 属于特征值6的一个特征向量为=,属于特征值1的一个特征向量为=.求A 的逆矩阵.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.过点P (﹣3,0)且倾斜角为30°的直线和曲线ρ2cos2θ=4相交于A 、B 两点.求线段AB 的长.D .[选修4-5:不等式选讲](本小题满分0分) 24.设 x ,y ,z ∈R +,且x +y +z=1,求证:.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.一个袋中有若干个红球与白球,一次试验为从中摸出一个球并放回袋中,摸出红球概率为p ,摸出白球概率为q ,摸出红球加1分,摸出白球减1分,现记“n 次试验总得分为S n ”. (Ⅰ)当时,记ξ=|S 3|,求ξ的分布列及数学期望;(Ⅱ)当时,求S 8=2且S i ≥0(i=1,2,3,4)的概率.26.数列{a n }各项均为正数,,且对任意的n ∈N *,有.(Ⅰ)求证:;(Ⅱ)若,是否存在n∈N*,使得a n>1,若存在,试求出n的最小值,若不存在,请说明理由.2018年江苏省高考数学二模试卷参考答案与试题解析一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知集合A={x||x|<2},B={﹣1,0,1,2,3},则集合A∩B中元素的个数为3.【考点】交集及其运算.【分析】求出A中不等式的解集确定出A,找出A与B的交集,即可作出判断.【解答】解:由A中不等式解得:﹣2<x<2,即A=(﹣2,2),∵B={﹣1,0,1,2,3},∴A∩B={﹣1,0,1},则集合A∩B中元素的个数为3,故答案为:32.已知复数z满足(2﹣3i)z=3+2i(i是虚数单位),则z的模为1.【考点】复数代数形式的乘除运算.【分析】根据向量的复数运算和向量的模即可求出.【解答】解:(2﹣3i)z=3+2i,∴z====i,∴|z|=1,故答案为:1.3.已知一组数据8,10,9,12,11,那么这组数据的方差为2.【考点】极差、方差与标准差.【分析】先求出这组数据的平均数,由此能求出这组数据的方差.【解答】解:∵一组数据8,10,9,12,11,∴这组数据的平均数=(8+10+9+12+11)=10,这组数据的方差为S2= [(8﹣10)2+(10﹣10)2+(9﹣10)2+(12﹣10)2+(11﹣10)2]=2.故答案为:2.4.运行如图所示的伪代码,其输出的结果S为15.【考点】程序框图.【分析】由已知中的程序代码可得:程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案【解答】解:当l=1时,满足进行循环的条件,S=3,l=4;当l=4时,满足进行循环的条件,S=9,l=7;当l=7时,满足进行循环的条件,S=15,l=10;当l=10时,不满足进行循环的条件,故输出的S值为15.故答案为:155.袋中有形状、大小都相同的四只球,其中有1只红球,3只白球,若从中随机一次摸出2只球,则这2只球颜色不同的概率为.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出这2只球颜色不同包含的基本事件个数,由此能求出这2只球颜色不同的概率.【解答】解:∵袋中有形状、大小都相同的四只球,其中有1只红球,3只白球,从中随机一次摸出2只球,∴基本事件总数n==6,这2只球颜色不同包含的基本事件个数m==3,∴这2只球颜色不同的概率为p==.故答案为:.6.已知,那么tanβ的值为3.【考点】两角和与差的正切函数.【分析】由已知,利用同角三角函数基本关系式可求cosα,tanα的值,利用两角和的正切函数公式即可化简求值.【解答】解:∵,∴cosα=﹣=﹣,tanα==﹣2,∴tan(α+β)===,整理可得:tanβ=3.故答案为:3.7.已知正六棱锥的底面边长为2,侧棱长为,则该正六棱锥的表面积为+12.【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】利用勾股定理可得侧面三角形的斜高h,利用等腰三角形与等边三角形的面积计算公式即可得出.【解答】解:侧面三角形的斜高h==2,∴该正六棱锥的表面积S=+6×=+12,故答案为: +12.8.在三角形ABC中,,则的最小值为.【考点】平面向量数量积的运算.【分析】可根据条件得到,而由可得到,两边平方并进行数量积的运算便可得到,这样根据不等式a2+b2≥2ab即可得出的范围,从而得出的范围,即得出的最小值.【解答】解:根据条件,=;∴;由得,;∴;∴==,当且仅当即时取“=”;∴;∴的最小值为.故答案为:.9.已知数列{a n}的首项为1,等比数列{b n}满足,且b1018=1,则a2018的值为1.【考点】等比数列的通项公式.【分析】由已知结合,得到a2018=b1b2…b2018=(b1b2018)•(b2b2018)…(b1018b1018)•b1018,结合b1018=1,以及等比数列的性质求得答案.【解答】解:,且a1=1,得b1=,b2=,∴a3=a2b2=b1b2,b3=,∴a4=a3b3=b1b2b3,…a n=b1b2…b n.﹣1∴a2018=b1b2…b2018=(b1b2018)•(b2b2018)…(b1018b1018)•b1018,∵b1018=1,∴b1b2018=b2b2018=…=b1018b1018=(b1018)2=1,∴a2018=1,故答案为:1.10.已知正数a,b满足2ab+b2=b+1,则a+5b的最小值为.【考点】基本不等式.【分析】正数a,b满足2ab+b2=b+1,可得:a=>0.则a+5b=+5b=+,利用基本不等式的性质即可得出.【解答】解:∵正数a,b满足2ab+b2=b+1,∴a=>0.则a+5b=+5b=+≥+=,当且仅当b=,a=2时取等号.故答案为:.11.已知函数,若方程f(x)=﹣x有且仅有一解,则实数a的取值范围为a≥﹣1或a=﹣2..【考点】根的存在性及根的个数判断.【分析】根据指数函数的图象,结合图象的平移可知当a≥﹣1时,2x+a在x≤0时,与y=﹣x 有一交点,而x++a在x>0无交点,符合题意;再考虑当a<﹣1时的情况,结合图象的平移和二次函数的知识求出a的取值.【解答】解:根据指数函数的图象易知:当a≥﹣1时,y=2x+a在x≤0时,与y=﹣x有一交点,y=x++a在x>0与y=﹣x无交点,符合题意;当a<﹣1时,只需x++a=﹣x有且仅有一根,△=a2﹣8=0,解得a=﹣2.故答案为a≥﹣1或a=﹣2.12.在平面直角坐标系xOy中,点A(3,0),动点P满足PA=2PO,动点Q(3a,4a+5)(a ∈R),则线段PQ长度的最小值为0.【考点】两点间距离公式的应用.【分析】求出圆的方程并化为标准形式,由条件求得点Q(3a,4a+5)到圆心(﹣1,0)的距离d的最小值,将d的最小值减去圆的半径,即为所求.【解答】解:∵点A(3,0),动点P满足PA=2PO,设P(x,y),则有(x﹣3)2+y2=4x2+4y2,∴(x+1)2+y2=4,表示以(﹣1,0)为圆心、半径等于2的圆.点Q(3a,4a+5)到圆心(﹣1,0)的距离d==≥,故距离d可以是2,此时PQ=0,故线段PQ长度的最小值为0.13.已知椭圆的离心率为,长轴AB上2018个等分点从左到右依次为点M1,M2,…,M2018,过M1点作斜率为k(k≠0)的直线,交椭圆C于P1,P2两点,P1点在x轴上方;过M2点作斜率为k(k≠0)的直线,交椭圆C于P3,P4两点,P3点在x 轴上方;以此类推,过M2018点作斜率为k(k≠0)的直线,交椭圆C于P4189,P4180两点,P4189点在x轴上方,则4180条直线AP1,AP2,…,AP4180的斜率乘积为﹣2﹣2018.【考点】椭圆的简单性质.【分析】运用椭圆的离心率公式,可得a2=2b2=2c2,设M n的坐标为(t,0),直线方程为y=k (x﹣t),代入椭圆方程,运用韦达定理,再由直线的斜率公式,化简整理,可得•=,再由等分点,设出t的坐标,化简整理,计算即可得到所求值.【解答】解:由题意可得e==,可得a2=2b2=2c2,设M n的坐标为(t,0),直线方程为y=k(x﹣t),代入椭圆方程x2+2y2=2b2,可得(1+2k2)x2﹣4tk2x+2k2t2﹣2b2=0,即有x1+x2=,x1x2=,•=•======,可令t=﹣,﹣,…,﹣,﹣,0,,,…,,,即有AP1,AP2,…,AP4180的斜率乘积为•(•…•)••(•…•)=﹣.故答案为:﹣2﹣2018.14.已知函数f(x)=x|x﹣a|,若对任意x1∈[2,3],x2∈[2,3],x1≠x2恒有,则实数a的取值范围为[3,+∞).【考点】分段函数的应用.【分析】根据凸函数和凹函数的定义,作出函数f(x)的图象,利用数形结合进行求解即可.【解答】解:满足条件有的函数为凸函数,f(x)=,作出函数f(x)的图象,由图象知当x≤a时,函数f(x)为凸函数,当x≥a时,函数f(x)为凹函数,若对任意x1∈[2,3],x2∈[2,3],x1≠x2恒有,则a≥3即可,故实数a的取值范围是[3,+∞),故答案为:[3,+∞)二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.在△ABC中,角A、B、C分别是边a、b、c的对角,且3a=2b.(Ⅰ)若B=60°,求sinC的值;(Ⅱ)若,求sin(A﹣B)的值.【考点】两角和与差的正弦函数;正弦定理;余弦定理.【分析】(Ⅰ)利用正弦定理化简已知可得3sinA=2sinB,由已知可求sinA,利用大边对大角可得A为锐角,可求cosA,利用三角形内角和定理,两角和的正弦函数公式即可求sinC的值.(Ⅱ)由已知及正弦定理可求a=,余弦定理可求c=,利用余弦定理可得cosB=0,从而可求sinB=1,sinA=,利用大边对大角及同角三角函数基本关系式可求cosA,利用两角差的正弦函数公式即可计算得解.【解答】(本题满分为14分)解:(Ⅰ)在△ABC中,∵3a=2b,∴3sinA=2sinB又∵B=60°,代入得3sinA=2sin60°,解得sinA=.∵a:b=2:3,∴A<B,即cosA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB=.…(Ⅱ)∵3a=2b,可得:a=,,∴==,解得:c2=,c=,∴cosB===0,可得:sinB=1,∵3sinA=2sinB=2,可得:sinA=,A为锐角,可得cosA==.∴sin(A﹣B)=sinAcosB﹣cosAsinB=﹣cosA=﹣.…16.如图,平行四边形ABCD⊥平面CDE,AD⊥DE.(I)求证:DE⊥平面ABCD;(Ⅱ)若M为线段BE中点,N为线段CE的一个三等分点,求证:MN不可能与平面ABCD 平行.【考点】直线与平面垂直的判定;直线与平面平行的性质.【分析】(1)在平面ABCD内过A作CD的垂线AP,则AP⊥平面CDE,于是AP⊥DE,结合AD⊥DE,得出DE⊥平面ABCD;(2)使用反证法证明,假设MN∥平面ABCD,由线面平行的性质得MN∥BC,与已知矛盾.【解答】证明:(1)过A作AP⊥CD,垂足为P,∵平面ABCD⊥平面CDE,平面ABCD∩平面CDE=CD,AP⊂平面ABCD,AP⊥CD,∴AP⊥平面CDE,∵DE⊂平面CDE,∴AP⊥DE,又∵DE⊥AD,AD⊂平面ABCD,AP⊂平面ABCD,AD∩AP=A,∴DE⊥平面ABCD.(2)假设MN∥平面ABCD,∵MN⊂平面BCE,平面BCE∩平面ABCD=BC,∴MN∥BC,∴,与M是BE的中点,N是CE的三等分点相矛盾.∴MN不可能与平面ABCD平行.17.已知椭圆的离心率为e,直线l:y=ex+a与x,y轴分别交于A、B点.(Ⅰ)求证:直线l与椭圆C有且仅有一个交点;(Ⅱ)设T为直线l与椭圆C的交点,若AT=eAB,求椭圆C的离心率;(Ⅲ)求证:直线l:y=ex+a上的点到椭圆C两焦点距离和的最小值为2a.【考点】椭圆的简单性质.【分析】(Ⅰ)将直线l:y=ex+a代入椭圆方程,运用判别式,结合离心率公式,化简整理即可得证;(Ⅱ)由直线l:y=ex+a,可得A(﹣,0),B(0,a),运用向量共线的坐标表示,解方程可得离心率;(Ⅲ)设F2(c,0)关于直线y=ex+a的对称点为F'(m,n),运用两直线垂直的条件:斜率之积为﹣1和中点坐标公式,求得F'的坐标,计算|F'F1|,即可得到所求最小值.【解答】解:(Ⅰ)证明:直线l:y=ex+a代入椭圆,可得(b2+a2e2)x2+2ea3+a4﹣a2b2=0,可得判别式为4a2e6﹣4(b2+a2e2)(a4﹣a2b2)=﹣4(a4b2﹣a2b4﹣a4e2b2)=﹣4[a2b2(a2﹣b2)﹣a2c2b2]=0,即有直线l与椭圆C有且仅有一个交点;(Ⅱ)由直线l:y=ex+a,可得A(﹣,0),B(0,a),由(Ⅰ)可得x T=﹣=﹣=﹣ea,由=e,可得﹣ea+=e(0+),即e2+e﹣1=0,解得e=(负的舍去):(Ⅲ)证明:设F2(c,0)关于直线y=ex+a的对称点为F'(m,n),即有=﹣,=+a,结合e=,b2+c2=a2,解得m=﹣c,n=2a,即为F'(﹣c,2a),则|F'F1|=2a.故直线l:y=ex+a上的点到椭圆C两焦点距离和的最小值为2a.18.如图,,点O处为一雷达站,测控范围为一个圆形区域(含边界),雷达开机时测控半径r随时间t变化函数为r=3t km,且半径增大到81km 时不再变化.一架无人侦察机从C点处开始沿CD方向飞行,其飞行速度为15km/min.(Ⅰ) 当无人侦察机在CD 上飞行t 分钟至点E 时,试用t 和θ表示无人侦察机到O 点的距离OE ;(Ⅱ)若无人侦察机在C 点处雷达就开始开机,且θ=,则雷达是否能测控到无人侦察机?请说明理由.【考点】解三角形的实际应用. 【分析】(I )在△OCE 中,CE=15t ,使用余弦定理表示出OE ;(II )令f (t )=OE 2﹣r 2,通过导数判断f (t )的单调性计算f (t )的最小值,判断OE 与测控半径r 的大小关系. 【解答】解:(I )在△OCE 中,CE=15t ,OC=90,由余弦定理得OE 2=OC 2+CE 2﹣2OC •CEcos θ=8100+225t 2﹣2700tcos θ. ∴OE=.(II )令f (t )=OE 2﹣r 2=225t 2﹣1350t +8100﹣9t 3,令r=3t =81,解得t=9.∴0≤t ≤9 ∴f ′(t )=﹣27t 2+450t ﹣1350=﹣27(t ﹣)2+1875﹣1350<0.∴f (t )在[0,9]上是减函数.f (9)=225×92﹣1350×9+8100﹣9×93>0. ∴当0≤t ≤9时,f (t )>0,即OE >r . ∴雷达不能测控到无人侦察机.19.已知数列{a n }满足.数列{a n }前n 项和为S n .(Ⅰ) 求数列{a n }的通项公式;(Ⅱ)若a m a m +1=a m +2,求正整数m 的值; (Ⅲ)是否存在正整数m ,使得恰好为数列{a n }中的一项?若存在,求出所有满足条件的m 值,若不存在,说明理由. 【考点】数列的求和;数列递推式.【分析】(Ⅰ)化简可得数列{a n }的奇数项构成以1为首项,2为公差的等差数列,数列{a n }的偶数项构成以2为首项,3为公比的等比数列,从而写出通项公式;(Ⅱ)分类讨论即方程的解;=3m﹣1﹣1+m2,从而可得(Ⅲ)化简S2m=1+2+3+6+…+2m﹣1+2•3m﹣1=3m﹣1+m2,S2m﹣1=1+,从而讨论求值.【解答】解:(Ⅰ)∵,∴数列{a n}的奇数项构成以1为首项,2为公差的等差数列,数列{a n}的偶数项构成以2为首项,3为公比的等比数列,故a n=;=m•2•m﹣1=m+2,(Ⅱ)若m为奇数,则a m a m+1无解;=(m+1)2•m﹣2=2•m,若m为偶数,则a m a m+1即=2,解得,m=2;综上所述,m=2;(Ⅲ)由题意知,S2m=1+2+3+6+…+2m﹣1+2•3m﹣1=(1+3+5+…+2m﹣1)+(2+6+18+…+2•3m﹣1)=•m+=3m﹣1+m2,=1+2+3+6+…+2m﹣1S2m﹣1=(1+3+5+…+2m﹣1)+(2+6+18+…+2•3m﹣2)=•m+﹣2•3m﹣1=3m﹣1﹣1+m2,故==1+,若m=1,则=3=a3,若=1时,即m=2时,=2=a2,所有满足条件的m值为1,2.20.已知函数f(x)=xlnx﹣ax2+a(a∈R),其导函数为f′(x).(Ⅰ)求函数g(x)=f′(x)+(2a﹣1)x的极值;(Ⅱ)当x>1时,关于x的不等式f(x)<0恒成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(Ⅱ)求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而求出满足条件的a的范围即可.【解答】解:(Ⅰ)由题知x>0,f'(x)=lnx﹣2ax+1,则g(x)=f'(x)+2a(x﹣1)=lnx﹣x+1,,当0<x<1时,,g(x)为增函数;当x>1时,,g(x)为减函数.所以当x=1时,g(x)有极大值g(1)=0,g(x)无极小值.(Ⅱ)由题意,f'(x)=lnx﹣2ax+1,(ⅰ)当a≤0时,f'(x)=lnx﹣2ax+1>0在x>1时恒成立,则f(x)在(1,+∞)上单调递增,所以f(x)>f(1)=0在(1,+∞)上恒成立,与已知矛盾,故a≤0不符合题意.(ⅱ)当a>0时,令φ(x)=f'(x)=lnx﹣2ax+1,则,且.①当2a≥1,即时,,于是φ(x)在x∈(1,+∞)上单调递减,所以φ(x)<φ(1)=1﹣2a≤0,即f'(x)<0在x∈(1,+∞)上成立.则f(x)在x∈(1,+∞)上单调递减,所以f(x)<f(1)=0在x∈(1,+∞)上成立,符合题意.②当0<2a<1,即时,>1,,若,则φ'(x)>0,φ(x)在上单调递增;若,则φ'(x)<0,φ(x)在上单调递减.又φ(1)=1﹣2a>0,所以φ(x)>0在上恒成立,即f'(x)>0在上恒成立,所以f(x)在上单调递增,则f(x)>f(1)=0在上恒成立,所以不符合题意.综上所述,a的取值范围.三.附加题部分【选做题】(本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.)A.[选修4-1几何证明选讲](本小题满分10分)21.若AB为定圆O一条弦(非直径),AB=4,点N在线段AB上移动,∠ONF=90°,NF与圆O相交于点F,求NF的最大值.【考点】与圆有关的比例线段.【分析】由NF=,线段OF的长为定值,得到需求解线段ON长度的最小值,由此能求出结果.【解答】解:∵ON⊥NF,∴NF=,∵线段OF的长为定值,即需求解线段ON长度的最小值,弦中点到圆心的距离最短,此时N为BE的中点,点F与点B或E重合,∴|NF|max=|BE|=2.B.[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵,若矩阵A属于特征值6的一个特征向量为=,属于特征值1的一个特征向量为=.求A的逆矩阵.【考点】特征向量的意义.【分析】根据矩阵特征值和特征向量的性质代入列方程组,求得a、b、c和d的值,求得矩阵A,丨A丨及A*,由A﹣1=×A*,即可求得A﹣1.【解答】解:矩阵A属于特征值6的一个特征向量为=,∴=6,即=,属于特征值1的一个特征向量为=.∴=,=,∴,解得:,矩阵A=,丨A丨==6,A*=,A﹣1=×A*=,∴A﹣1=.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.过点P(﹣3,0)且倾斜角为30°的直线和曲线ρ2cos2θ=4相交于A、B两点.求线段AB 的长.【考点】简单曲线的极坐标方程.【分析】过点P(﹣3,0)且倾斜角为30°的直线的参数方程为:(t为参数).曲线ρ2cos2θ=4即ρ2(cos2α﹣sin2α)=4,把y=ρsinθ,x=ρcosθ代入化为直角坐标方程.把直线参数方程代入可得:t2﹣6t+10=0,利用|AB|=|t1﹣t2|=即可得出.【解答】解:过点P(﹣3,0)且倾斜角为30°的直线的参数方程为:(t为参数),曲线ρ2cos2θ=4即ρ2(cos2α﹣sin2α)=4化为x2﹣y2=4,把直线参数方程代入可得:t2﹣6t+10=0,∴t1+t2=6,t1t2=10.∴|AB|=|t1﹣t2|===.D.[选修4-5:不等式选讲](本小题满分0分)24.设x,y,z∈R+,且x+y+z=1,求证:.【考点】不等式的证明.【分析】由x,y,z∈R+,且x+y+z=1,可得+≥2=2x,同理可得+≥2y, +≥2z,累加即可得证.【解答】证明:由x,y,z∈R+,且x+y+z=1,可得+≥2=2x,同理可得+≥2y,+≥2z,三式相加,可得+++x+y+z≥2(x+y+z),即为++≥x+y+z,则++≥1成立.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.一个袋中有若干个红球与白球,一次试验为从中摸出一个球并放回袋中,摸出红球概率为p,摸出白球概率为q,摸出红球加1分,摸出白球减1分,现记“n次试验总得分为S n”.(Ⅰ)当时,记ξ=|S3|,求ξ的分布列及数学期望;(Ⅱ)当时,求S8=2且S i≥0(i=1,2,3,4)的概率.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(Ⅰ)当时,ξ=|S3|的可能取值为1,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.(Ⅱ)由题意前8次试验5次摸到红球,3次摸到白球,并且满足下列条件:若第一次和第三次摸到红球,其余六次可任意有3次摸到红球,另3次摸到白球;若第一次和第二次摸到红球,第二次摸到白球,则后五次可任意三次摸到红球,另两次摸到白球.由此能求出S8=2且S i≥0(i=1,2,3,4)的概率.【解答】解:(Ⅰ)当时,ξ=|S3|的可能取值为1,3,P(ξ=1)=+=,P(ξ=3)==,∴ξ的分布列为:ξ 1 3PEξ==.(Ⅱ)∵,S8=2且S i≥0(i=1,2,3,4),∴前8次试验5次摸到红球,3次摸到白球,并且满足下列条件:若第一次和第三次摸到红球,其余六次可任意有3次摸到红球,另3次摸到白球,若第一次和第二次摸到红球,第二次摸到白球,则后五次可任意三次摸到红球,另两次摸到白球,∴S8=2且S i≥0(i=1,2,3,4)的概率:p=()•()5•()3=.26.数列{a n}各项均为正数,,且对任意的n∈N*,有.(Ⅰ)求证:;(Ⅱ)若,是否存在n∈N*,使得a n>1,若存在,试求出n的最小值,若不存在,请说明理由.【考点】数列递推式.【分析】(1)把已知数列递推式取倒数,可得,然后利用累加法证得答案;=a n+a n2>a n,然后利用放缩法得a1<a2<…a2018(2)把代入已知递推式,得a n+1<1<a2018<a2019<…,从而说明存在n∈N*,使得a n>1,且n的最小值为2018.【解答】(1)证明:由,得,即,∴,,…,累加得:,即,∵a n>0,∴;∴数列a n单调递增,=a n+a n2>a n,(2)解:当时,a n+1得,=a n+a n2,得由a n+1,∴,∵a i>0(i=1,2,…,2018),∴,则a2018<1;又,∴×2018=1.即a2018>1.即数列{a n}满足a1<a2<…a2018<1<a2018<a2019<…,综上所述,存在n∈N*,使得a n>1,且n的最小值为2018.2018年10月17日。

(江苏专版)2018年高考数学二轮复习6个解答题专项强化练(三)解析几何

6个解答题专项强化练(三) 解析几何1.已知圆M :x 2+y 2-2x +a =0.(1)若a =-8,过点P (4,5)作圆M 的切线,求该切线方程;(2)若AB 为圆M 的任意一条直径,且OA ―→·OB ―→=-6(其中O 为坐标原点),求圆M 的半径.解:(1)若a =-8,则圆M 的标准方程为(x -1)2+y 2=9,圆心M (1,0),半径为3. 若切线斜率不存在,圆心M 到直线x =4的距离为3,所以直线x =4为圆M 的一条切线; 若切线斜率存在,设切线方程为y -5=k (x -4),即kx -y -4k +5=0,则圆心到直线的距离为|k -4k +5|k 2+1=3,解得k =815,即切线方程为8x -15y +43=0.所以切线方程为x =4或8x -15y +43=0.(2)圆M 的方程可化为(x -1)2+y 2=1-a ,圆心M (1,0),则OM =1,半径r =1-a (a <1). 因为AB 为圆M 的任意一条直径,所以MA ―→=-MB ―→,且|MA ―→|=|MB ―→|=r ,则OA ―→·OB ―→=(OM ―→+MA ―→)·(OM ―→+MB ―→)=(OM ―→-MB ―→)·(OM ―→+MB ―→)=OM ―→2-MB ―→2=1-r 2,又因为OA ―→·OB ―→=-6,解得r =7,所以圆M 的半径为7.2.如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-1,0),且经过点⎝ ⎛⎭⎪⎫1,32. (1)求椭圆的标准方程;(2)已知椭圆的弦AB 过点F ,且与x 轴不垂直.若D 为x 轴上的一点,DA =DB ,求AB DF的值.解:(1)法一:由题意,得⎩⎪⎨⎪⎧c =1,1a 2+94b 2=1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=3.所以椭圆的标准方程为x 24+y 23=1.法二:由题意,知2a =+2+⎝ ⎛⎭⎪⎫322+-2+⎝ ⎛⎭⎪⎫322=4,所以a =2. 又c =1,a 2=b 2+c 2,所以b =3,所以椭圆的标准方程为x 24+y 23=1.(2)法一:设直线AB 的方程为y =k (x +1). ①当k =0时,AB =2a =4,FD =FO =1,所以AB DF=4;②当k ≠0时,设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),把直线AB 的方程代入椭圆方程,整理得(3+4k 2)x 2+8k 2x +4k 2-12=0,所以x 1+x 2=-8k 23+4k 2,x 1·x 2=4k 2-123+4k 2,所以x 0=-4k23+4k 2,所以y 0=k (x 0+1)=3k3+4k2, 所以AB 的垂直平分线方程为y -3k 3+4k 2=-1k ⎝ ⎛⎭⎪⎫x +4k 23+4k 2. 因为DA =DB ,所以点D 为AB 的垂直平分线与x 轴的交点,所以D ⎝ ⎛⎭⎪⎫-k 23+4k 2,0,所以DF =-k 23+4k 2+1=3+3k23+4k 2.又因为AB =1+k 2|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=12+12k23+4k2,所以AB DF=4.综上,得AB DF的值为4.法二:①若直线AB 与x 轴重合,则AB DF=4; ②若直线AB 不与x 轴重合,设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧x 214+y 213=1,x 224+y 223=1,两式相减得x 21-x 224+y 21-y 223=0,所以x 1-x 2x 04+y 1-y 2y 03=0,所以直线AB 的斜率为y 1-y 2x 1-x 2=-3x 04y 0,所以直线AB 的垂直平分线方程为y -y 0=4y 03x 0(x -x 0).因为DA =DB ,所以点D 为AB 的垂直平分线与x 轴的交点,所以D ⎝ ⎛⎭⎪⎫x 04,0,所以DF =x 04+1.因为椭圆的左准线的方程为x =-4,离心率为12,由AFx 1+4=12,得AF =12(x 1+4), 同理BF =12(x 2+4).所以AB =AF +BF =12(x 1+x 2)+4=x 0+4,所以AB DF=4. 综上,得AB DF的值为4.3.如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和上顶点分别为A ,B ,M 为线段AB 的中点,且OM ―→·AB ―→=-32b 2.(1)求椭圆的离心率;(2)若a =2,四边形ABCD 内接于椭圆,AB ∥DC .记直线AD ,BC 的斜率分别为k 1,k 2,求证:k 1k 2为定值.解:(1)由题意,A (a,0),B (0,b ),由M 为线段AB 的中点得M ⎝ ⎛⎭⎪⎫a 2,b2. 所以OM ―→=⎝ ⎛⎭⎪⎫a 2,b 2,AB ―→=(-a ,b ).因为OM ―→·AB ―→=-32b 2,所以⎝ ⎛⎭⎪⎫a 2,b 2·(-a ,b )=-a 22+b 22=-32b 2, 整理得a 2=4b 2,即a =2b .因为a 2=b 2+c 2,所以3a 2=4c 2,即3a =2c . 所以椭圆的离心率e =c a =32. (2)证明:法一:由a =2得b =1,故椭圆方程为x 24+y 2=1.从而A (2,0),B (0,1),直线AB 的斜率为-12.因为AB ∥DC ,故可设DC 的方程为y =-12x +m ,D (x 1,y 1),C (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =-12x +m ,x24+y 2=1,消去y ,得x 2-2mx +2m 2-2=0,所以x 1+x 2=2m ,从而x 1=2m -x 2. 直线AD 的斜率k 1=y 1x 1-2=-12x 1+m x 1-2,直线BC 的斜率k 2=y 2-1x 2=-12x 2+m -1x 2,所以k 1k 2=-12x 1+m x 1-2·-12x 2+m -1x 2=14x 1x 2-12m -x 1-12mx 2+m m -x 1-x 2=14x 1x 2-12m x 1+x 2+12x 1+m m -x 1x 2-2x 2=14x 1x 2-12m ·2m +12m -x 2+m m -x 1x 2-2x 2=14x 1x 2-12x 2x 1x 2-2x 2=14, 即k 1k 2为定值14.法二:由a =2得b =1,故椭圆方程为x 24+y 2=1.从而A (2,0),B (0,1),直线AB 的斜率为-12.设C (x 0,y 0),则x 204+y 20=1.因为AB ∥CD ,故CD 的方程为y =-12(x -x 0)+y 0.联立方程⎩⎪⎨⎪⎧y =-12x -x 0+y 0,x24+y 2=1,消去y ,得x 2-(x 0+2y 0)x +2x 0y 0=0,解得x =x 0或x =2y 0. 所以点D 的坐标为⎝ ⎛⎭⎪⎫2y 0,12x 0.所以k 1k 2=12x 02y 0-2·y 0-1x 0=14,即k 1k 2为定值14.4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-1,0),左准线方程为x =-2.(1)求椭圆C 的标准方程;(2)已知直线l 交椭圆C 于A ,B 两点.①若直线l 经过椭圆C 的左焦点F ,交y 轴于点P ,且满足PA ―→=λAF ―→,PB ―→=μBF ―→.求证:λ+μ为定值;②若A ,B 两点满足OA ⊥OB (O 为坐标原点),求△AOB 面积的取值范围.解:(1)由题设知c =1,-a 2c=-2,解得a 2=2,b 2=1,∴椭圆C 的标准方程为x 22+y 2=1.(2)①证明:由题设知直线l 的斜率存在,设直线l 的方程为y =k (x +1),则P (0,k ). 设A (x 1,y 1),B (x 2,y 2),把直线l 的方程代入椭圆的方程得x 2+2k 2(x +1)2=2, 整理得(1+2k 2)x 2+4k 2x +2k 2-2=0, ∴x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k2.由PA ―→=λAF ―→,PB ―→=μBF ―→知,λ=-x 11+x 1,μ=-x 21+x 2,∴λ+μ=-x 1+x 2+2x 1x 21+x 1+x 2+x 1x 2=--4k 21+2k 2+4k 2-41+2k 21+-4k 21+2k 2+2k 2-21+2k 2=--4-1=-4(定值).②当直线OA ,OB 分别与坐标轴重合时,易知△AOB 的面积S =22, 当直线OA ,OB 的斜率均存在且不为零时,设OA :y =kx ,OB :y =-1kx ,A (x 1,y 1),B (x 2,y 2),将y =kx 代入椭圆C 得到x 2+2k 2x 2=2,∴x 21=22k 2+1,y 21=2k 22k 2+1,同理x 22=2k 22+k 2,y 22=22+k2,故△AOB 的面积S =OA ·OB2=k 2+2k 2+k 2+.令t =k 2+1∈(1,+∞), 故S =t 2t -t +=12+1t -1t2. 再令u =1t∈(0,1),则S =1-u 2+u +2=1-⎝ ⎛⎭⎪⎫u -122+94∈⎣⎢⎡⎭⎪⎫23,22.综上所述,S ∈⎣⎢⎡⎦⎥⎤23,22.5.如图,在平面直角坐标系xOy 中,已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B ,过右焦点F 的直线l 与椭圆C 交于P ,Q 两点(点P 在x 轴上方).(1)若QF =2FP ,求直线l 的方程;(2)设直线AP ,BQ 的斜率分别为k 1,k 2.是否存在常数λ,使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由.解:(1)因为a 2=4,b 2=3,所以c =a 2-b 2=1,所以F 的坐标为(1,0),设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为x =my +1, 代入椭圆方程,消去x ,得(4+3m 2)y 2+6my -9=0, 则y 1=-3m +61+m 24+3m 2,y 2=-3m -61+m 24+3m 2. 若QF =2FP ,则-y 2=2y 1,即y 2+2y 1=0, 所以-3m -61+m 24+3m 2+2×-3m +61+m24+3m 2=0, 解得m =255,故直线l 的方程为5x -2y -5=0.(2)由(1)知,y 1+y 2=-6m 4+3m 2,y 1y 2=-94+3m 2,所以my 1y 2=-9m 4+3m 2=32(y 1+y 2),所以k 1k 2=y 1x 1+2·x 2-2y 2=y 1my 2-y 2my 1+=32y 1+y 2-y 132y 1+y 2+3y 2=13, 故存在常数λ=13,使得k 1=13k 2.6.如图,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,其离心率e =12,左准线方程为x =-8.(1)求椭圆的方程;(2)过F 1的直线交椭圆于A ,B 两点,I 1,I 2分别为△F 1AF 2,△F 1BF 2的内心. ①求四边形F 1I 1F 2I 2与△AF 2B 的面积比;②是否存在定点C ,使CA ―→·CB ―→为常数?若存在,求出点C 的坐标;若不存在,说明理由.解:(1)由题意⎩⎪⎨⎪⎧c a =12,a2c =8,解得a =4,c =2,故b =23,所以椭圆的方程为x 216+y 212=1.(2)①设△F 1AF 2的内切圆半径为r ,则S △F 1I 1F 2=12·F 1F 2·r =12·2c ·r =2r ,S △F 1AF 2=12·(AF 1+AF 2+F 1F 2)·r =12·(2a +2c )·r =6r ,∴S △F 1I 1F 2∶S △F 1AF 2=1∶3, 同理S △F 1I 2F 2∶S △F 1BF 2=1∶3, ∴S 四边形F 1I 1F 2I 2∶S △AF 2B =1∶3.②假设存在定点C (s ,t ),使得CA ―→·CB ―→为常数.若直线AB 存在斜率,设AB 的方程为y =k (x +2),A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =k x +,x 216+y 212=1,消去y ,得(3+4k 2)x 2+16k 2x +16k 2-48=0,由此得x 1+x 2=-16k 23+4k 2,x 1x 2=16k 2-483+4k 2,∴CA ―→·CB ―→=(x 1-s ,y 1-t )·(x 2-s ,y 2-t ) =(x 1-s )(x 2-s )+(y 1-t )(y 2-t )=(x 1-s )(x 2-s )+[k (x 1+2)-t ][k (x 2+2)-t ] =(1+k 2)x 1x 2+(2k 2-tk -s )(x 1+x 2)+s 2+t 2+4k 2-4tk =1+k216k 2-483+4k 2+2k 2-tk -s -16k23+4k2+s 2+t 2+4k 2-4tk =-12tk -12s -333+4k+s 2+t 2+4s -5. ∵与k 无关,∴⎩⎪⎨⎪⎧-12t =0,-12s -33=0,即⎩⎪⎨⎪⎧s =-114,t =0,此时CA ―→·CB ―→=-13516;若直线AB 不存在斜率,则A 与B 的坐标为(-2,±3),CA ―→·CB ―→=(s +2,t -3)·(s +2,t +3)=(s +2)2+t 2-9,将⎩⎪⎨⎪⎧s =-114,t =0代入,此时CA ―→·CB ―→=-13516也成立.综上所述,存在定点C ⎝ ⎛⎭⎪⎫-114,0,使得CA ―→·CB ―→为常数.。

2018年高考数学江苏专版二轮专题复习附加题高分练全套含解析

2018年高考数学江苏专版二轮专题复习附加题高分练1.矩阵与变换1.(2017²常州期末)已知矩阵A =⎣⎡⎦⎤2 13 2,列向量X =⎣⎡⎦⎤x y ,B =⎣⎡⎦⎤47,若AX =B ,直接写出A -1,并求出X . 解 由A =⎣⎡⎦⎤2 13 2,得到A -1=⎣⎡⎦⎤ 2 -1-3 2.由AX =B ,得到X =A -1B =⎣⎡⎦⎤ 2 -1-3 2⎣⎡⎦⎤47=⎣⎡⎦⎤12.也可由AX =B 得到⎣⎡⎦⎤2 13 2⎣⎡⎦⎤x y =⎣⎡⎦⎤47,即⎩⎪⎨⎪⎧2x +y =4,3x +2y =7,解得⎩⎪⎨⎪⎧x =1,y =2,所以X =⎣⎡⎦⎤12.2.(2017²江苏淮阴中学调研)已知矩阵A =⎣⎡⎦⎤3 3c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎡⎦⎤11,属于特征值1的一个特征向量α2=⎣⎡⎦⎤ 3-2.求矩阵A ,并写出A 的逆矩阵.解 由矩阵A 属于特征值6的一个特征向量α1=⎣⎡⎦⎤11可得,⎣⎡⎦⎤33cd ⎣⎡⎦⎤11=6⎣⎡⎦⎤11,即c +d =6;由矩阵A 属于特征值1的一个特征向量α2=⎣⎡⎦⎤ 3-2,可得⎣⎡⎦⎤3 3c d ⎣⎡⎦⎤ 3-2=⎣⎡⎦⎤3-2,即3c -2d =-2,解得⎩⎪⎨⎪⎧c =2,d =4.即A =⎣⎡⎦⎤3 32 4,A 的逆矩阵是⎣⎢⎡⎦⎥⎤23 -12-13 123.(2017²江苏建湖中学月考)曲线x 2+4xy +2y 2=1在二阶矩阵M =⎣⎡⎦⎤1 a b 1的作用下变换为曲线x 2-2y 2=1. (1)求实数a ,b 的值; (2)求M 的逆矩阵M -1.解 (1)设P(x ,y)为曲线x 2-2y 2=1上任意一点,P ′(x ′,y ′)为曲线x 2+4xy +2y 2=1上与P 对应的点,则⎣⎡⎦⎤1 a b 1⎣⎡⎦⎤x ′y ′=⎣⎡⎦⎤x y ,即⎩⎪⎨⎪⎧x =x ′+ay ′,y =bx ′+y ′,代入x 2-2y 2=1得(x ′+ay ′)2-2(bx ′+y ′)2=1得(1-2b 2)x ′2+(2a -4b)x ′y ′+(a 2-2)y ′2=1,及方程x 2+4xy +2y 2=1,从而⎩⎪⎨⎪⎧1-2b 2=1,2a -4b =4,a 2-2=2,解得a =2,b =0. (2)因为M =⎪⎪⎪⎪1 20 1=1≠0,故M-1=⎣⎢⎡⎦⎥⎤11 -210111=⎣⎡⎦⎤1 -20 1. 4.已知曲线C :y 2=12x ,在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到曲线C 2,求曲线C 2的方程.解 设A =NM ,则A =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0, 设P(x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P(x ,y),则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤-2y ′ x ′, 即⎩⎪⎨⎪⎧x =-2y ′,y =x ′,∴⎩⎪⎨⎪⎧x ′=y ,y ′=-12x.又点P(x ′,y ′)在曲线C :y 2=12x 上,∴⎝ ⎛⎭⎪⎫-12x 2=12y ,即x 2=2y. 2.坐标系与参数方程1.(2017²南通一模)在极坐标系中,求直线θ=π4(ρ∈R )被曲线ρ=4sin θ所截得的弦长.解 方法一 在ρ=4sin θ中,令θ=π4,得ρ=4sin π4=22,即弦长为2 2.方法二 以极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系. 直线θ=π4(ρ∈R )的直角坐标方程为y =x ,①曲线ρ=4sin θ的直角坐标方程为x 2+y 2-4y =0.②由①②得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =2,y =2,所以直线θ=π4(ρ∈R )被曲线ρ=4sin θ所截得的弦长为(2-0)2+(2-0)2=2 2.2.(2017²江苏六市联考)平面直角坐标系xOy 中,已知直线⎩⎪⎨⎪⎧x =-32+22l ,y =22l (l 为参数)与曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)相交于A ,B 两点,求线段AB 的长.解 直线的普通方程为2x -2y +3=0,曲线的普通方程为y 2=8x.解方程组⎩⎪⎨⎪⎧2x -2y +3=0,y 2=8x ,得⎩⎪⎨⎪⎧x =12,y =2或⎩⎪⎨⎪⎧x =92,y =6.取A ⎝ ⎛⎭⎪⎫12,2,B ⎝ ⎛⎭⎪⎫92,6,得AB =4 2.3.(2017²江苏滨海中学质检)已知直线的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=22,圆M 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =-2+2sin θ,(其中θ为参数).(1)将直线的极坐标方程化为直角坐标方程; (2)求圆M 上的点到直线的距离的最小值. 解 (1)极点为直角坐标原点O ,ρsin ⎝ ⎛⎭⎪⎫θ+π4=ρ⎝⎛⎭⎪⎫22sin θ+22cos θ=22,∴ρsin θ+ρcos θ=1,其直角坐标方程为x +y -1=0.(2)将圆的参数方程化为普通方程为x 2+(y +2)2=4,圆心为M(0,-2), ∴点M 到直线的距离为d =|0-2-1|2=32=322,∴圆上的点到直线距离的最小值为32-42.4.(2017²常州期末)在平面直角坐标系中,以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.已知圆ρ=4sin ⎝ ⎛⎭⎪⎫θ+π6被射线θ=θ0⎝ ⎛⎭⎪⎫ρ≥0,θ0为常数,且θ0∈⎝⎛⎭⎪⎫0,π2所截得的弦长为23,求θ0的值.解 圆ρ=4sin ⎝ ⎛⎭⎪⎫θ+π6的直角坐标方程为(x -1)2+(y -3)2=4,射线θ=θ0的直角坐标方程可以设为y =kx(x ≥0,k >0).圆心(1,3)到直线y =kx 的距离d =|k -3|1+k 2. 根据题意,得24-(k -3)21+k 2=23,解得k =33. 即tan θ0=33,又θ0∈⎝⎛⎭⎪⎫0,π2,所以θ0=π6.3.曲线与方程、抛物线1.(2017²江苏南通天星湖中学质检)已知点A(1,2)在抛物线F :y 2=2px 上.(1)若△ABC 的三个顶点都在抛物线F 上,记三边AB ,BC ,CA 所在直线的斜率分别为k 1,k 2,k 3, 求1k 1-1k 2+1k 3的值;(2)若四边形ABCD 的四个顶点都在抛物线F 上,记四边AB ,BC ,CD ,DA 所在直线的斜率分别为k 1,k 2,k 3,k 4,求1k 1-1k 2+1k 3-1k 4的值.解 (1)由点A(1,2)在抛物线F 上,得p =2,∴抛物线F :y 2=4x ,设B ⎝ ⎛⎭⎪⎫y 214,y 1,C ⎝ ⎛⎭⎪⎫y 224,y 2,∴1k 1-1k 2+1k 3=y 214-1y 1-2-y 224-y 214y 2-y 1+1-y 2242-y 2=y 1+24-y 2+y 14+2+y 24=1. (2)另设D ⎝ ⎛⎭⎪⎫y 234,y 3,则1k 1-1k 2+1k 3-1k 4=y 1+24-y 2+y 14+y 3+y 24-2+y 34=0.2.(2017²江苏赣榆中学月考)抛物线关于x 轴对称,它的顶点在坐标原点,点P(1,2),A(x 1,y 1),B(x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率. 解 (1)由已知条件,可设抛物线的方程为y 2=2px. ∵点P(1,2)在抛物线上, ∴22=2p ³1,得p =2,故所求抛物线的方程是y 2=4x ,准线方程是x =-1.(2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB , 则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1).∵PA 与PB 的斜率存在且倾斜角互补, ∴k PA =-k PB ,由A(x 1,y 1),B(x 2,y 2)在抛物线上,得 y 21=4x 1,① y 22=4x 2,② ∴y 1-214y 21-1=-y 2-214y 22-1, ∴y 1+2=-(y 2+2), ∴y 1+y 2=-4,由①-②得直线AB 的斜率k AB =y 2-y 1x 2-x 1=4y 1+y 2=-44=-1(x 1≠x 2).3.(2017²江苏常州中学质检)已知点A(-1,0),F(1,0),动点P 满足AP →²AF →=2||FP →. (1)求动点P 的轨迹C 的方程;(2)在直线l :y =2x +2上取一点Q ,过点Q 作轨迹C 的两条切线,切点分别为M ,N.问:是否存在点Q ,使得直线MN ∥l ?若存在,求出点Q 的坐标;若不存在,请说明理由. 解 (1)设P(x ,y),则AP →=(x +1,y),FP →=(x -1,y),AF →=(2,0), 由AP →²AF →=2|FP →|,得2(x +1)=2(x -1)2+y 2,化简得y 2=4x. 故动点P 的轨迹C 的方程为y 2=4x.(2)直线l 方程为y =2(x +1),设Q(x 0,y 0),M(x 1,y 1),N(x 2,y 2).设过点M 的切线方程为x -x 1=m(y -y 1),代入y 2=4x ,得y 2-4my +4my 1-y 21=0, 由Δ=16m 2-16my 1+4y 21=0,得m =y 12,所以过点M 的切线方程为y 1y =2(x +x 1),同理过点N 的切线方程为y 2y =2(x +x 2).所以直线MN 的方程为y 0y =2(x 0+x), 又MN ∥l ,所以2y 0=2,得y 0=1,而y 0=2(x 0+1),故点Q 的坐标为⎝ ⎛⎭⎪⎫-12,1. 4.(2017²江苏宝应中学质检)如图,已知抛物线C :y 2=4x 的焦点为F ,过F 的直线l 与抛物线C 交于A(x 1,y 1)(y 1>0),B(x 2,y 2)两点,T 为抛物线的准线与x 轴的交点.(1)若TA →²TB →=1,求直线l 的斜率; (2)求∠ATF 的最大值.解 (1)因为抛物线y 2=4x 焦点为F(1,0),T(-1,0).当l ⊥x 轴时,A(1,2),B(1,-2),此时TA →²TB →=0,与TA →²TB →=1矛盾, 所以设直线l 的方程为y =k(x -1),代入y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, 则x 1+x 2=2k 2+4k2,x 1x 2=1,①所以y 21y 22=16x 1x 2=16,所以y 1y 2=-4,② 因为TA →²TB →=1,所以(x 1+1)(x 2+1)+y 1y 2=1, 将①②代入并整理得,k 2=4,所以k =±2.(2)因为y 1>0,所以tan ∠ATF =y 1x 1+1=y 1y 214+1=1y 14+1y 1≤1,当且仅当y 14=1y 1,即y 1=2时,取等号,所以∠ATF ≤π4,所以∠ATF 的最大值为π4.4.空间向量与立体几何1.(2017²苏锡常镇调研)如图,已知正四棱锥P -ABCD 中,PA =AB =2,点M ,N 分别在PA ,BD 上,且PM PA =BN BD =13.(1)求异面直线MN 与PC 所成角的大小; (2)求二面角N -PC -B 的余弦值.解 (1)设AC ,BD 交于点O ,在正四棱锥P -ABCD 中,OP ⊥平面ABCD ,又PA =AB =2,所以OP = 2.以O 为坐标原点,DA →,AB →,OP →方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系O -xyz ,如图.则A(1,-1,0),B(1,1,0),C(-1,1,0),D(-1,-1,0),P(0,0,2),AP →=(-1,1,2).故OM →=OA →+AM →=OA →+23AP →=⎝ ⎛⎭⎪⎫13,-13,223,ON →=13OB →=⎝ ⎛⎭⎪⎫13,13,0,所以MN →=⎝ ⎛⎭⎪⎫0,23,-223,PC →=(-1,1,-2),所以cos 〈MN →,PC →〉=MN →²PC →|MN →||PC →|=32,所以异面直线MN 与PC 所成角的大小为π6.(2)由(1)知PC →=(-1,1,-2),CB →=(2,0,0),NC →=⎝ ⎛⎭⎪⎫-43,23,0.设m =(x ,y ,z)是平面PCB 的法向量,则m ²PC →=0,m ²CB →=0,可得⎩⎨⎧-x +y -2z =0,x =0,令y =2,则z =1,即m =(0,2,1).设n =(x 1,y 1,z 1)是平面PCN 的法向量,则n ²PC →=0,n ²CN →=0,可得⎩⎨⎧-x 1+y 1-2z 1=0,-2x 1+y 1=0,令x 1=2,则y 1=4,z 1=2,即n =(2,4,2),所以cos 〈m ,n 〉=m²n |m||n|=523³22=53333,则二面角N -PC -B 的余弦值为53333.2.(2017²常州期末)如图,以正四棱锥V -ABCD 的底面中心O 为坐标原点建立空间直角坐标系O -xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点.正四棱锥的底面边长为2a ,高为h ,且有cos 〈BE →,DE →〉=-1549.(1)求ha的值;(2)求二面角B -VC -D 的余弦值.解 (1)根据条件,可得B(a ,a,0),C(-a ,a,0),D(-a ,-a,0),V(0,0,h),E ⎝ ⎛⎭⎪⎫-a 2,a 2,h 2,所以BE →=⎝ ⎛⎭⎪⎫-32a ,-a 2,h 2,DE →=⎝ ⎛⎭⎪⎫a 2,32a ,h 2,故cos 〈BE →,DE →〉=h 2-6a 2h 2+10a2.又cos 〈BE →,DE →〉=-1549,则h 2-6a 2h 2+10a 2=-1549, 解得h a =32.(2)由h a =32,得BE →=⎝ ⎛⎭⎪⎫-32a ,-a 2,34a ,DE →=⎝ ⎛⎭⎪⎫a 2,32a ,34a ,且容易得到,CB →=(2a,0,0),DC →=(0,2a,0). 设平面BVC 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1²BE →=0,n 1²CB →=0.即⎩⎪⎨⎪⎧-32ax 1-a 2y 1+34az 1=0,2ax 1=0,则⎩⎪⎨⎪⎧x 1=0,2y 1=3z 1,取y 1=3,z 1=2,则n 1=(0,3,2).同理可得平面DVC 的一个法向量为n 2=(-3,0,2). cos 〈n 1,n 2〉=n 1²n 2|n 1||n 2|=0³(-3)+3³0+2³213³13=413,结合图形,可以知道二面角B -VC -D 的余弦值为-413.3.(2017²南京学情调研)如图,在底面为正方形的四棱锥P -ABCD 中,侧棱PD ⊥底面ABCD ,PD =DC ,E 是线段PC 的中点.(1)求异面直线AP 与BE 所成角的大小;(2)若点F 在线段PB 上,且使得二面角F -DE -B 的正弦值为33,求PFPB的值.解 (1)在四棱锥P -ABCD 中,底面ABCD 为正方形,侧棱PD ⊥底面ABCD ,所以DA ,DC ,DP 两两垂直,故以{DA →,DC →,DP →}为正交基底,建立空间直角坐标系D -xyz.因为PD =DC ,所以DA =DC =DP , 不妨设DA =DC =DP =2,则D(0,0,0),A(2,0,0),C(0,2,0),P(0,0,2),B(2,2,0). 因为E 是PC 的中点,所以E(0,1,1), 所以AP →=(-2,0,2),BE →=(-2,-1,1), 所以cos 〈AP →,BE →〉=AP →²BE →|AP →||BE →|=32,从而〈AP →,BE →〉=π6.因此异面直线AP 与BE 所成角的大小为π6.(2)由(1)可知,DE →=(0,1,1),DB →=(2,2,0),PB →=(2,2,-2). 设PF →=λPB →,则PF →=(2λ,2λ,-2λ), 从而DF →=DP →+PF →=(2λ,2λ,2-2λ). 设m =(x 1,y 1,z 1)为平面DEF 的法向量, 则⎩⎪⎨⎪⎧m ²DF →=0,m ²DE →=0,即⎩⎪⎨⎪⎧λx 1+λy 1+(1-λ)z 1=0,y 1+z 1=0,取z 1=λ,则y 1=-λ,x 1=2λ-1.故m =(2λ-1,-λ,λ)为平面DEF 的一个法向量, 设n =(x 2,y 2,z 2)为平面DEB 的法向量.则⎩⎪⎨⎪⎧n ²DB →=0,n ²DE →=0,即⎩⎪⎨⎪⎧2x 2+2y 2=0,y 2+z 2=0,取x 2=1,则y 2=-1,z 2=1.所以n =(1,-1,1)为平面BDE 的一个法向量. 因为二面角F -DE -B 的余弦值的绝对值为63, 即|cos 〈m ,n 〉|=|m²n ||m||n|=|4λ-1|3²(2λ-1)2+2λ2=63, 化简得4λ2=1.因为点F 在线段PB 上,所以0≤λ≤1, 所以λ=12,即PF PB =12.4.(2017²苏北四市一模)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,∠ABC =∠BAD =90°,AD =AP =4,AB =BC =2,M 为PC 的中点. (1)求异面直线AP ,BM 所成角的余弦值;(2)点N 在线段AD 上,且AN =λ,若直线MN 与平面PBC 所成角的正弦值为45,求λ的值.解 (1)因为PA ⊥平面ABCD ,且AB ,AD ⊂平面ABCD ,所以PA ⊥AB ,PA ⊥AD. 又因为∠BAD =90°,所以PA ,AB ,AD 两两互相垂直.分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则由AD =2AB =2BC =4,PA =4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4). 又因为M 为PC 的中点,所以M(1,1,2). 所以BM →=(-1,1,2),AP →=(0,0,4), 所以cos 〈AP →,BM →〉=AP →²BM →|AP →||BM →|=0³(-1)+0³1+4³24³6=63,所以异面直线AP ,BM 所成角的余弦值为63. (2)因为AN =λ,所以N(0,λ,0)(0≤λ≤4),则MN →=(-1,λ-1,-2),BC →=(0,2,0),PB →=(2,0,-4).设平面PBC 的法向量为m =(x ,y ,z), 则⎩⎪⎨⎪⎧m ²BC →=0,m ²PB →=0,即⎩⎪⎨⎪⎧2y =0,2x -4z =0.令x =2,解得y =0,z =1,所以m =(2,0,1)是平面PBC 的一个法向量.因为直线MN 与平面PBC 所成角的正弦值为45,所以|cos 〈MN →,m 〉|=|MN →²m ||MN →||m |=|-2-2|5+(λ-1)2²5=45,解得λ=1∈[0,4],所以λ的值为1.5.离散型随机变量的概率分布1.(2017²南京、盐城一模)某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X ,求X 的概率分布与数学期望E(X). 解 (1)这两个班“在星期一不同时上综合实践课”的概率为P =1-33³3=23.(2)由题意得X ~B ⎝ ⎛⎭⎪⎫5,13,P(X =k)=C k 5⎝ ⎛⎭⎪⎫13k²⎝ ⎛⎭⎪⎫235-k ,k =0,1,2,3,4,5.所以X 的概率分布为所以X 的数学期望为E(X)=5³13=53.2.一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的A ,B ,C 三种商品有购买意向.已知该网民购买A 种商品的概率为34,购买B 种商品的概率为23,购买C 种商品的概率为12.假设该网民是否购买这三种商品相互独立. (1)求该网民至少购买2种商品的概率;(2)用随机变量η表示该网民购买商品的种数,求η的概率分布和数学期望. 解 (1)该网民恰好购买2种商品的概率为P(AB C )+P(A B C)+P(A BC)=34³23³12+34³13³12+14³23³12=1124;该网民恰好购买3种商品的概率为P(ABC)=34³23³12=14,所以P =1124+14=1724.故该网民至少购买2种商品的概率为1724.(2)随机变量η的可能取值为0,1,2,3,由(1)知,P(η=2)=1124,P(η=3)=14,而P(η=0)=P(A B C )=14³13³12=124,所以P(η=1)=1-P(η=0)-P(η=2)-P(η=3)=14.随机变量η的概率分布为所以随机变量η的数学期望E(η)=0³124+1³14+2³1124+3³14=2312.3.(2017²南京学情调研)甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜,投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为25,乙每次投篮命中的概率为23,且各次投篮互不影响.现由甲先投.(1)求甲获胜的概率;(2)求投篮结束时甲的投篮次数X 的概率分布与数学期望.解 (1)设甲第i 次投中获胜的事件为A 1(i =1,2,3),则A 1,A 2,A 3彼此互斥. 甲获胜的事件为A 1+A 2+A 3.P(A 1)=25,P(A 2)=35³13³25=225,P(A 3)=⎝ ⎛⎭⎪⎫352³⎝ ⎛⎭⎪⎫132³25=2125.所以P(A 1+A 2+A 3)=P(A 1)+P(A 2)+P(A 3)=25+225+2125=62125.(2)X 的所有可能取值为1,2,3. 则P(X =1)=25+35³23=45,P(X =2)=225+35³13³35³23=425,P(X =3)=⎝ ⎛⎭⎪⎫352³⎝ ⎛⎭⎪⎫132³1=125.即X 的概率分布为所以数学期望E(X)=1³45+2³425+3³125=3125.4.为了提高学生学习数学的兴趣,某校决定在每周的同一时间开设《数学史》、《生活中的数学》、《数学与哲学》、《数学建模》四门校本选修课程,甲、乙、丙三位同学每人均在四门校本课程中随机选一门进行学习,假设三人选择课程时互不影响,且每人选择每一课程都是等可能的.(1)求甲、乙、丙三人选择的课程互不相同的概率;(2)设X 为甲、乙、丙三人中选修《数学史》的人数,求X 的概率分布和数学期望E(X). 解 (1)甲、乙、丙三人从四门课程中各任选一门,共有43=64种不同的选法,记“甲、乙、丙三人选择的课程互不相同”为事件M ,事件M 共包含A 34=24个基本事件,则P(M)=2464=38,所以甲、乙、丙三人选择的课程互不相同的概率为38.(2)方法一 X 可能的取值为0,1,2,3. P(X =0)=3343=2764,P(X =1)=C 13³3243=2764,P(X =2)=C 23³343=964,P(X =3)=C 3343=164.所以X 的概率分布为所以E(X)=0³2764+1³2764+2³964+3³164=34.方法二 甲、乙、丙三人从四门课程中任选一门,可以看成三次独立重复试验,X 为甲、乙、丙三人中选修《数学史》的人数,则X ~B ⎝ ⎛⎭⎪⎫3,14,所以P(X =k)=C k 3⎝ ⎛⎭⎪⎫14k ⎝ ⎛⎭⎪⎫343-k,k =0,1,2,3,所以X 的概率分布为所以X 的数学期望E(X)=3³14=34.6.计数原理、二项式定理和数学归纳法1.已知等式(1+x)2n -1=(1+x)n -1(1+x)n.(1)求(1+x)2n -1的展开式中含x n的项的系数,并化简:C 0n -1C nn +C 1n -1C n -1n +…+C n -1n -1C 1n ;(2)证明:(C 1n )2+2(C 2n )2+…+n(C n n )2=nC n2n -1. (1)解 (1+x)2n -1的展开式中含x n 的项的系数为C n2n -1,由(1+x)n -1(1+x)n=(C 0n -1+C 1n -1x +…+C n -1n -1xn -1)(C 0n +C 1n x +…+C n n x n )可知,(1+x)n -1(1+x)n的展开式中含x n的项的系数为C 0n -1C nn +C 1n -1C n -1n +…+C n -1n -1C 1n . 所以C 0n -1C nn +C 1n -1C n -1n +…+C n -1n -1C 1n =C n2n -1. (2)证明 当k ∈N *时,kC kn =k²n !k !(n -k )!=n !(k -1)!(n -k )!=n²(n -1)!(k -1)!(n -k )!=nC k -1n -1,所以(C 1n)2+2(C 2n)2+…+n(C n n)2=∑k =1n[k(C k n )2]=k =1n (kC k n C kn )=k =1n (nC k -1n -1C kn )=n k =1n (C k -1n -1C kn )=n k =1n (C n -k n -1C kn ).由(1)知C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n =C n2n -1,即k =1n (C n -k n -1C k n )=C n2n -1,所以(C 1n )2+2(C 2n )2+…+n(C n n )2=nC n2n -1.2.(2017²江苏泰州中学调研)在平面直角坐标系xOy 中,点P(x 0,y 0)在曲线y =x 2(x >0)上.已知点A(0,-1),P n (x n0,y n0),n ∈N *.记直线AP n 的斜率为k n . (1)若k 1=2,求P 1的坐标; (2)若k 1为偶数,求证:k n 为偶数. (1)解 因为k 1=2,所以y 0+1x 0=x 20+1x 0=2,解得x 0=1,y 0=1,所以P 1的坐标为(1,1).(2)证明 方法一 设k 1=2p(p ∈N *),即y 0+1x 0=x 20+1x 0=2p.所以x 20-2px 0+1=0,所以x 0=p±p 2-1. 因为y 0=x 2,所以k n =y n0+1x n 0=x 2n0+1x n 0=x n 0+1x n 0,所以当x 0=p +p 2-1时,k n =(p +p 2-1)n+⎝ ⎛⎭⎪⎫1p +p 2-1n =(p +p 2-1)n +(p -p 2-1)n. 同理,当x 0=p -p 2-1时,k n =(p +p 2-1)n +(p -p 2-1)n.①当n =2m(m ∈N *)时,k n =2∑k =0mC 2k n pn -2k(p 2-1)k,所以k n 为偶数.②当n =2m +1(m ∈N )时,k n =2∑k =0mC 2k n pn -2k(p 2-1)k,所以k n 为偶数.综上,k n 为偶数.方法二 因为⎝ ⎛⎭⎪⎫x 0+1x 0⎝ ⎛⎭⎪⎫x n +10+1x n +10=x n +20+1x n +20+x n0+1x n 0,所以k n +2=k 1k n +1-k n .k 2=x 20+1x 20=⎝ ⎛⎭⎪⎫x 0+1x 02-2=k 21-2.设命题p(n):k n ,k n +1均为偶数.以下用数学归纳法证明“命题p(n)是真命题”.①因为k 1是偶数,所以k 2=k 21-2也是偶数.当n =1时,p(n)是真命题;②假设当n =m(m ∈N *)时,p(n)是真命题,即k m ,k m +1均为偶数,则k m +2=k 1k m +1-k m 也是偶数,即当n =m +1时,p(n)也是真命题.由①②可知,对n ∈N *,p(n)均是真命题,从而k n 是偶数.3.(2017²江苏扬州中学模拟)在数列{a n }中,a n =cos π3³2(n ∈N *)(1)试将a n +1表示为a n 的函数关系式; (2)若数列{b n }满足b n =1-2n²n!(n ∈N *),猜想a n 与b n 的大小关系,并证明你的结论. 解 (1)a n =cos π3³2n -2=cos 2π3³2n -1=2⎝⎛⎭⎪⎫cosπ3³2n -12-1, ∴a n =2a 2n +1-1, ∴a n +1=±a n +12, 又n ∈N *,n +1≥2,a n +1>0, ∴a n +1=a n +12. (2)当n =1时,a 1=-12,b 1=1-2=-1,∴a 1>b 1,当n =2时,a 2=12,b 2=1-12=12,∴a 2=b 2, 当n =3时,a 3=32,b 3=1-19=89,∴a 3<b 3, 猜想:当n ≥3时,a n <b n ,下面用数学归纳法证明. ①当n =3时,由上知,a 3<b 3,结论成立. ②假设当n =k ,k ≥3,n ∈N *时,a k <b k 成立, 即a k <1-2k²k!,则当n =k +1时,a k +1=a k +12<2-2k²k!2=1-1k²k!, b k +1=1-2(k +1)²(k +1)!,要证a k +1<b k +1,即证明⎝ ⎛⎭⎪⎫1-1k²k!2<⎝ ⎛⎭⎪⎫1-2(k +1)²(k +1)!2,即证明1-1k²k!<1-4(k +1)²(k +1)!+⎝ ⎛⎭⎪⎫2(k +1)²(k +1)!2,即证明1k²k!-4(k +1)²(k +1)!+⎝ ⎛⎭⎪⎫2(k +1)²(k +1)!2>0,即证明(k -1)2k (k +1)²(k +1)!+⎝ ⎛⎭⎪⎫2(k +1)²(k +1)!2>0,显然成立.∴n =k +1时,结论也成立.综合①②可知:当n ≥3时,a n <b n 成立.综上可得:当n =1时,a 1>b 1;当n =2时,a 2=b 2, 当n ≥3,n ∈N *时,a n <b n .4.已知f n (x)=C 0n x n -C 1n (x -1)n +…+(-1)k C k n (x -k)n +…+(-1)n C n n (x -n)n,其中x ∈R ,n ∈N *,k ∈N ,k ≤n.(1)试求f 1(x),f 2(x),f 3(x)的值;(2)试猜测f n (x)关于n 的表达式,并证明你的结论. 解 (1)f 1(x)=C 01x -C 11(x -1)=1,f 2(x)=C 02x 2-C 12(x -1)2+C 22(x -2)2=x 2-2(x -1)2+(x -2)2=2,f 3(x)=C 03x 3-C 13(x -1)3+C 23(x -2)3-C 33(x -3)3=x 3-3(x -1)3+3(x -2)3-(x -3)3=6. (2)猜测f n (x)=n !,n ∈N *. 以下用数学归纳法证明.①当n =1时,f 1(x)=1,等式成立. ②假设当n =m 时,等式成立,即 f m (x)=k =0m (-1)k C k m (x -k)m=m !.当n =m +1时,则f m +1(x)=k =0m +1(-1)k C k m +1²(x-k)m +1.因为C k m +1=C k m +C k -1m ,kC k m +1=(m +1)²C k -1m ,其中k =1,2,…,m , 且C 0m +1=C 0m ,C m +1m +1=C mm ,所以f m +1(x)=k =0m +1(-1)k C k m +1(x -k)m +1=x k =0m +1(-1)k C k m +1(x -k)m -k =0m +1(-1)k kC km +1(x -k)m=x k =0m (-1)k C k m(x -k)m+x ∑k =1m +1²(-1)k Ck -1m(x -k)m-(m +1)∑k =1m +1²(-1)k C k -1m (x -k)m=x²m!+(-x +m +1)k =0m (-1)k C km ²[(x-1)-k]m=x²m!+(-x +m +1)²m!=(m+1)²m!=(m+1)!.即n=m+1时,等式也成立.由①②可知,对n∈N*,均有f n(x)=n!.。

江苏省苏州市2018届高三调研测试(三)数学试题(解析版)

1.5【解析】分析:利用集合的包含关系,推出m是A的元素,求解即可.解析:集合,,若,可得,.故答案为:5点睛:对于含有字母的集合,在求出字母的值后,要注意检验集合是否满足互异性.点睛:复数的加法、减法、乘法运算可以类比多项式的运算,除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i的幂写成最简形式.3.22【解析】分析:由频率分布直方图先求出用电量落在区间内的频率,由此能求出用电量落在区间内的户数.解析:由频率分布直方图得:用电量落在区间内的频率为:1-(0.0024+0.0036+0.0024+0.0012)50=0.22,用电量落在区间内的户数为:1000.22=22.故答案为:22.点睛:明确频率分布直方图的意义,即图中的每一个小矩形的面积是数据落在该区间上的频率,所有小矩形的面积和为1.4.【解析】试题分析:从四个数中任取两个数共有六种可能,其中一个数是另一个的两倍的可能只有一种,所以其概率为,即概率是.考点:列举法、古典型概率公式及运用.5.7【解析】分析:直接利用程序框图的循环结构求出结果.解析:在执行循环前:k=1,S=1.执行第一次循环时: S=1,k=3.执行第二次循环时: S=3,k=5.执行第三次循环时:S=15,k=7.由于S>10,输出k=7.故答案为:7.点睛:(1)条件结构中条件的判断关键是明确条件结构的功能,然后根据“是”的分支成立的条件进行判断;(2)对条件结构,无论判断框中的条件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支.6.【解析】分析:离心率公式计算可得m,再由渐近线方程即可得到所求方程.渐近线方程为.故答案为:.点睛:区分双曲线中的a,b,c大小关系与椭圆中的a,b,c大小关系,在椭圆中,而在双曲线中.7.【解析】分析:先根据约束条件画出可行域,求出可行域顶点的坐标,再利用几何意义求面积即可.解析:画出可行域,如图所示:点睛:二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域.注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,则测试点常选取原点.8.-81【解析】分析:利用与的关系式求出的通项公式即可得到答案.解析:,当时,,当时,,即,是以首项为-3,公比为3的等比数列...故答案为:-81.点睛:强调与的关系.9.【解析】分析:由圆锥的几何特征,现用一半径为,面积为的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,圆锥的母线长等于扇形的半径,由此计算出圆锥的高,代入圆锥体积公式,即可求出答案.点睛:涉及弧长和扇形面积的计算时,可用的公式有角度表示和弧度表示两种,其中弧度表示的公式结构简单,易记好用,在使用前,应将圆心角用弧度表示.10.120°【解析】分析:先设与的夹角为,根据题意,易得,将其代入中易得,进而由数量积的运算,可得的值,从而可得答案.解析:设与的夹角为,,则,,.,。

2018年江苏省高考数学预测试题(二)含答案

年江苏高考预测试题(二)(对应学生用书第页)(限时:分钟)参考公式样本数据,,…,的方差=(-),其中=.棱柱的体积=,其中是棱柱的底面积,是高.棱锥的体积=,其中是棱锥的底面积,是高.数学Ⅰ试题一、填空题(本大题共小题,每小题分,共分.请把答案填写在题中横线上) .已知集合={--≤},集合={<≤},则∪=.{-≤≤}[由--≤,解得-≤≤.∴={-≤≤},又集合={<≤},∴∪={-≤≤}.].设复数满足(+)=-+(为虚数单位),则的模为.[=-=+-=+,则=+==.].表中是一个容量为的样本数据分组后的频率分布,若利用组中值近似计算本组数据的平均数,则的值为.[则=×(×+×+×+×)=.].若双曲线+=过点(-,),则该双曲线的虚轴长为.【导学号:】[∵双曲线+=过点(-,),∴+=,即=-,=-,则双曲线的标准方程为-=,则=,即双曲线的虚轴长=.].根据如下所示的伪代码,可知输出的结果是.[执行程序,有=;满足条件<,=,=;满足条件<,=,=;满足条件<,=,=,不满足条件<,输出的值为.].在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为.[设一、二等奖各用,表示,另张无奖用表示,甲、乙两人各抽取张的基本事件有,,,,,共个,其中两人都中奖的有,,共个,故所求的概率==.].已知函数=(ω+φ)(>,ω>,φ<π)的图象如图所示,则该函数的解析式是.图=[由图知=,=(ω+φ),∵点()在函数的图象上,∴φ=,解得φ=,∴利用五点作图法可得φ=.∵点在函数的图象上,∴=,∴-ω+=π,∈,解得ω=-,∈.∵ω>,∴当=时,ω=,∴=.].如图,在正三棱柱-中,为棱的中点.若=,=,则四棱锥-的体积为.图[取的中点,连接,则⊥,∴⊥平面,∵=,∴=,∵为棱的中点,=,∴=(+)×=,∴四棱锥-的体积为.].已知实数,满足(\\(+-≤,--≤,≥,))则的取值范围是.[作出不等式组对应的平面区域,的几何意义是区域内的点到定点(,-)的斜率,由图象知,的斜率最大,的斜率最小,此时最小值为,由(\\(=,+-=,))得(\\(=,=(),))即,此时的斜率==,即≤≤,故的取值范围是.].已知{},{}均为等比数列,其前项和分别为,,若对任意的∈*,总有=,则=.[设{},{}的公比分别为,′,∵=,∴=时,=.=时,=.=时,=.∴-′=′+′--+=,解得=,′=,∴==.].已知平行四边形中,∠=°,=,=,点是线段上的一个动点,则·的取值范围是.[以为坐标原点,以所在的直线为轴,建立如图所示的直角坐标系,作⊥,垂足为,∵∠=°,=,=,∴∠=°,∴=,=,∴,.∵点是线段上的一个动点,设点(),≤≤,∴=,=,∴·=+=-,∴当=时,有最小值,最小值为-.当=时,有最大值,最大值为,则·的取值范围为.].如图,已知椭圆+=(>>)上有一个点,它关于原点的对称点为,点为椭圆的右焦点,且满足⊥,当∠=时,椭圆的离心率为.图[设椭圆的左焦点为,连接,,由对称性及⊥可知,四边形是矩形,所以==,所以在△中,=,=,由椭圆定义得=,即====.].已知△三个内角,,的对应边分别为,,,且=,=.当·取得最大值时,的值为.【导学号:】+[∵=,∴=-,由正弦定理得)=)==,∴==+,∴·===+=++=+(()) ))+=+,∵+=,∴<<,∴当+=即=时,·取得最大值,此时,=-=,∴===×-×=,==×+×=.∴=)==+.].对于实数,,定义运算“”:=(\\(-,≤,-,>.))设()=(-),若关于的方程()-=(∈)恰有四个互不相等的实数根,则实数的取值范围是.(-)∪()[由题意得,()=(-)=(\\(-()+,≥,,()-,<,))画出函数()的大致图象如图所示.因为关于的方程()-=(∈),即()=±(∈)恰有四个互不相等的实数根,所以两直线=±(∈)与曲线=()共有四个不同的交点,则(\\(+>,<-<))或(\\(<+<,-<))或(\\(+=,-=,))得<<或-<<.]二、解答题(本大题共小题,共分.解答时应写出文字说明、证明过程或演算步骤.) .(本小题满分分)如图,在平面直角坐标系中,以轴正半轴为始边作锐角α,其终边与单位圆交于点.以为始边作锐角β,其终边与单位圆交于点,=.图()求β的值;()若点的横坐标为,求点的坐标.[解]()在△中,由余弦定理得:=+-·∠,所以,∠===,即β=.分()因为β=,β∈,∴β===.因为点的横坐标为,由三角函数定义可得,α=,因为α为锐角,所以α===.所以(α+β)=αβ-αβ=×-×=-,(α+β)=αβ+αβ=×+×=,即点.分.(本小题满分分)在平面四边形(图①)中,△与△均为直角三角形且有公共斜边,设=,∠=°,∠=°,将△沿折起,构成如图②所示的三棱锥′-.①②图()当′=时,求证:平面′⊥平面;()当′⊥时,求三棱锥′-的高.[解]()证明:当′=时,取的中点,连接′,,在△′,△中,=,则′==,∵′=,∴′+=′,即′⊥,由∠=°得△′为等腰直角三角形,∴′⊥,又∩=,,⊂平面,∴′⊥平面,∵′⊂平面′,∴平面′⊥平面分()由已知可求得=,′=′=,=,当′⊥时,由已知′⊥′,得′⊥平面′,∵′⊂平面′,∴′⊥′,由勾股定理,得′===,而△′中,=,′=,∴′+=′,∴′⊥.=××=.∴△′·′=××=.三棱锥′-的体积=·△′=××=,△设三棱锥′-的高为,则由××=,解得=.分.(本小题满分分)如图,半圆是某爱国主义教育基地一景点的平面示意图,半径的长为百米.为了保护景点,基地管理部门从道路上选取一点,修建参观线路---,且,,均与半圆相切,四边形是等腰梯形,设=百米,记修建每百米参观线路的费用为()万元,经测算()=(\\(,<≤(),-(),()<<.))图图()用表示线段的长;()求修建参观线路的最低费用.[解]()设与半圆相切于点,则由四边形是等腰梯形知,⊥,以所在直线为轴,所在直线为轴,建立平面直角坐标系.设与圆切于点,连接,过点作⊥,垂足为.∵=,∠=∠,∠=∠,∴△≌△,∴==-.∴=+=+,解得=+(<<)分()设修建该参观线路的费用为万元.①当<≤,由==′=<,可得在上单调递减,∴=时,取得最小值为.②当<<时,==+--.′=-+=.∵<<,∴+->.∴∈时,′<,函数此时单调递减;∈()时,′>,函数此时单调递增.∴=时,函数取得最小值.由①②知,=时,函数取得最小值为.即修建该参观线路的最低费用为万元分.(本小题满分分)在平面直角坐标系中,设椭圆+=(>>)的离心率是,定义直线=±为椭圆的“类准线”,已知椭圆的“类准线”方程为=±,长轴长为.()求椭圆的方程;()点在椭圆的“类准线”上(但不在轴上),过点作圆:+=的切线,过点且垂直于的直线与交于点,问点是否在椭圆上?证明你的结论.【导学号:】[解]()由题意知(\\(()=(),=,))又=+,解得=,=,所以椭圆的方程为+=分()点在椭圆上.证明如下:设切点为(,),≠,则+=,切线的方程为+-=,当=时,=,即,即==,所以=,直线的方程为=.联立(\\(=(-()),+-=,))解得错误!即分因为+===,所以点的坐标满足椭圆的方程.当=-时,同理可得点的坐标满足椭圆的方程,所以点在椭圆上分.(本小题满分分)已知数列{}满足+=+++(∈*,∈),且=,+=-.()若=,求数列{}的前项和;()若=-,求数列{}的通项公式.[解]()当=时,+=++,即+-+=+-,所以数列{}是等差数列.设数列{}的公差为,则(\\(=,+=-,))解得(\\(=,=-(),))所以=+=+×=-+分()由题意,=++,即-=-+,所以=.又=--=--,所以=.由+=+++,得(+-+)-(+-)=-,所以,数列{+-}是以-=为首项,-为公差的等差数列,所以+-=-+,当≥时,有--=-(-)+.于是,---=-(-)+,---=-(-)+,…-=-×+,-=-×+,叠加得,-=-(++…+(-))+(-)(≥),所以=-×+(-)+=-+-(≥).又当=时,=也适合.所以数列{}的通项公式为=-+-,∈*.分.(本小题满分分)已知函数()=,其中∈,为自然对数的底数.()关于的不等式()<-在(-∞,)上恒成立,求的取值范围;()讨论函数()极值点的个数.[解]()由()<-,得<-,即-+(+)--<对任意∈(-∞,)恒成立,即(-)>-+-对任意∈(-∞,)恒成立,因为<,所以>=-(-),记()=-(-),因为()在(-∞,)上单调递增,且()=,所以≥,即的取值范围为[,+∞)分()由题意,可得′()=,可知()只有一个极值点或有三个极值点.令()=-+-,①若()有且仅有一个极值点,则函数()的图象必穿过轴且只穿过一次,即()为单调递增函数或者()极值同号分(ⅰ)当()为单调递增函数时,′()=-+≥在上恒成立,得≥.(ⅱ)当()极值同号时,设,为极值点,则()·()≥,由′()=-+=有解,得<,且-+=,-+=,所以+=,=,所以()=-+-=(-)-+-=-(-)-+-=[(-)-],同理,()=[(-)-],所以()()=[(-)-]·[(-)-]≥,化简得(-)-(-)(+)+≥,所以(-)-(-)+≥,即≥,所以≤<.所以,当≥时,()有且仅有一个极值点;②若()有三个极值点,则函数()的图象必穿过轴且穿过三次,同理可得<.综上,当≥时,()有且仅有一个极值点,当<时,()有三个极值点分数学Ⅱ(附加题).[选做题](本题包括、、、四小题,请选定其中两小题..相应的答题区域内作.................,并在答...若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤)图.[选修-:几何证明选讲](本小题满分分)如图,是圆的直径,为圆上一点,过作圆的切线交的延长线于点.若=,求证:=.[证明]连接,.因为是圆的直径,所以∠=°,=.因为是圆的切线,所以∠=°.又因为=,所以∠=∠,于是△≌△,从而=,即=+,得=.故=分.[选修-:矩阵与变换](本小题满分分)已知二阶矩阵有特征值λ=及对应的一个特征向量=,并且矩阵对应的变换将点(-)变换成(-).()求矩阵;()求矩阵的另一个特征值.[解]()设矩阵=,这里,,,∈,则==,故(\\(+=,+=,))由于矩阵对应的变换将点(-)换成(-).则))=,故(\\(-+=-,,-+=,))联立以上两方程组解得=,=,=,=,故=)).()由()知,矩阵的特征多项式为(λ)=(λ-)(λ-)-=λ-λ+,故矩阵的另一个特征值为.分.[选修-:坐标系与参数方程](本小题满分分)在平面直角坐标系中,曲线:(\\(=() α,=() α))(α为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为ρ( θ+θ)+=,求曲线上的点到直线的最大距离.[解]将转化为直角坐标方程为++=.在上任取一点( α,α) ,α∈[π),则点到直线的距离为=α+() α+)==.当α=时,取得最大值,最大值为+分.[选修-:不等式选讲](本小题满分分)已知实数,是非负实数,求证:+≥(+).[证明]由,是非负实数,作差得+-(+)=(-)+(-)=(-)[()-()].当≥时,≥,从而()≥(),得(-)[()-()]≥;当<时,<,从而()<(),得(-)[()-()]>.所以+≥(+)分[必做题](第题、第题,每题分,共分,解答时应写出文字说明、证明过程或演算步骤).(本小题满分分)如图,在四棱锥-中,底面是矩形,面⊥底面,且△是边长为的等边三角形,=,在上,且∥平面.图()求直线与平面所成角的正弦值;()求平面与平面所成锐二面角的大小.[解]∵平面⊥平面,△为正三角形,作边上的高,∵平面∩平面=,由面面垂直的性质定理,得⊥平面,又是矩形,同理可得⊥平面,知⊥,∵=,=,∴=.以中点为坐标原点,所在直线为轴,所在直线为轴,的垂直平分线为轴,建立如图所示的坐标系,则(,),(),(),(-),(-),=(-,-),连接交于点,由∥平面,平面∩平面=,∴∥,又是的中点,∴是的中点,则,分设平面的法向量为=(,,),=(-,-),=,则错误!,令=,解得=-,=,得=.()设与平面所成的角为θ,则θ==,∴直线与平面所成角的正弦值为.()平面的法向量为向量=(,-),设平面与平面所成的锐二面角为φ,则φ==,故平面与平面所成锐二面角的大小为分.(本小题满分分)已知()=[(-)()](∈*).()若()=,求()的值;()若()=(∉{,-,…,-}),求证:()=.【导学号:】[解]()()=[(-)()]=[(-)]=(-),∴()=-分()证明:①=时,左边=-==右边.②假设=时,对一切实数(≠,-,…,-),有(-)=,那么,当=+时,对一切实数(≠,-,…,-(+)),有(-)=+(-)[+]+(-)+=(-)+(-)=(-)·-(-(\()(+++)))·=-·==.即=+时,等式成立.故对一切正整数及一切实数(≠,-,…,-),有(-)=分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年江苏高考预测试题(三)
(对应学生用书第137页)
(限时:120分钟)
参考公式
样本数据x 1,x 2,…,x n 的方差s 2=1n n
i =1 (x i -x )2
,其中x =1n
n
i =1
x i . 棱柱的体积V =Sh ,其中S 是棱柱的底面积,h 是高. 棱锥的体积V =1
3
Sh ,其中S 是棱锥的底面积,h 是高.
数学Ⅰ试题
一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中模线上) 1.已知A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B =________.
{-2,-1} [因为集合A ={x |x >-1},所以∁R A ={x |x ≤-1}, 则(∁R A )∩B ={x |x ≤-1}∩{-2,-1,0,1} ={-2,-1}.]
2.若i(x +y i)=3+4i ,x ,y ∈R ,则复数x +y i 的模等于________.
5 [因为i(x +y i)=3+4i ,所以x +y i =3+4i i = 3+4i -i
i -i =4-3i ,故|x +y i|
=|4-3i|=42
+ -3 2
=5.]
3.下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如表所示:
戏剧的男性青年观众”的人中抽取了8人,则n 的值为________. 30 [由题意840=n
40+10+40+60,
解得n =30.]
4.如图1所示,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是________.
图1
1-2
π
[设OA =OB =2,如图,由题意得S 弓形AC =S 弓形BC =S 弓形OC ,
所以S 空白=S △OAB =1
2
³2³2=2.
又因为S 扇形OAB =14³π³22
=π,所以S 阴影=π-2.
所以P =
S 阴影S 扇形OAB =π-2π=1-2
π
.] 5.在同一直角坐标系中,函数y =sin ⎝ ⎛⎭⎪⎫x +π3(x ∈[0,2π))的图象和直线y =12的交点的个数是
________.
【导学号:56394125】
2 [令y =sin ⎝ ⎛⎭⎪⎫x +π3=1
2,解得x +π3=π6+2k π,或x +π3=5π6+2k π,k ∈Z ;
即x =-π6+2k π,或x =π
2+2k π,k ∈Z ;
∴同一直角坐标系中,函数y 的图象和直线y =1
2
在x ∈[0,2π)内的交点为⎝ ⎛⎭⎪⎫π2,12和⎝ ⎛⎭⎪⎫11π6
,12,共2个.]
6.如下是一个算法的伪代码,则输出的结果是________.
7.现有一根n 节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10 cm ,最下面的三节长度之和为114 cm ,第6节的长度是首节与末节长度的等比中项,则n =________. 16 [设对应的数列为{a n },公差为d (d >0).由题意知a 1=10,a n +a n -1+a n -2=114,a 2
6=
a 1a n ,由a n +a n -1+a n -2=114,得3a n -1=114,解得a n -1=38,又(a 1+5d )2=a 1(a n -1+d ),即
(10+5d )2
=10(38+d ),解得d =2,所以a n -1=a 1+(n -2)d =38,即10+2(n -2)=38,解得n =16.]
8.设α为锐角,若sin ⎝ ⎛⎭⎪⎫α+π6=35,则cos ⎝
⎛⎭⎪⎫2α-π6=________.
2425 [∵0<α<π2,∴π6<α+π6<2π3,-π3<α-π3<π
6. ∵sin ⎝ ⎛⎭⎪⎫α+π6=35<32,故α+π6<π3,∴α<π6.
∴cos ⎝
⎛⎭⎪⎫α+π6=45; 又∵-π3<α-π3<π6,sin ⎝ ⎛⎭⎪⎫α+π6
=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫α+π6=cos ⎝ ⎛⎭⎪⎫α-π3=35,
∴sin ⎝
⎛⎭⎪⎫α-π3=-45. cos ⎝ ⎛⎭⎪⎫2α-π6=cos ⎣⎢⎡⎦⎥⎤⎝
⎛⎭⎪⎫α+π6+⎝ ⎛⎭⎪⎫α-π3 =cos ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α-π3-sin ⎝ ⎛⎭⎪⎫α+π6sin ⎝ ⎛⎭⎪⎫α-π3 =45³35+45³35=24
25
.]。

相关文档
最新文档