专题十一 几何证明之三角形中作辅助线造全等 2020年中考数学冲刺难点突破 几何证明问题(原卷版)
2020年九年级中考数学专题复习:全等三角形 常见辅助线题型 总结(含解析)

【例 3】 如图, BC BA , BD 平分 ABC ,且 AD CD ,求证: A C 180 .
【解析】过 D 作 DM ∥ AC 交 AB 于点 M ,易证△AME ≌ DEM ,AM ED 。显然△BDM ≌△FDG ,BM GF , 结论成立。
【答案】如图
7
【例 14】 如图,在△ABC 内存在一点 P ,求证: AB AC BP CP
所以结论成立。
【例 7】 如图在△ABC 中, C 90,AC BC,AD DB,AE CF 。求证: DE DF .
【答案】连接 CD , A DCF 45 ,所以△AED ≌△CFD ,所以 DE DF
4
【例 8】 如图, AB AC ,∠A 90,AE CF,BD DC .求证: FD ED
【解析】略 【答案】过 C 作 AD 的垂线交 AD 延长线于 F ,△BCE ≌△DCF BE DF
△EAC ≌△FAC AE AF,所以AE AD DF AD BE
二、倍长中线(线段)造全等 【例 5】 已知,如图△ABC 中, AB 5 , AC 3 ,则中线 AD 的取值范围是_________.
【解析】延长 AD 至 E 使 AD DE ,连接 BE .利用三角形三边关系 【答案】 2 AD 8
3
【例 6】 如图,△ABC 中, E、F 分别在 AB、AC 上, DE DF , D 是中点,试比较 BE CF 与 EF 的大小. 【解析】略 【答案】延长 FD 至 G 使 DG DF ,所以有△GED ≌△FED 和△BDG ≌△CDF ,所以 CF BG ,GE EF 。
2024八年级上《全等三角形》常见辅助线作法总结

全等三角形是初中数学中的重要概念,掌握全等三角形的判断和性质是解决三角形问题的关键。
常用的辅助线作法可以帮助我们更好地理解和应用全等三角形的知识。
下面将对2024八年级上《全等三角形》常见的辅助线作法进行总结。
一、三角形内部的辅助线作法:1.外切圆:对于一个三角形,可以在它的外面作出三个外接圆,然后通过外接圆的协调定理来判断和证明两个三角形全等。
2.角平分线:对于一个角,可以作出它的角平分线,然后利用角平分线的性质来判断和证明两个三角形全等。
3.中位线:对于一个三角形,可以连接它的两个顶点和中点,得到两条中位线。
根据中位线的性质,可以判断和证明两个三角形全等。
4.高线:对于一个三角形,可以分别作出它的三条高线,然后根据高线的性质来判断和证明两个三角形全等。
5.角高线和中线:对于一个锐角三角形,可以连接其中一个角的顶点和对边的中点,得到一条角高线和一条中线。
根据角高线和中线的性质,可以判断和证明两个三角形全等。
二、三角形外部的辅助线作法:1.外接圆和割线:对于一个三角形,可以通过外接圆和割线的性质来判断和证明两个三角形全等。
2.正弦定理和余弦定理:对于一个三角形,可以通过正弦定理和余弦定理来判断和证明两个三角形全等。
3.对称性和重叠法:对于一个三角形,可以利用对称性和重叠法来判断和证明两个三角形全等。
4.平移法和旋转法:可以通过平移法和旋转法来判断和证明两个三角形全等。
以上仅是2024八年级上《全等三角形》常见的辅助线作法的总结,实际问题中可能还会有其他的辅助线作法。
在解决三角形问题时,选择合适的辅助线作法可以简化问题,提高解题效率。
同时,还需要对全等三角形的基本知识进行深入理解和掌握,不仅要掌握判断全等三角形的条件,还要熟练运用全等三角形的性质和定理。
初中三角形中做辅助线的技巧及典型例题

三角形中做辅助线的技巧口诀:三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
线段和差及倍半,延长缩短可试验。
线段和差不等式,移到同一三角去。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
一、由角平分线想到的辅助线 口诀:图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。
对于有角平分线的辅助线的作法,一般有两种。
①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。
通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。
至于选取哪种方法,要结合题目图形和已知条件。
与角有关的辅助线 (一)、截取构全等如图1-2,AB3 C 知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC上的点,∠FAE=∠DAE 。
求证:AF=AD+CF 。
3.已知:如图2-7,在Rt △ABC 中,∠ACB=90 ,CD ⊥AB ,垂足为D ,AE 平分∠CAB 交CD 于F ,过FH 21知:如图3-2,AB=AC ,∠BAC=90 ,作FC图2-6ECD图2-7DBAD 为∠ABC 的平分线,CE ⊥BE.求证:BD=2CE 。
分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形。
例3.已知:如图3-3在△ABC 中,AD 、AE 分别∠BAC 的内、外角平分线,过顶点B 作BFAD ,交AD 的延长线于F ,连结FC 并延长交AE 于M 。
求证:AM=ME 。
分析:由A D 、A E 是∠B A2121图4-1AB已知,如图,∠C=2∠A ,AC=2BC 2.已知:如图,AB=2AC ,∠1=∠2,DA=DB ,求证:DC ⊥AC3.已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD4.已知:如图在△ABC 中,∠A=90°,AB=AC ,BD 是∠ABC 的平分线,求证:BC=AB+ADC A BABCD AE BDA BDC 1 2 图3-2BC二、 由线段和差想到的辅助线口诀:线段和差及倍半,延长缩短可试验。
2020年北京市中考数学考点之三角形辅助线

2020年北京市中考数学考点之三角形辅助线三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍。
含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2019-2020学年数学中考模拟试卷一、选择题1.如图,平行于x轴的直线与函数y1=ax(a>0,x>0),y2=bx(b>0.x>0)的图象分别相交于A、B两点,且点A在点B的右侧,在X轴上取一点C,使得△ABC的面积为3,则a﹣b的值为()A.6 B.﹣6 C.3 D.﹣32.下列运算正确的是()A.﹣(a3)2=a5B.a2+a2=a4C.212-⎛⎫⎪⎝⎭=4 D.|3﹣2|=3﹣23.如图是由5个完全相同的小正方体组成的几何体,则该几何体的俯视图是()A.B.C.D.4.如图,在四边形ABCD中,∠DAB=90°,∠DCB=90°,E、F分别是BD、AC的中点,AC=6,BD=10,则EF的长为()A.3 B.4 C.5 D.75.从电线杆离地面8米处拉一根长为10m的缆绳,这条缆绳在地面的固定点距离电线杆底部有( )m.A.2 B.4 C.6 D.86.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A.(3a+4b)元B.(4a+3b)元C.4(a+b)元D.3(a+b)元7.转动A 、B 两个盘当指针分别指向红色和蓝色时称为配紫色成功。
辅导资料:全等三角形问题中常见的辅助线的作法

全等三角形问题中常见的辅助线的作法常见辅助线的作法有以下几种:1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折” •2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”•3)遇到角平分线,能够自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的相关性质加以说明. 这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求相关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ ABC中,AB=5 AC=3则中线AD的取值范围是 _______ .例2、如图,△ ABC中,E、F分别在AB AC上, DEL DF, D是中点,试比较BE+CF与EF的大小.例3、如图,△ ABC中,BD=DC=A,E是DC的中点,求证:AD平分/ BAE.应用:1、( 09崇文二模)以ABC的两边AB、AC为腰分别向外作等腰Rt ABD和等腰Rt ACE,BAD CAE 90 ,连接DE,M、N分别是BC、DE的中点.探究:AM与DE 的位置关系及数量关系.(1)如图① 当ABC为直角三角形时,AM与DE的位置关系是____________________ ,线段AM与DE的数量关系是 ____________ ;(2)将图①中的等腰Rt ABD绕点A 沿逆时针方向旋转(0< <90)后,如图②所示,(1) 问中得到的两个结论是否发生改变?并说明理由.二、截长补短1 如图,ABC 中,AB=2AC AD平分BAC,且AD=BD 求证:CDL AC2、如图, AC// BD, EA,EB 分别平分/ CAB,/ DBABAC 60,CD过点E,求证;AB =AC+BDC 400,P,Q分别在BC, CA上,并且AP, 求证:A C 1800C3、如图,已知在§ABC内,4、QAB C5、如图在△ ABC 中,AB> AC, / 1 = Z 2, P 为 AD 上任意一点,求证;AB-AC > PB-PC应用:如虱在四边Jg AltCD 申点丘毘皿上一个动点.若乙疗朋二血・R肚"叭判斷J/J > MC *-j 恥的关系幷征期你的结i:、平移变换 例1 ADABC 的角平分线,直线 MN L AD 于A.E 为MN 上一点,△ ABC 周长记为P A,△ EBC 周长记为P B .求证P B > P A .例2如图,在△ ABC 的边上取两点 D E ,且BD=CE 求证:AB+AOAD+AE.四、借助角平分线造全等1如图,已知在厶 ABC 中,/ B=60°,A ABC 的角平分线 AD,CE 相交于点 0,求证:0E=0D(1)说明BE=CF 的理由;(2)如果AB=a , AC=b ,求AE 、BE 的长.2、如图,△ ABC 中,AD 平分/ BACDGL BC 且平分 BC, DE I AB 于 E , DF 丄 AC 于 F.BDFN应用:1如图①,0P 是/ MON 的平分线,请你利用该图形画一对以0P 所在直线为对称轴的全等三角形。
全等三角形证明题中常见的辅助线的作法

全等三角形问题中常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连. 要证线段倍与半,延长缩短可试验.三角形中两中点,连接则成中位线. 三角形中有中线,延长中线等中线.1。
等腰三角形“三线合一"法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3。
角平分线在三种添辅助线4。
垂直平分线联结线段两端5。
用“截长法"或“补短法":遇到有二条线段长之和等于第三条线段的长,6。
图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60—90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30—60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变ED F CB A换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转" 法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
三角形全等证明常见做辅助线方法

三角形全等证明常见做辅助线方法一、遇到三角形中线时常见的辅助线若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形。
(倍长中线法或“旋转”全等)1、如图,AD 为 △ABC 的中线,求证:AB +AC >2AD 。
(三角形一边上的中线小于其他两边之和的一半)2、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 。
3、如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE.C二、遇到角平分线时常见的辅助线1.角平分线上点向角两边作垂线构造全等 过角平分线上一点向角两边作垂线,利用角平分线上的点到角两边距离相等的性质来证明问题。
(作垂线)2.截取构造全等(截长法、补短法)如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。
ADBC图1-1B3.延长垂线段(延长法)遇到垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形。
4.作平行线①、以角平分线上一点作角的另一边的平行线,构造等腰三角形,图4-1。
②、通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形,图4-2。
图4-2图4-1ABCBIG4、已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC上的点,∠FAE=∠DAE 。
求证:AF=AD+CF 。
5、已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD6、已知:如图在△ABC 中,∠A=90°,AB=AC ,BD 是∠ABC 的平分线,求证:BC=AB+AD三、截长补短法(适合于证明线段的和、差、倍、分等类题目)截长法:在长线段上截取与两条线段中的一条相等的一段,证明剩余的线段与另一段相 等(截取----全等----等量代换)图2-6ECDABCD AEBDC补短法:延长其中一短线段使之与长线段相等,再证明延长段与另一短线段相等(延长----全等----等量代换)①、对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法将其放在一个三角形中证明。
2020年中考数学几何辅助线大全及常考题型

2020年中考数学几何辅助线作法及常考题型解析初中数学辅助线本资料涵盖内容1、初中数学作辅助线方法2、初中数学作辅助线注意事项3、初中数学作辅助线例题大全4、对应练习题一、辅助线在中考中的地位在中考题目中,辅助线的考察主要以解答题形式出现,分值高,决定着你数学成绩的高低。
对于几何题来说,这是一个难点,考查的是你对知识点一个全面的理解,当然也是有技巧的,下面就是针对作辅助线的方法进行详细介绍,只要你能把我文章中的方法掌握,完成相应的训练题,几何题绝不会失分,你的数学成绩就会比别人高。
二.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学冲刺难点突破几何证明问题
专题十一几何证明之三角形中作辅助线造全等
1、如图1,OA=2,OB=4,以点A为顶点,AB为腰在第三象限作等腰直角△ABC.
(Ⅰ)求C点的坐标;
(Ⅱ)如图2,OA=2,P为y轴负半轴上的一个动点,若以P为直角顶点,PA为腰等腰直角△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;
(Ⅲ)如图3,点F坐标为(﹣4,﹣4),点G(0,m)在y轴负半轴,点H(n,0)x轴的正半轴,且FH⊥FG,求m+n的值.
2、如图,在△ABC中,AB=AC,点M在△ABC内,AM平分∠BAC.点D与点M在AC所在直线的两侧,
AD⊥AB,AD=BC,点E在AC边上,CE=AM,连接MD、BE.
(1)补全图形;
(2)请判断MD与BE的数量关系,并进行证明;
(3)点M在何处时,BM+BE会有最小值,画出图形确定点M的位置;如果AB=5,BC=6,求出BM+BE 的最小值.
3、如图1,∠AOB=90°,OC平分∠AOB,以C为顶点作∠DCE=90°,交OA于点D,OB于点E.
(1)求证:CD=CE;
(2)图1中,若OC=3,求OD+OE的长;
(3)如图2,∠AOB=120°,OC平分∠AOB,以C为顶点作∠DCE=60°,交OA于点D,OB于点E.若OC=3,求四边形OECD的面积.
4、在△ABC中,AB=AC,CD是AB边上的高,若AB=10,BC=.
(1)求CD的长.
(2)动点P在边AB上从点A出发向点B运动,速度为1个单位/秒;动点Q在边AC上,从点A出发向点C运动,速度为v个单位/秒(v>1).设运动的时间为t(t>0),当点Q到点C时,两个点都停止运动.
①若当v=2时,CP=BQ,求t的值.
②若在运动过程中存在某一时刻,使CP=BQ成立,求v关于t的函数表达式,并写出自变量t的取值
范围.。